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ABSTRACT 

Flight schedules represent a crucial element of airline as well as airport operations. Information which 
airline fly on which time, to which destination, using which aircraft type are listed in a typical flight 
schedule and can be extended by any further information. But how a flight schedule of a cluster of similar 
but not identical airports looks like? 
The paper’s main objective is to implement a methodology of developing generic flight schedules, one for 
each pre-defined airport cluster, out of a set of real flight schedules and segments of the cluster 
representatives. Statistical and probability distributions are used to determine a suitable weekly 
distribution of arrival and departure flights, which is filled up with flight-specific data of such an airport 
cluster. Every airport-specific data like origin/destination information, specific aircraft type, passenger 
volume etc. are transferred into generic categories.  
The methodology is implemented in a model called “Builder of generic Schedules”, short BogS. It is 
shown that a generic flight schedule for a present situation can be provided and is suitable for airport 
cluster representatives. Furthermore a future scenario can be outlined, issuing the attributes future 
development, especially the future frequency of aircraft movements.   
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1 INTRODUCTION 

1.1 Motivation 

Airports have their operational focus on the short term. Nevertheless, a long term view is crucial for 
planning and developing their infrastructure and business. Software-assisted airport models are proper 
for the airport’s expansion and business assessment but also for investigations in the field of airport 
research, whereas such models often focus on single airport elements only. This scope is not sufficient to 
address the mechanisms of the air transportation system as a whole.  
From an holistic, air transport system point of view a generic airport model is useful, that covers 
operational aspects, e.g. passenger and aircraft movement demand, infrastructural aspects as well as 
resulting economic changes (revenues). The granularity should be as rough as possible, reducing the 
overall complexity and computing time, but accurately enough to model crucial intra-airport relationships. 
Therefore a generic airport model shall not represent one single airport in detail, but shall be suitable for 
an airport cluster. In order to assess intra-airport relationships, a network of generic airports is 
necessary, where the BogS model will be used to determine sound flight schedules. Our hypothesis is, 
that similar airports within a cluster have quite comparable flight operations over a week and, hence, only 
one generic flight schedule is representing the cluster. Using the outcome of this paper, a possible, 
scenario-based evolution of a certain network shall be shown in the long term, as well as the impact of 
introducing emerging technologies. 
 
1.2 Literature review 

Literature illustrates some approaches for grouping airports, usually distinguishing them by defined 
threshold values. Airport Council International (ACI), an association of airport operators, classifies four 
groups of airports simply using their yearly passenger volumes [1]. Azzam [2] introduces a new airport 
taxonomy based on flight plan data from 1979 to 2007 using network performance figures. By this, 
specific statements can be made about the airports evolution and function within the air transportation 
network at a defined point in time, putting them into a geographical context. Azzam uses a hierarchical 
cluster analysis, defining 12 different airport classes based on six network parameters. Oettel et al. [3] 
use clustering techniques to develop an application-oriented airport classification for air traffic simulation 
purposes. In particular, the single linkage algorithm is applied to identify outliers and similarities among a 
set of airports. Oettel et al. indicate that it makes sense to limit the set of parameters according to the 
application. The more parameters are considered for classification, the bigger the application field 
becomes, but also the smaller the sample and representativity of results. 
Several activities are outlined in the literature concerning the development of airline schedules. But this 
issue cannot be seen on its own. Jacobs et al. [4] characterize it as an integrated, intermeshed process 
with strong overlapping to the airline marketing and distribution. Hence, the airline scheduling determines 
not only where and when the airline will fly (also called flight leg or segment from A to B), furthermore it 
focuses on the passenger origin and destination (O&D) market. The schedule is built to satisfy the 
passenger demand and to maximize airline profitability. The bigger and more competitive the airline 
business became over the past decades, the more sophisticated the development of flight schedules 
became as well. Therefore methods of operations research and mathematical modeling are applied in 
order to solve the industry problems (for details see [4], [5]).      
In contrast to that, an airport flight schedule is only a mixture of different airline schedules and the 
airport has only marginal influence on that. Nevertheless typical attributes and influencing circumstances 
must keep in mind. Objectives are a most optimal utilization of the infrastructure and the airport’s own 
profit maximization. The operating airline is subsidiary. Nevertheless similar activities to the paper in 
hand, resulting in a generic flight schedule suitable for different airports, could not be found.   
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2 APPROACH FUNDAMENTALS 

Two beforehand accomplished analyses are incorporated in this approach of developing generic flight 
schedules. The fundamental and main input builds an airport cluster analysis. Furthermore the Forecast 
of Aircraft Movements (FoAM) model is used to determine the future arrival and/or departure frequency 
of a certain airport cluster. Both analysis will be introduced briefly in the following. 
 
