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ABSTRACT

We consider the problem of visual tracking. In recent years, many approaches have been proposed in
the field of visual tracking of different objects. In this paper presented the method of visual tracking of
various objects. The method is used to track ground and air targets. Extensive experiments demonstrate
that the proposed tracking framework outperforms the state-of-the-art methods in challenging
scenarios, especially when the illumination changes dramatically.

1 INTRODUCTION

Object tracking is one of the most important component in a wide range of machine vision applications,
such as building surveillance systems for unmanned systems, human computer interaction for control
unmanned vehicles, tracking and object recognition, tracking and landing runways, fire detection,
object tracking enemy.

There are a lot of detection systems developed for unmanned aerial vehicles (UAV) and they are as a
rule based on various sensors. Technologies of visual control are believed to be the most promising
because of video cameras low cost, compact size and easiness of replacement in case of breakdown.
One the main function of UAV is objects tracking. Visual tracking is one of the most active areas of
research in computer vision. Despite the considerable progress in machine vision has been made in
recent years, the answer for a question about the most effective method for object tracking still remains
unknown.

In this paper the tracking method is proposed. Some theoretical results of its implementation are shown
here. The theoretical investigations were carried out in online mode by means of developed scheme
model updates. The method does not allow system to retrain tracking by another object. It improves
the accuracy of proposed method even in poor lighting.

2 RELATED WORK

In this section, we review recent algorithms for object tracking in terms of several main modules: target
representation scheme, search mechanism, and model update.

Representation scheme. Object representation is one of the major components in every visual
tracker. Since the pioneering work of Lucas and Kanade [16, 17], holistic templates (raw intensity
values) have being widely used for tracking [18, 19, 20].

Furthermore, Mei and Ling [23] proposed a tracking approach based on sparse representation to handle
the corrupted appearance and recently it has been further improved [21, 22, 24, 25]. In addition to
holistic template, many other visual features have been adopted in tracking algorithms such as color
histograms [26], histograms of oriented gradients (HOG) [9, 10], covariance region descriptor [27, 28]
and Haar-like features [12]. Recently the discriminative model has been widely adopted in tracking
[29].

Numerous learning methods have been adapted to the tracking problem, such as SVM [30], structured
output SVM [32], ranking SVM [31], boosting [12], semiboosting [33] and multi-instance boosting [34].
An object can be represented by parts where each part is represented by descriptors or histograms to
make trackers more robust to pose variation and partial occlusion.

Search Mechanism. Deterministic or stochastic methods have been used to estimate the state of the
target objects. Here the tracking problem is posed within an optimization framework, assuming the
objective function is differentiable with respect to the motion parameters. Gradient descent methods
can be used to locate the target efficiently [35, 36, 37, 38].
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Stochastic search algorithms such as particle filters [39, 40] have being widely used as they are
relatively insensitive to local minima and computationally efficient [41, 42, 43].

Model Update. It is crucial to update the target representation. Effective update algorithms have also
been proposed via online mixture model [44], online boosting [12], and incremental subspace update
[43]. For discriminative models, the main issue has been improving the sample collection part to make
the online-trained classifier more robust [33, 34, 7, 32].

2. DESCRIPTION OF THE PROPOSED TRACKING METHOD

The proposed visual tracking method consists of three main stages (figure 1):

representation
scheme

search mechanism updating the model

Figure 1. The main stages of the visual tracking. For each new frame all steps are performed.

2.1 Representation Scheme

In out method the histogram of local sensitivity (LSH) [5] was used for the objects representing. The
conventional image histogram is a 1D array. Each of its values is usually an integer indicating the
frequency of occurrence of a particular intensity value. Let matrix I denotes an image. The
corresponding image histogram His a B-dimensional vector defined as:

W
H®) = Y Q(i1,,b),b=1..B 1)

!

where W - the number of pixels,

B - the total number of bins,

Q(1,,b) — pixel location. This term is equal to zero except when intensity value I, (at pixel location q)
belongs to bin b.

Equation (1) gives the linear computational complexity in the number of bins at each pixel location —
O(b). As a matter of fact, in practice the computational complexity can be reduced to O(1) because the
addition operation in Eq. 1 can be ignored when Q(Ig,b) = 0.

The computational complexity of the brute-force implementation of the local histograms is linear in
space of the nearest neighborhoods. Nevertheless, this dependence can be changed by using integral
histogram, which reduces the computational complexity to O(B) at each pixel location.

