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ABSTRACT

The paper presents the thermodynamic cycle for a novel detonation based, aircraft engine. First, an
overview of the existing models is presented, introducing the most common detonation models in the
literature: the Humphrey cycle, the Zeldovitch - Neumann - van Doring cycle, and the Fickett - Jacobs
cycle. Algorithms for determining the thermodynamic cycles for the selected three detonation models are
presented, and numerical results for a case study involving a detonation based, aircraft engine are
provided. Finally, the theoretical cycle efficiency, the useful work and the cycle specific heat for the
studied engine are also determined.

NOMENCLATURE

Latin Superscripts

¢ - Specific heat H - Humphrey detonation cycle

h - Enthalpy FJ - Fickett - Jacobs detonation cycle

g - Heat release ZND - Zeldovich - von Neumann — Doring detonation cycle
p - Pressure Subscripts

v - Specific volume 1 - Compressor inlet (stagnation parameters)
w - Specific work 2 - Compressor outlet

M - Mass flow rate 3 - Combustor outlet

R - Gas constant 5 - Nozzle outler

T - Temperature atm — Atmospheric

X - Mole fractions ¢ — Compressor

Y - Mass fractions ¢b - Combustion chamber

Greek f - Formation

O, - Nozzle pressure ratio g - Gas (combustion gas)

n - Efficiency id - Ideal

n. - Compressor pressure ratio n - Nozzle

0 - Heat losses p - Constant pressure

@ - Kinetic energy losses v- Constant volume

1 PULSE DETONATION ENGINE TECHNOLOGY

The rising interest in the detonation engines originates in the higher efficiency, which can be reached by
constant-volume combustion. Compared to a constant pressure process, pressure-gain combustors allow
reaching the same exit temperature at higher pressure, leading to higher cycle efficiency.

Detonation differs from other combustion processes in the way in which the physical phenomenon
evolves. The detonation is formed by a leading shock wave which propagates in the explosive mixture.
The propagating shock wave triggers the chemical reactions and thus, the heat release. In a Pulse
Detonation Engine (PDE), detonation is generated in a tube (detonation combustion chamber). The
detonation wave rapidly propagates inside the chamber resulting in a nearly constant-volume heat
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addition process that determines a high pressure in the combustor and provides the thrust. The interest
of the scientific community on the research and development of pulse detonation engine has grown in
the last few years, due to the potential gain in specific power. Very rapid species and energy conversion
happens during detonation. This rapid conversion rate, which could be 2 or 3 orders of magnitude faster
than in a flame, can lead to several advantages for propulsion application. Due to the rapidity of the
process, the equilibrium state in pressure cannot be reached and the process thermodynamically behaves
as a constant volume process. The latter is more efficient than a constant pressure process, typical of
conventional propulsion systems.
The three principal cycles considered in the detonation modeling and in the detonation performance
estimation are: the Humphrey, the Fickett-Jacobs (FJ) and the Zeldovich-von Neumann-Doring (ZND)
cycle. In Figure 1, Figure 2 and Figure 3 the cycles are plotted in the p-v and T-s diagrams [1]. The
Humphrey cycle is the simplest one for the PDE engine cycle modeling. It assumes that the compression
process is isochoric, followed by an isentropic expansion and an isobaric process to close the cycle. In the
Humphrey cycle, the post-compression is not represented by the Chapman-Jouguet (CJ) conditions, thus
the performance of the PDE are under predicted. The FJ cycle consist of a compression and heat release,
from point (1) to point (3CJ) in Figure 2 The heat release is considered to be an equilibrium process
strictly one-dimensional. In this case, the process can be assumed equal to the Rayleigh heating. In other
words, the tangent from point (1) to point (2CJ) is represented by the Rayleigh heating curve. The
process occurring from point (2CJ) to (3CJ) consists in the isentropic expansion, followed by the isobaric
process to close the cycle.
The most accurate model for a detonation cycle is the Zeldovich-von Neumann-Doering (ZND). The
detonation wave consists in @ normal shock wave progressing into the undisturbed fuel-oxidiser mixture,
followed by release of heat in a constant-area region (Rayleigh flow). The strength of the leading shock
wave is uniquely determined by the initial conditions and the amount of heat added. The entire process is
constrained by the Chapman-Jouguet condition. The latter implies that, after the heat addition-area, the
local Mach number is equal to 1. The heat addition region is followed by a complex flow region, where
the non-steady Taylor expansion waves take place. Figure 4 shows the phases of a PDE engine [1].
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Figure 1: - Humphrey cycle in the p-v and T-s planes [1]
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Figure 2: — Fickett-Jacobs cycle in the p-v and T-s planes [1]
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Figure 3 — ZND cycle in the p-v and T-s planes [1]
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Flgure 4: —PDE cycle phases [1]
Considering the ideal PDE cycle modeled with the ZND assumptions, one can compare the efficiency of
the typical constant pressure-based combustion cycle (Brayton) to the efficiency of the ideal Humphrey
and the ideal PDE. In Figure 5, the thermal efficiency is plotted in function of the ratio between the
pressure at the end of the adiabatic isentropic compression and the free stream static pressure. The