2.1 Clustering of Airports 

Clustering is an algorithm for forming functional groups, whereby the objects of one group feature 
maximum similarity and likewise minimal similarity to objects in other groups [6]. Numerous methods of 
clustering can be found in literature (amongst others [6], [7]), but there is no single approach that is 
applicable for all kinds of analysis. Choosing an appropriate clustering algorithm largely depends on the 
investigated objects. A hierarchical agglomerative clustering method was applied to determine airport 
similarities. Representing a common linkage rule, the minimum-variance-linkage/Ward-linkage has been 
selected. Advantages of an hierarchical approach are the flexibility regarding the number of clusters and 
a non-specification of initial conditions. The algorithm merges the cluster pair that causes the smallest 
increase of the sum of squared errors, thus ensuring a maximum homogeneity per time step. Having 
calculated the distances between all pairs of objects, the two objects merge being most similar. 
Furthermore the Euclidean distance is chosen as measure of similarity/proximity. Seven clusters result out 
of this analysis and characterized by attributes out of different categories. Table 1 and Table 2 show the 
attributes used for the cluster analysis (blue) and the means of attributes for every cluster. Highlighted 
are the smallest (red) and biggest (green) value per attribute. 

Table 1: Attribute means of clusters (1) 

Cluster N Name Passengers 
[PAX/Year] 

Movements 
[MOV/Year] 

Cargo 
[Tons/Year] 

Transfer 
PAX [%] 

1 38 Small Regional Airports 5 001 000 65 000 59 000 8.20 
2 20 Medium Regional Airports 8 477 000 126 000 176 000 12.79 
3 23 International Airports 17 236 000 176 000 199 000 15.05 
4 29 Secondary Hub Airports 25 460 000 282 000 350 000 16.48 
5 24 International Hub Airports  45 843 000 398 000 1 039 000 38.84 
6 4 High Frequency Hubs 66 372 000 780 000 600 000 43.34 
7 8 Cargo Hubs 25 098 000 230 000 2 838 000 20.46 

Table 2: Attribute means of clusters (2) 

Cluster Nb. of 
RWYs 

Traffic Mix [%] Revenue/PAX 
[US$] 

Revenue 
[US$] 

Distance to 
City Center 
[km] S H M L 

1 2 0.00 8.29 90.46 1.25 18.18 93 664 000 18.97 
2 4 0.00 2.29 97.26 0.45 12.30 105 840 000 17.87 
3 2 0.00 15.72 83.64 0.65 22.48 384 324 000 24.01 
4 3 0.00 17.24 81.97 0.79 16.67 408 486 000 19.87 
5 3 0.33 29.69 69.65 0.33 19.15 907 114 000 23.72 
6 6 0.00 10.39 89.12 0.49 8.86 553 736 000 31.03 
7 3 0.06 38.88 60.14 0.91 26.05 828 540 000 36.90 



 
 
 

CEAS 2015 paper no. 029  Page | 4  
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s). 

 

 
Distinctive clusters are International Hub Airports, High Frequency Hubs (graphical visualized in Figure 1) 
and Cargo Hubs. International Hub Airports represent typical hubs of major airlines, e.g. Frankfurt Airport 
(FRA) or New York´s John F. Kennedy Airport (JFK). A high proportion of transfer passengers (38 %) and 
share of heavy aircraft (30 %) are characteristically. In addition, about 60 % of the airports of this class 
are approached by the currently largest airliner, the Airbus A380. 
High Frequency Hubs represent typical major U.S. airports and include 4 airports only, e.g. Hartsfield-
Jackson Atlanta International Airport (ATL). Providing six runways or more, these airports serve in 
average 780.000 aircraft movements per year, by far the largest value compared to the other clusters. 
This frequency allows for a volume of around 66 million passengers annually and also a variety of 
transfer options for passengers, reflecting in the highest transfer passenger share of 43 %. Despite these 
figures, only a revenue of US$ 8.86 per passenger is generated, representing the lowest value of all 
classes. Airports characterized by an annual cargo volume of 2.8 million tons are defined as Cargo Hubs. 
Due to the large volume of cargo, a considerable total revenue of US$ 828 million is generated. At the 
same time only 25 million passengers per anno use these airports, resulting in the best revenue per 
passenger value with US$ 26. Furthermore the highest share of heavy aircraft (around 39 %) is achieved 
by this airport cluster. For instance, this cluster features Memphis International Airport (MEM) and Hong 
Kong Chek Lap Kok International Airport (HKG). A dendrogram, showing all representatives of the 
clusters can be found at the appendix and further detailed information about the airport clustering in [8]. 