Let Hédenotes the integral histogram computed at pixel p. It can be calculated based on the previous

integral histogram computed in its turn at pixel p-1 in a way similar to the integral image:
Hy,(b) = Q(I,,b) + H;_1(b), b=1..B 2)

For simplicity, let I denotes a 1D image. H{, contains all the pixels contributions to the left side of pixel
p. Then the local histogram between pixel p and another pixel g on the left of p is computed as

H),(b) — Hiy(b) forb = 1..B 3)

For the local histogram, pixels inside a local neighborhood have equal contribution. As far as pixels
offsetted from the target center, they should have less weight due to they are believed to content the
background information or not relevant objects. As a result, their contribution to the histogram should
be minimized. We used a local sensitive histogram algorithm to avoid this problem.

Let H{f denotes the local sensitive histogram computed at pixel p. It can be written as:
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where a€ (0, 1)- a parameter regulating the weight reduction of the pixel due to increasing the
distance between it and the center of the target.

2.2 Search Mechanism
We used two following methods for search mechanism organization:
¢ location of the object based on Part Based Detector (PBD) [6]. The objects localization based
on the PBD is required for initializing objects tracking, when the tracking objects are lost in
search area to improve the tracking stability;
¢ finding the offset of the object between two cades in the search area. Search object offsetting
is based on the knowledge of the object location in the previous time frame.

A core component of the PBD model is templates or filters captured the appearance of object parts
based on local image features. Filters define scores for placing parts at different image positions and
scales. These scores are combined using a deformation model that scores the arrangements of parts
based on geometric relationships (figure 3). Models are built from linear filters that are applied to dense
feature maps. A linear filter is defined by a w x h array of d-dimensional weight vector. Intuitively, a
filter is a template that is tuned to respond to an iconic arrangement of image features. Filters are
typically much smaller than feature maps and can be applied at different locations within a feature
map.

A dense feature map is an array whose entries are d-dimensional feature vectors computed on a dense
grid of image locations (e.g., every 8 x 8 pixels). Each feature vector describes a small image path and
in such a manner results some invariants.

The framework of this search mechanism is independent of the specific choice of features. In fact, we
use a low-dimensional variation of the histogram of oriented gradient (HOG) [9]. HOG features
introduce invariances to photometric transformations and small image deformations.

A filter is a rectangular template defined by an array of d-dimensional weight vectors. The response,
or score, of a filter F at a position (x; y) in a feature map G is the “dot product” of the filter and a
subwindow of the feature map with top-left corner at (x; y):

Y Flcy ] Gl + 2.5+ ] )
x'y’

We define a score at different positions and scales in an image. This is done using a feature pyramid
which specifies a feature map for a finite number of scales in a fixed range. In practice, we compute
feature pyramids by computing a standard image pyramid via repeated smoothing and subsampling,
and then computing a feature map from each level of the image pyramid. Figure 2 illustrates the
construction.
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Figure 2. A feature pyramid and an instantiation of a person model within that pyramid. The part
filters are placed at twice the spatial resolution of the placement of the root.

The scale sampling in a feature pyramid is determined by a parameter A defining the number of levels
in an octave. That is the number A of levels we need to go down in the pyramid to get a feature map
which resolution is computed as twice resolution of another level. In practice, we have used A= 5 in
training and A = 10 at test time. Fine sampling of scale space is important for obtaining high
performance of models.

Let Fis a w xhfilter. Let His a feature pyramid and p = (x, y, /) specify a position (x, ) on the I" level
of the pyramid. Let (H, p, w, h) denote the vector obtained by concatenating the feature vectors in the
wxh subwindow of H with top-left corner at p in row-major order.

The score of Fat pis F'x(H, p, w, h), where F’is the vector obtained by concatenating the weight
vectors in Fin row-major order.

The estimation of a filter Fat a particular feature map location is obtained by taking the dot product of
F’s array of weight vectors. The product of this operation is, concatenated into a single long vector
associated with the feature vectors extracted from a w x h window of the feature map. We apply the
same filter to multiple feature maps, each computed from a rescaled version of the original image
because objects can appear at a wide range of scales.