three cycles are compared considering heat addition , Where is defined as follows:
a— qsupp — fhPR (1)
c,To ¢C,Tp

Where is the mass fuel-air ratio and is the lower heating value of the fuel.
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Figure 5 —Thermal efficiency of Brayton, Humphrey and PDE ideal cycles
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It is important to say that the efficiency of the cycle component (compressor, expander, combustion
chamber) affects the cycle efficiency, yielding to lower thermodynamic efficiency for the PDE with respect
to the Brayton for high values of [2].

2 INPUT DATA, CONSTANTS AND STANDARD PARAMETERS

The case study selected for the present paper is defined by the following input data [3]:
Table 1: Input data for the case study

Parameter Symbol Value Measurement
Unit

Engine compressor total to static pressure ratio nNe 6 -
Gas constant for air R 287.3 J/kg/K
Gas constant for burned gas Rq 288.4 J/kg/K
Specific heat ratio for air Y 1.4 -
Specific heat ratio for burned gas Yq 1.33 -
Specific heat at constant pressure ratio for air Cy 1005 J/kg
Specific heat at constant pressure ratio for burned gases | cyq 1165 J/kg
Standard atmospheric conditions: pressure, temperature, | Patm, 101330 | Pa
entropy Tatm 288 K

Satm 660.122 | J/kg/K
Compressor efficiency for centrifugal compressors H. 0.85 -
Combustor heat losses O 0.9 -
Exhaust nozzle kinetic energy losses ®n 0.95 -

The case study engine is fuelled by a stoechiometric mixture of air and acetylene. The mixture properties
are provided in Table 2.
Table 2: Fuel mixture properties

Reactants
Species C,H, 0, N, Total
Moles 2 5 18.810 25.810
MW 26 32 28 86
X 0.07749 0.19373 0.72878 | 1
Y 0.07040 0.21660 0.71300 | 1
h [kJ/kg] 8721.077 0 0 8721.077
q [J/kg] 613938.6 0 0 613938.6
Products
Species CO, H,0 N, Total
Moles 4 2 18.810 24.810
MW 44 18 28 90
X 0.16123 0.08061 0.75816 | 1
Y 0.23827 0.04873 0.71300 |1
he [kJ/kg] -8944.227 -13435.833 | 0 -22380.061
q [J/kg] -2131115.5 -654815.0 0 -2785931.5

Since the specific heat at constant pressure is defined as a mixture average, the sensible enthalpies of
the species in the mixture cancel out when determining the heat of reaction for the acetylene
combustion, so they were neglected. The data in Table 1 comes from reference [4].

Based on the data in Table 2, the heat of combustion is:
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3 IDEAL THERMODYNAMIC CYCLE

3.1 Initial conditions

State lid, the compressor inlet, also coincides with the engine inlet, as the TIDE engine is not equipped
with any air intake ducting. Thus, state 1id will correspond to air at atmospheric conditions under which
the engine operates.

For the present work, standard atmospheric conditions at sea level and at zero flight velocity are
assumed for the starting point of the TIDE engine thermodynamic cycle. Certainly, a real engine is
expected to operate under a vast region of intake conditions, due to various altitudes, flight velocities, or
specific atmospheric conditions. However, the resulting thermodynamic cycles are outside the scope of
the present work. Furthermore, once the algorithm for computing the thermodynamic cycle is
established, as per this work, applying various inlet conditions becomes straight forward.

Thus, pis Tizand sy, are the standard atmospheric conditions defined earlier.