 

Figure 1: Visualization of High Frequency Hub 

Depending on the number of objects (here airports) and choice of clustering attributes the result of the 
clustering changes, which reveal the advantages as well as disadvantages of a clustering methodology. 
Most positive effect is the volatility of the clustering approach due to an adaptability to the scope of 
research. A focused analysis on geographical regions or a certain characterizing category (e.g. 
effectiveness of an airport) can be executed easily. Furthermore functional groups on statistical data are 
derived, in contrast of using rigid threshold values. On the other hand this volatility is also 
disadvantageous. Changes in the number of investigated objects, the clustering parameters or the 
clustering method can cause a different result, even different clusters. Therefore, it is important to have a 
basic understanding of the desired results and previous knowledge of the research topic. However, the 
method of determining generic flight schedules presented in this paper can fully adapt to any further 
clustering. 
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2.2 Forecast of Aircraft Movements (FoAM) Model 

FoAM represents a forecast model that has been developed to determine the behavior of airlines when it 
comes to a passenger growth on certain flight legs. The airlines are able to deal with this situation by 
either increasing the frequency or the aircraft size, which may entail different numbers of aircraft 
movements. Purpose of FoAM is to forecast a typical fleet mix and the growth of aircraft movements on 
flight segments worldwide based on an assumed passenger growth. 
The model´s basic assumption is that the size of assigned aircraft and the flight frequency depends on 
two essential determinants: First, the passenger volume and, second, the segment distance. This 
approach was chosen because it supports the commonly accepted claim that the average aircraft size 
increases with growing distance and passenger volumes. Initially, each flight leg worldwide is assigned to 
a distance, passenger number and aircraft category. Each type of category comprises around seven to 
eight subcategories itself. It means, that a flight segment can be assigned to one of 448 different 
combinations of categories. Figure 2 illustrates this categorization, which can be adjusted in the 
categories number and boundaries for further investigations. [9] 

 

Figure 2: Pattern of categorization within FoAM 

A typical mix of aircraft size is derived empirically for all categories, exemplarily shown at Figure 3 for the 
distance category 401 - 800 km.  

  
 

Figure 3: Discrete (left) and continuous (right) distribution of aircraft sizes,  
distance category 401 - 800 km 
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It indicates that the share of any specific aircraft sizes reaches a maximum at a certain passenger 
volume. As the passenger volume shifts away from this value, the share of the specific aircraft size 
decreases. The findings for other distance categories look quite similar. Once the mix of aircraft sizes 𝛼𝛼 is 
identified, the frequency on one specific segment can be retrieved with means of the passenger volume 
𝑝𝑝𝑝𝑝𝑝𝑝, the seat load factor 𝑆𝑆𝑆𝑆𝑆𝑆 and the average equipment capacity in a passenger category Ø 𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠. 
Therefore, the average passengers per flight are calculated from the weighted sum over all aircraft 
categories of the products of the capacity of all aircraft categories and the seat load factor. The segment 
frequency can then be modeled by dividing the total passenger number by the average passengers per 
flight. 

segment frequency =
pax

∅pax per flight
=

pax
∑ αAC ∗ SLFDist ∗ Ø seatsACAC

 (1) 

The global number of air traffic movements is the sum of the frequencies of the segments worldwide. 
Using the given formula and the passenger volumes of the base year allows modeling the global 
frequency for the base year. Eventually, applying an assumed passenger growth (e.g. 4.7 % p.a.) to all 
segments, a forecast of frequencies per segment is calculated (e.g. 2030). The global growth of air traffic 
movements per anno can thus be estimated by the sum of all frequencies. Further detailed information 
about FoAM are presented in [9]. 
3 FLIGHT SCHEDULE DETERMINATION 