Figure 3 shows some examples of filters, feature maps, and filter responses.
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Figure 3. The model is defined by a coarse root filter (a), several higher resolution part filters

(b), and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization shows the positive weights at
different orientations. The visualization of the spatial models reflects the “cost” of placing the center

of a part at different locations relative to the root.

3 MODEL UPDATING

The object is represented by a local sensitivities histogram. Tracking features may vary in time that
leads to significantly deterioration of objects visual tracking. For this reason a method of information
updating of the local sensitivity histogram is proposed (Figure 4) to improve the reliability of the
proposed tracking method:

1.

2.

3.

Find all the various regions of the histogram between the template object and the histogram of
the object at the current frame.

If the number of differ regions is smaller T1 (lower threshold is chosen experimentally), then go
to item 7.

If the number of differ regions is more T2 (upper threshold is chosen experimentally), then the
object is considered lost and run PBD.

If the number of differ regions is over T1 and less T2 then run the update method of the histogram
information

Nearest clusters computed from the training sample in the histogram on the current frame to
update the histogram. Random forest model is selected as a classifier model.

Updating the template histogram is performed using regions derived from a histogram of the
current frame and the regions selected from the nearest cluster on the previous step.

Get a new frame.
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Figure 4. Shows a method of updating the model

Due to the training sample clustering proposed tracker cannot retrained and track an object of another
class. Crossing paths problems is known to appear in multiple. Our method uses an optimization
algorithm (Hungarian algorithm) solving the assignments problem to solve this problem. This algorithm
makes it possible to separate the two close trajectories.

4 EXPERIMENTS
This section evaluates the effectiveness of the proposed tracking method. We have compared the
proposed tracker with 7 state-of-the-art trackers (the implementations provided by the authors were
used for fair comparisons). The following methods were used tracking, the real time L1 tracker (L1T)
[46], the real-time compressive tracker (CT) [47], the multiple instance learning tracker (MIL) [48], the
structured output tracker (Struck) [33], the visual tracking decomposition method (VTD) [49], the TLD
tracker [1] and the multi-task sparse learning tracker (MTT) [25].

To evaluate methods of tracking in our experiments the following criteria: tracking success rate,
computed manually labeled ground truth.

area(By NBg)

Let term area(Br NB¢) denotes the overlap ratio, where Bt and Bg are the bounding boxes of
the tracker and of the ground-truth, respectively. When the overlap ratio is larger than 0.5, the tracking
result of the current frame is considered as a success.

We used 15 standard video sequences to compare the proposed tracker with another wel-known
trackers (Table 1). These sequences were: Biker, Car, David indoor, Man, Motor rolling, Women,
Basketball, Box, Occluded face 2, Surfer, Board, Bird, Coupon, Crowds, Trellis.

Table 1 is presented the results of proposed method testing in comparison with 7 state-of-the-art
trackers. The first column is the name of a video sequence, the last line - is the averaged value for the
tracker as a whole.
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Table 1 - The comparison results

Sequence 5 (%)

Our TLD L1iT CcT MIL Struck VTD MTT
Biker 59 38 23 34 40 49 45 44
Car 85 58 43 43 38 59 44 49
David indoor 92 90 41 46 24 67 32 92
Man 929 98 98 60 21 929 31 929
Motor rolling 75 14 5 11 9 11 6 5
Women 77 30 8 6 6 87 5 8
Basketball 85 1 75 32 27 2 926 3
Box 83 60 4 33 18 20 34 25
Occluded 929 76 60 100 94 79 77 82
face 2
Surfer 75 86 1 3 2 67 2 3
Board 923 16 3 73 76 71 13 63
Bird 95 12 44 53 58 48 81 13
Coupon 929 98 24 58 77 99 38 100
Crowds 75 16 59 9 4 82 8 9
Trellis 920 31 67 35 34 70 54 34
Average 85.4 48.2 37 39.7 35.2 65.3 37.7 41.9

Figure 5 pre

sents a work of the proposed tracker.
“E < 1 \ A ¥

A4
ERIY
s

Figure 5. The working process of the proposed tracker. Testing was performed based on PASCAL
VOC-2007 images databases

5 CONCLUSION

In this paper, we propose an effective method tracking. Experimental results show good results of the
proposed method in accuracy and robust of the tracking in comparison to state-of-the-art methods.
This method can be used for tracking various objects. Moreover, the proposed method shows very good
results of tracking in case with poor visibility. Our method has shown the best result in average value
during the conducted tests.
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