The specific volume is given by [5]:

_RT 3)
p

| 4

Equation (3) can be applied to determine v
The enthalpy is determined using [3]:

h=c,T “)
Equation (4) can be applied to determine /.

3.2 Ideal compression

The whole paper should be formatted as a single column.

State 2id, the compressor outlet, also coincides with the combustor inlet. The air compression is assumed
adiabatic (no heat losses in the engine compressor). State 2id, the ideal compression, is reached from
state 1id through an isentropic adiabatic compression. Since path 1id - 2id is isentropic:

Said = Suid (5)
The pressure at state 2id is determined by:
Paig = P17 (6)

The entropy at a given temperature and pressure, can be determined from the entropy at a reference
state 0 by [5]:
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(7)
s=Ss,+C, In(_l_l]— Rln[pﬁJ
0 0

Applying Equation (7) for state 2id, and using state lid as reference, the temperature 7, can be
determined as:

R
T2id :Tlid (p_poj p

Next, knowing 7, Equation (4) can be applied to determine the enthalpy /..
The specific volume v, can be determined using Equation (3) for the conditions at state 2id.

(8)

3.3 Ideal detonation

State 3id corresponds to a point immediately downstream of the detonation wave. It is important to note
that state 3id does not have a fixed geometrical location throughout the detonation cycle, but travels
through the combustor together with the detonation wave. During the detonation process, the system is
temporarily non-uniform and, therefore, the line representing the 2id — 3id evolution in Figures 1 - 2 is
not an actual thermodynamic path, but merely a conventional representation of the non-equilibrium
detonation process [6]. The heat of combustion is given by Equation (2). For the PDC evolution, three
detonation models will be considered: the Humphrey cycle [8], the Fickett - Jacobs cycle [9, 10], and the
Zeldovitch - Neumann - van Doring cycle [11]. It is important to note that, contrary to classic
thermodynamic cycles, the detonation cycle is not a succession of equilibrium states.

3.3.1 The Humphrey cycle
The Humphrey cycle path includes state 3"id. The path 2 - 3" is assumed as a constant volume heating

up to a temperature corresponding to the heat release given by Equation (4).
For a constant volume evolution:

V3'_i|d =V, ®)

The heat release by chemical reaction can be written, in the ideal case, for a constant volume process:
_ H 10
Qig =Cyq (Taig —T2) (10)

The specific heat at constant pressure and at constant volume and the temperature in state 3"id can be
determined as [5]:

—c — 11
C,y =Cpy —Ry (11)

Finally, by combining Equations (10) — (11):
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q;
Tzlid = C_d +T,

\

The pressure is determined using Equation (3) for state 3"id.

The enthalpy #";4is found by applying Equation (4) for temperature 77, for burned gas.

Similarly, the entropy at state 3"id is calculated by using Equation (7) with state 2id as the reference
state.

3.3.2 The Fickett - Jacobs cycle

The Fickett - Jacobs cycle path includes state 3fid. The approach assumes that the detonation can be
modeled as a compression with heat addition process. Under the Chapman - Jouguet theory [12, 13], the
heat release through detonation is assumed instantaneous, and the process is identical to a Rayleigh
heating and the process can be regarded as being in local thermodynamic equilibrium [14]. Thus, in the
p-vplane, the point 3Fid is found at the intersection of the reactive Hougoniot curve corresponding to the
acetylene adiabatic flame temperature with the tangent from point 2id to the same reactive Hougoniot
curve [12], also known as the Rayleigh line [4].

The general reactive Hougoniot curve based on the state 2id parameters and on the heat release given
by Equation (2) is [15]:

) (13)
p +7/g -1 + v _79 -1 =1- 79 -1 +27/g__1q—'d
Poig 7y 1 Vaig Vg Tl 7, +1 Vg 1 PaigVaig
A line passing through point 2id in the p-v plane can be written as:
(14)
P m(L —1J +1
Paig Vaid

where m is the slope of the Raighleigh line.