The determination of generic flight schedules 
for the aforementioned clusters is outlined in 
the following.  
The fundamental methodology is divided into 
four phases. Basis of this study are real flight 
plan data from ADI [10] of 144 airports 
considered in the clustering (section 2.1). 
Appropriate flight schedules are merged and 
filtered according to predefined requirements 
(phase A). In a second step specific attributes 
are determined, amongst others the weekly 
flight distribution, using common distribution 
functions (phase B).  
Phase C comprise the final modeling of the 
present flight schedule (here 2012), which can 
also be described as generic re-modeling of 
the initial, real flight schedules. The algorithm 
concludes with a forecast flight schedule (here 
2030), primarily based on the findings of 
phase B.  
The methodology is implemented in JAVA and 
is adaptable to further user-defined 
requirements. Figure 4 gives a graphical 
overview of the four phases.  
 

 

Figure 4: Methodology of determination a 
generic flight schedule (4 phases approach) 
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3.1 Phase A: Data mining 

Phase A can be entitled as a simplified data mining process, the 
application of statistical methods to big data amounts in order to 
extract relevant data or to identify new cross connections. 
First step within phase A is a data filtration of the real flight schedules 
and segments. In order to get a vital consistency, requirements were 
defined which derive from the character of flight schedules. The 
algorithm distinguishes between real flight schedules out of a cluster, 
meaning a certain number of airports, of a time, meaning summer (1st 
Apr – 31st Oct) or winter (1st Nov – 31st Mar) and of a flight type, 
which means if departure or arrival flight are considered. Furthermore 
night curfews and regional differences are taken into account. 
After filtration the single attributes are transformed into generic 
attributes. Considered are three classifications: an aircraft category, a 
distance category and a passenger category, which are adopted from 
FoAM (see Figure 2). Finally, the outcome of phase A is a sorted 
schedule, representing the fundamental for further process steps. 
Figure 5 summarize the steps of phase A.   

 

Figure 5: Data mining 
 
3.2 Phase B: Determination of specific attributes 

Initially, phase B includes the determination of a weekly flight distribution, i.e. the number of flights 
performed within a distinct time slot (for example three flights within slot 8:01 – 8:30) over a weekly time 
period (Monday - Sunday). This discrete curve is encompassed by an upper and lower confidence 
interval. Figure 6 illustrates this weekly flight frequency distribution.   

 

Figure 6: Exemplary weekly flight distribution 

To determine a most precisely weekly flight distribution for every cluster the algorithm tries to describe 
every single time slot by a common probability mass function and verify this choice by a chi-square test. 
Assuming the airports within a cluster have similar flight operations, the frequencies should accumulate 
around the mean. Therefore, and most likely, a modeling by using a Gaussian distribution is verified 
firstly. Due to the symmetry of the Gaussian distribution the confidence intervals are calculated according 
to (2) and (3), with the expectation 𝜇𝜇 and the standard deviation 𝜎𝜎. 
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𝐼𝐼𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  𝜇𝜇 + 1.96 ∗  𝜎𝜎 (2) 

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 =  𝜇𝜇 − 1.96 ∗  𝜎𝜎 (3) 

If the null hypothesis is rejected by the chi-squared test, i.e. the distribution of the sample is not a 
Gaussian distribution, a possible skewness of the distribution is checked. This characteristic can appear at 
clusters with small airports or clusters with a large number of representatives (sample size). We use a 
Weibull distribution for distributions skewed to the left. Hence, the confidence intervals are calculated 
according to (4) and (5) for a Weibull-distributed sample (approximated by a F-distribution) [11], 
whereby 𝑛𝑛 represents the sample size, 𝑆𝑆(𝑚𝑚1, 𝑚𝑚2,   𝑠𝑠) is the F-distribution value and 𝑖𝑖 = 1. Distributions 
skewed to the right are modeled by using exponential distributions. Confidence intervals are calculated 
according to (6) and (7), whereby 𝑋𝑋� represents the mean of X and  𝜒𝜒2𝑛𝑛;𝛼𝛼2

2  is the chi-squared value. If the 

three aforementioned hypothesis are rejected by the chi-squared test a uniform distribution is chosen. 
This would be the worst case solution and does not speak for the clustering, because no significant peak 
of flight frequencies per slot can be detected. 