By substituting Equation (14) into Equation (13), a second order equation in vis obtained. To impose the
condition that the line defined by Equation (14) is a Rayleigh line, i.e. tangent to the Hugoniot curve (13),
the discriminant of the previously mentioned second order equation must be zero. Under this condition,
another second order equation in m is obtained:

1 2 1 2 1 1 2 (15)
To o glmeoof| o] _4lam G | |77 g _g
7, +1 7y +1 Vg 1 PaigVaig 7, +1
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Solving Equation (15), the slope of the Rayleigh line is known. Since the upper Chapman — Jouguet is
sought, the solution with the negative sign in front of the discriminant square root solution will be
selected. Next, the specific volume in state 3fid can be obtained from the zero discriminant second order
equation as:

- -1 (16)
Vs!:id = (M=} 7 +1 | Vaig
2m |y, +1

The pressure in state 3fid can now be determined by substituting Equation (16) in Equation (14):

L (17)
Pig = m[ﬂ_l}"l Paig
Vig

The temperature can be determined by applying the equation of state (3) for the conditions in state 3id.
With the known temperature, the enthalpy # ;4 is found by applying Equation (4) for burned gas.
Similarly, the entropy is calculated by using Equation (7) with state 2id as the reference state.

3.3.2 The Zeldovich — von Neumann - Doring cycle

The Zeldovich — von Neumann - Doring cycle path includes states 3%id and 3'%id. The ZND model
assumes the detonation is composed of an initial non-reactive shock wave, along the so-called inert
Hugoniot and bringing the thermodynamic system is state 3'%id, immediately followed by heat release
along a Rayleigh line [14], bringing the system in state 3'4id.

The point in the p-v plane corresponding to state 3”id can be found at the intersection between the inert
Hugoniot and the Rayleigh line. As the Rayleigh line is unique for given initial conditions and heat release,
it is defined by Equation (14) as well. The inert Hugoniot, in its turn, can be defined by annulling the heat
release term in Equation (13):

2 18
p +7g_1 V_7g—1 —1— Vg1 (o)
Poia Vg1 )\ Vag 74 +1 7, +1

Similarly to the FJ cycle, by substituting Equation (14) into Equation (18), a second order equation in v
can be obtained:

-1y, -1 -1 y, -1 (19)
m(va,)* + 1-m-mZe =, 7o : To=2 T
74 +1 Yy +1

Equation (19) provides two solutions, corresponding to the two intersection points. One point represents
state 2id, while the other, whose volume is given by the solution of Equation (19) with the positive sign
in front of the discriminant square root, is the sought point.
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Next, the pressure is determined by substituting the previously determined specific volume into Equation
(14).

As before, the temperature can be determined by applying the equation of state (3) for the conditions in
state 3"%id. With the known temperature, the enthalpy #/; is found by applying Equation (4) for burned
gas. Similarly, the entropy s%; is calculated by using Equation (7) for air.

Since both states 3fid and 3%d correspond to the upper Chapman — Jouguet point [4], they must be
identical for the same cycle parameters.

3.4 Ideal Expansion

State 4id represents the engine nozzle outlet. The air expansion is assumed adiabatic (no heat losses in
the engine combustor and nozzle). State 4id, the ideal expansion, is reached from either of the states 3id
through an isentropic adiabatic expansion. Since the parameters characterizing state 3id are different for
each of the three considered detonation models, three different parameters sets characterizing state 4id
will be obtained. However, the algorithm for determining them is the same, only the initial state 3id being
different.

As path 3id - 4id is isentropic:

Said = Ssig (20)
The expansion is assumed to be complete, down to the atmospheric pressure:
p4id = patm (21)

Applying Equation (8) for burned gas, the temperature 7., can be determined. Next, knowing 74
Equation (4) can be applied to determine the enthalpy A, with the coefficients for burned gas.
The specific volume v, can be determined using Equation (3) for the conditions at state 4id.

3.5 Ideal Cycle Closure

The ideal cycle is closed by a fictitious isobar that connects states 4id and 1.

3.6 Ideal Cycle Results

The numerical results of the previously presented algorithm applied for the case study studied in this
paper are presented in Table 3, and Figure 6.
Table 3: The ideal cycle

P T vim®/ | h s worq

State m
[Pa] [K] kg] [3/kg] [3/kg K] | [I/kg]

1 101330 288.00 0.81656 | 289440.000 6660.122 | 0.000 -

2id 607980 480.67 0.22714 | 483068.980 | 6660.122 | 193628.980 -
3’id | 5534858 | 4359.14 | 0.22714 | 5078396.133 | 8591.799 | -822768.278 -
Fid | 10822706 | 4985.69 | 0.13286 | 5808323.610 | 8554.859 | -822768.278 -40.47654
3%d | 21037432 | 2824.72 | 0.03858 | 2838843.533 | 7421.803 | 0.000 -40.47654
3id | 10822706 | 4985.69 | 0.13286 | 5808323.610 | 8554.859 | -822768.278 -40.47654
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4id | 101330 1619.23 | 4.60857 | 1886403.871 | 8591.799 | -3191992.262 | -
4id | 101330 1568.69 | 4.46473 | 1827527.902 | 8554.859 | -3980795.708 | -
#id | 101330 1568.69 | 4.46473 | 1827527.902 | 8554.859 | -3980795.708 | -

In order to determine the proper temperature, enthalpy and the entropy between state 2id and each of
the states 3id, as well as along the final isobars 4id - 1, it is important to note that the working fluid
composition changes during the evolutions from air to burned gas, and from burned gas to air,
respectively, which affects both the gas constant and the curve fit coefficients for enthalpy and entropy
at one bar.

To circumvent this problem, a progress variable, ¢, was introduced, and the affected variables along the
gas composition changing evolutions 2id - 3id (or, rather, 3'id — 3id in the ZND case), and 4id — 1 are
determined as:

a=a,,(-¢)+a, (22)

where a is temperature, enthalpy, or entropy, and the progress variable @, varies between 0 (for states
3id and 4id) and 1 (for states 2id and 1).

2,00E+07 5000

4000 /
1,50E+07 / //
3000

1,00E+07
—F 2000 —FI
5,00E+06 - ——2ZND / ——ND
1000 Z//

0,00E+00 -~ y y T 1 0

p[Pa]
TIK]

0 1 2 3 4 5 6500 7000 7500 8000 8500 9000
v[m?/kg] s[ifkek]

Figure 6: p-v diagram of the ideal cycle (left), T-s diagram of the ideal cycle (right)
4 REAL THERMODYNAMIC CYCLE

4.1 Initial Conditions
The real initial conditions are identical to the ideal initial conditions. State 1 will correspond to air at
atmospheric conditions under which the engine operates.

4.2 Real Compression

State 2, the real compression is reached, from state 1, through a non-isentropic adiabatic compression.
For state 2, the path 1 - 2 is still adiabatic, but not isentropic anymore. Instead of the ideal work, defined
as [3]:

ia = Nyig =y (23)

WC,I
the real compressor work will be used to bring the air in state 2id:
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By combining Equations (23) and (24), the state 2 enthalpy is:
- 25
h, = h, + e =M (25)
7.

Applying Equation (25), and using Equation (4) for state 2, for air, the temperature 7, can be
determined.
The pressure is the same in states 2id and 2:

hz = Paig (26)

The specific volume v, can be determined using Equation (3) for the conditions at state 2.
The entropy at state 2 can be determined using Equation (7) for air, with state 1 as the reference state.

4.3 Real Detonation

State 3 represented the real detonation. As for the ideal case, state 3 does not have a fixed geometrical
location throughout the detonation cycle, but travels through the combustor together with the detonation
wave, and the line representing the 2 — 3 evolution in Figures 3 - 4 is not an actual thermodynamic path,
but merely a conventional representation of the non-equilibrium detonation process [14]. For the real
case, heat losses due to heat transfer through the combustion walls and incomplete combustion are
considered, so the heat released by the detonation process is:

q = qzido-ca (27)

As before, the Humphrey cycle, the Fickett - Jacobs cycle, and the Zeldovitch - Neumann - van Doring
cycles will be considered. The algorithm for all the three models remains identical with the ideal case, but
with the heat release given by Equation (27) instead of Equation (2).

4.4 Real Expansion

State 4 represents the engine nozzle outlet. The air expansion is assumed adiabatic (no heat losses in the
engine combustor and nozzle). State 4, the real expansion, is reached from either of the states 3 through
a non-isentropic adiabatic expansion. Since the parameters characterizing state 3 are different for each of
the three considered detonation models, three different parameters sets characterizing state 4 will be
obtained. However, the algorithm for determining them is the same, only the initial state 3 being
different.