𝐼𝐼𝑖𝑖,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 1 −  
1

1 +  𝑖𝑖
𝑛𝑛 − 𝑖𝑖 + 1 𝑆𝑆2𝑖𝑖,2(𝑛𝑛−𝑖𝑖+1),𝛼𝛼/2

 (4) 
 

𝐼𝐼𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  
2𝑛𝑛𝑋𝑋�

𝜒𝜒
2𝑛𝑛;𝛼𝛼2

2  (6) 

𝐼𝐼𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 =  
1

𝑛𝑛 − 𝑖𝑖 + 1
𝑖𝑖  𝑆𝑆2(𝑛𝑛−𝑖𝑖+1),2𝑖𝑖,𝛼𝛼/2 + 1

 (5) 
 

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 =  
2𝑛𝑛𝑋𝑋�

𝜒𝜒
2𝑛𝑛;1−𝛼𝛼2

2  (7) 

3.3 Phase C: Generic flight schedule development 

Phase C encompasses the generation and allocation of appropriate flights out of the sorted schedule of 
phase A to the calculated frequencies of phase B. The crux of the matter is a determination of generic 
flight schedules for every single run of the algorithm using a random experiment, but getting no distorted 
result according to the real sample. The objective is to find a possible result, not an optimal one. The 
algorithm of phase C bases on the urn model, which is commonly used in probability theory. 
The algorithm starts with the generation of the aircraft category according to their occurrence in the real 
schedules. For every category selection (aircraft, distance, passenger) a pool of data, an urn respectively, 
is generated. The probability of choice 𝑃𝑃(𝐴𝐴) is calculated by the number of results, the event takes place 
|𝐴𝐴| divided by the total number of possible results or sample space |Ω| (Laplace formula). We assume, 
that the size of aircraft is linked to particular slots and, thus, the choice of an appropriate distance and 
passenger category is limited automatically, which are the second and third step within the determination 
of random flights. The selection of a distance and passenger category takes place randomly from data 
out of the whole week. The following example and Figure 7 shall illustrate this process. 
 

First layer: An urn contains 47 flights including 3 AC categories. Probabilities are 10/47 
(Cat 2), 15/47 (Cat 4) und 22/47 (Cat 5). The choice of AC Cat 5 is most likely, here 
exemplarily AC Cat 4 is chosen. Second layer: AC Cat 4 flies over a week 300 times DIST 
Cat 3 and 500 times DIST Cat 4 out of 800 flights in total. Exemplarily DIST Cat 4 is 
chosen. Layer 3: Over a week a passenger volume is recognized, which fits 250 times to 
PAX Cat 5, 200 times to PAX Cat 6 and 100 times to PAX Cat 7. Exemplarily PAX Cat 6 is 
chosen for this flight. 
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Figure 7: Exemplary decision tree of determining a flight  

In parallel, currently a non-generic airline is selected following the same scheme of choosing a distance 
category. Hence, varying fleets are taken into account due to the adjustment of every aircraft category 
used by an airline. Finally, a flight consists of a data quadruplet of airline, distance category, aircraft 
category and passenger category. 
After the determination of random flights we have to assign them to the frequencies of phase B in a 
random manner. As there exist no real segments (we waive the precise O&D information), a segment 
builds a container, defined by its distance and passenger category combination. The first flight allocated 
randomly sets the container fundament and it obtains a certain passenger volume interval depending on 
the passenger category. Consequently this container has to be filled with flights such that the boundaries 
of the FoAM passenger category are matched. The passenger increase per flight is calculated according 
to (8) by the product of the SLF, the upper/lower seat capacity bound of the aircraft category and 4.37, 
which is the average number of a weekday per month (valid for both summer and winter). 

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑝𝑝𝑠𝑠𝑝𝑝 𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠 𝑚𝑚𝑖𝑖𝑛𝑛/𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑆𝑆𝑆𝑆𝑆𝑆 ∗  𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠 𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑠𝑠𝑐𝑐𝐴𝐴𝐴𝐴  𝐴𝐴𝑚𝑚𝑎𝑎,   𝑚𝑚𝑖𝑖𝑛𝑛/𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 4.37 (8) 

Example: First flight allocated to a container is AC Cat 4, DIST Cat 5 and PAX Cat 6. 
Thus, the passenger volume of this container has to be between 9 001 and 20 000 
passengers. According to (8) the minimum passenger increase amounts to 296 
passengers and the maximum increase to 443 passengers, assuming a SLF of 65 %. The 
container can comprise a slot maximum of 960 [min per week] divided by the chosen slot 
interval [min].  