The ideal expansion work between states 3 and 4 is expressed as [5]:

71 (28)
Wn,id = h3 é‘n}’g -1
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where the nozzle pressure ratio is defined as:
5 _ p4 (29)
S ¥

The real expansion work is determined by taking into account the kinetic energy losses in the nozzle:

W, = Wn,id¢n (30)
Then, the enthalpy at state 4 is:
h, =h, +w, (31)

Applying Equation (4) for burned gas, the temperature 7, can be determined. As for the ideal case, the
expansion is assumed to be complete, down to the atmospheric pressure:

Ps = Patm (32)

The specific volume v, can now be determined using Equation (3) for the conditions at state 4.
Finally, knowing 7, Equation (7) for burned gas can be applied to determine the entropy s, using states
3 as the reference states.

4.5 Real Cycle Closure

The real cycle is closed by a fictitious isobar that connects states 4 and 1.

4.6 Real Cycle Results

The numerical results of the previously presented algorithm applied for this case study input data are
presented in Table 4, and Figure 7.

Table 4: The real cycle
3
State | p[Pa] | TI[K] KFH“ I | h13/kg] Is(][J/ k8 | worq[i/kg] | m
7 101330 | 288.00 | 0.81656 | 289440.000 | 6660.122 | 0.000 i
2 607980 | 514.67 | 0.24320 | 517238.800 | 6728.809 | 227798.800 | -
| 4759884 | 4013.95 | 0.24320 | 4676257.175 | 8528.257 | -3059882.220 | -
¥ | 9245427 | 4579.65 | 0.14286 | 5335292.004 | 8490.386 | -3059882.220 | -34.43183
37 | 17882873 | 2635.86 | 0.04251 | 2649043.053 | 7398.933 | 0.000 -34.43183
# | 9245427 | 4579.65 | 0.14286 | 5335292.004 | 8232.754 | -3059882.220 | -34.43183
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4 101330 1593.76 | 4.53607 | 1856728.797 | 8562.391 -2819528.379 -

r 101330 1556.11 | 4.42893 | 1812873.107 | 8534.544 -3522418.896 -

& 101330 1556.11 | 4.42893 | 1812873.107 | 8534.544 -3522418.896 -

The variation of the gas composition between states 2 and 3, respectively between states 4 and 1, was
handled in the same way as for the ideal cycle case.
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Figure 7: p-v diagram of the real cycle (left), T-s diagram of the real cycle (right)
5 WORK AND EFFICIENCY
The TIDE cycle net specific work can be determined as [14]:

chcle = ({pd v (33)

where the integral is taken along the cycle path, as presented in Figures 6, and respectively 7, left.
The cycle net specific heat can be determined as [14]:

qcycle = [{Tds (34)

where the integral is taken along the cycle path, as presented in Figures 6, and respectively 7, right.
Finally, the cycle efficiency is [14]:

W, (35)

cycle

Ucycle =
qcycle

For the case presented herein, the resulting net work, net heat, and cycle efficiency for the three
employed models are presented in Table 5.
Table 5: Net work, net heat and cycle efficiency

Model Net specific work [J/kg] Net specific heat [J/kg] Cycle efficiency [%]
Ideal Real Ideal Real Ideal Real
H 1879507.55 | 1691051.73 | 2319215.31 | 2089956.28 | 81.0406668 | 80.9132586

FJ 1948766.86 | 1764894.31 | 2632753.53 | 2391403.21 | 74.0201027 | 73.8016197
ZND | 3543540.28 | 3166220.34 | 4569887.30 | 4086266.64 | 77.5410868 | 77.4844282
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The highest cycle specific is provided by the Zeldovich - von Neumann - Doring cycle, while the highest
efficiency is provided by the Humphrey model.

6 CONCLUSION

A review of the existing thermodynamic cycle models for detonation is presented. Based on this review,
three such models are selected to provide basis for the computation of the TIDE engine thermodynamic
cycle: the Humphrey cycle, the Zeldovitch - Neumann - van Doring cycle, and the Fickett - Jacobs cycle.
The algorithms for the computation of the real and ideal thermodynamic cycles for each models are next
presented, followed by numerical results reflecting the conditions of the TIDE engine.

Finally, the net specific work and heat, as well as the cycle efficiencies of the TIDE engine according to
each of the selected detonation model cycles are presented.

The the Zeldovitch - Neumann - van Doring cycle provides the highest work, of 3543.5 kJ / kg in the ideal
case, and of 3166.2 kJ / kg in the real case, while the Humphrey cycle provides the highest efficiency, of
81.0 % in the ideal case, and of 80.9 % in the real case.
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