 
The segment filling process is implemented by using a array (n x m), exemplarily shown in Figure 8. In 
order to account for a regularity of flights over the week, the algorithm primarily generates flights with an 
identical aircraft category, using different slots (indicated red at Figure 8) and adds the flights to the days 
of appearance. Not used aircraft categories are added at the bottom of the matrix (indicated as slot 
number with *). This attachment of new rows ensures that no flights get lost and, only in a worst case, a 
multiple occurrence of flights of a segment within one time slot. A segment is considered to be full for the 
first time, if the passenger volume exceeds the lower category boundary. If no new segment container 
can be initialized the remaining flights are allocated to the already implemented containers, maintaining 
the upper boundary of the current passenger category.  
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Figure 8: Array of AC categories per flight slot and weekday 

 
3.4 Phase D: Generic flight schedule forecast 

Last step (phase D) performs a forecast of the present flight schedule into the future, here 2030. The 
forecast bases on the flight frequencies per slot and the data pool of flight schedule parameters of phase 
B, extended by appropriate FoAM scale factors. FoAM provides future values of the flight frequency and 
the generic flight plan parameters per distance and passenger category combination, as well as the seat 
load factor per distance category. The flight frequency is adapted according to: 

𝑓𝑓𝑓𝑓𝑖𝑖𝑝𝑝ℎ𝑠𝑠 𝑓𝑓𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞𝑠𝑠𝑛𝑛𝑖𝑖𝑐𝑐𝑛𝑛𝑢𝑢𝑙𝑙(𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 𝑝𝑝) = 𝑓𝑓𝑓𝑓𝑖𝑖𝑝𝑝ℎ𝑠𝑠 𝑓𝑓𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞𝑞𝑞𝑠𝑠𝑛𝑛𝑖𝑖𝑐𝑐𝑙𝑙𝑙𝑙𝑜𝑜(𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 𝑝𝑝) ∗  
 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑓𝑓 𝑓𝑓𝑓𝑓𝑖𝑖𝑝𝑝ℎ𝑠𝑠 𝑓𝑓𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞𝑠𝑠𝑛𝑛𝑖𝑖𝑐𝑐2030
 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑓𝑓 𝑓𝑓𝑓𝑓𝑖𝑖𝑝𝑝ℎ𝑠𝑠 𝑓𝑓𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞𝑠𝑠𝑛𝑛𝑖𝑖𝑐𝑐2012

 (9) 

This adjustment automatically results in a capacity overload of the airport infrastructure. The capacity is 
constrained according to the typical runway layout of the cluster, using default figures for IFR traffic by 
Horonjeff [12]. If the capacity limit is exceeded, the frequencies are shifted to the next free slot (Figure 
9).  

 

Figure 9: Shift of frequencies exceeding the airport capacity limit 

Slot\ Week
day Monday Tuesday Wednesday Thursday Friday Saturday Sunday

19 4 3 2 4 4 4 4

. . . . . . . .

41 2 4 3 3 4 2 2

2 3 2 4 3 2 4 2

. . . . . . . .

. . . . . . . .

19*

41*

2*

960/slot 
interval . . . . . . .
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𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦𝑢𝑢𝑚𝑚𝑢𝑢,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑚𝑚𝑠𝑠𝑢𝑢 𝑦𝑦𝑢𝑢𝑚𝑚𝑢𝑢,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝑚𝑚𝑎𝑎 + (𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝 − 𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝) ∗ (0.0077 − 0.0001
∗ (𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝 − 𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝)) (10) 

Furthermore the SLF evolves according to (10) depending on the distance category, but never 
exceeding a SLF of 90 %. The SLF increases 0.77 % per year, which equals to the empirical 
calculated increase of the SLF worldwide within the last decade, and a damping of 0.1 % per anno. 
After the adjustments, phase C is performed once again resulting in a 2030 flight schedule. 

 

4 RESULTS 

The aforementioned methodology is implemented in a JAVA environment, which enables an easy 
adaption of user-specific requirements. These can be adjusted directly at the graphic user interface of 
BogS. Despite the cluster, the user can choose between a time period (summer or winter), the type of 
operation (arrival or departure flight) and the slot duration (10, 15, 20 or 30 min). The functionality of 
the algorithm was tested by the following scenario, which comprises the International Hub Airports arrival 
flights in the winter and a slot interval of 15 minutes. No night curfews are taken into account.  

Scenario I:  International Hub Airports 
Winter, ARR, slot interval: 15 min, no night curfew 

The 2012 list of flights contains a total number of 8 152 flights, whereof 162 are allocated incorrectly 
(methodological error of 1.99 %). This error results from an insufficient amount of flights within a 
container, allocatable to the current slot. 

 

Figure 10: Scenario I – Weekly flight distribution 
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Figure 10 shows the weekly flight distribution of this scenario. Visible are distinctive peaks in the morning 
and a daily wave structure, typical for hub airports. In particular, aircraft category five occurs most 
frequent in the aircraft distribution, followed by category two and eight (see Figure 11) . This represents 
the outcome of the clustering and also real International Hub Airports very well. Aircraft category five, a 
152 – 201 seater as well as smaller regional jets (aircraft category two) act as feeder traffic for long haul 
flights operated with larger aircraft (category eight). Furthermore aircraft category eight has a higher 
share than category six and seven (also in comparison with other scenarios not depicted here), which fit 
to the clustering outcome, that this airports are primarily destinations of the Airbus A380. 

 
Figure 11: Scenario I - AC Cat distribution 

  

Beside ultra-long and ultra-short distances the other distance categories are equally spread at 
International Hub airports, visualized in Figure 12. In contrast to that, passenger category eight 
dominates the passenger distribution (see Figure 13). This means, more than 38 000 passengers per 

Figure 12: Scenario I - DIST Cat distribution Figure 13: Scenario I - PAX Cat distribution 
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month fly on segments typical for this airport category. Due to a dominant market position not unusual 
for International Hub Airports. 

Scenario I:  Forecast 

 
Figure 14: Scenario I – Weekly flight distribution in 2030 

Due to a constant growth of the passenger demand, the number of flights is forecasted to 10 425 per 
week in 2030. Without infrastructural changes, this development naturally leads to capacity shortages. 
The methodological approach shifts flights exceeding the runway capacity to the next free slot, hence, 
the peaks level out and an equalization or homogenization of the weekly flight distribution is recognized, 
visible in Figure 14. 

Further scenarios were executed, but cannot depicted here. Result is a slightly shift of relative shares per 
category due to the nonexistent restrictive allocation of the passenger and distance category. Thus, it can 
be observed, that the algorithm choses mainly categories with a large relative share within the empirical 
data, increasing the dominant position of this category. Moreover, a small sample size results in a large 
methodological error (up to 40 %), emerging at scenarios of the High Frequency Hubs. Due to the small 
sample size, outliers have a wide influence to the generation of the parameters used for the distribution 
function. If an outliner defines the frequency data point, only very few data points (or may only this one 
point) can be provided to describe the combinatorial possibilities of determining a flight (aircraft, 
distance, passenger category). Hence, the algorithm finds only a few (or may only one flight) that fit to 
the slot. The validity of these results shall be further verified. 
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5 CONCLUSION AND FUTURE WORK 

The paper in hand introduces a methodology for determining generic flight schedules for airport clusters 
out of real flown schedules using common probability functions and further statistical methods. It is 
shown that the algorithm generates appropriate generic flight schedules highly matching real ones for 
both present and future points in time. These flight schedules include for every single airport slot an 
aircraft, distance, passenger and airline information only. Our hypotheses, similar airports have quite 
comparable flight operations, can be confirmed. Some limitations of the algorithm have to be taken into 
account, if the sample size (e.g. High Frequency Airports) is low. Further investigations and analyses will 
be done on that issue.    
Although the methodology produces valid results, there are some possible future enhancements. In order 
to increase the accuracy of modeling the weekly flight distribution, further steady probability functions 
shall be added, e.g. the t-distribution. Particularly for large sample clusters with a inhomogeneous flight 
operation, a differentiation would be valuable.  
Furthermore the implementation of generic airlines, the only non-generic parameter in the method at the 
moment, is in progress. Similar to the airport clustering generic airline types will be implemented in the 
model. Finally, the upcoming of new segments shall be taken into account in further methodology 
evolution steps.  
The algorithm as well as the models mentioned in chapter 2 will be used to evaluate intra-airport 
relationships in a generically modeled air transportation network. Possible, scenario-based evolutions in 
the long term of a certain network and impacts on airports shall be shown, in a most macroscopic 
manner. Such scenarios could be the introduction of revolutionary aircraft configurations (e.g. a blended 
wing body), the airports evolution and function within the air transportation network at a defined point in 
time, as well as resulting network impacts.    
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 Appendix 

 

Figure 15: Dendrogram of airport cluster analysis 
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