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ABSTRACT 

The paper presents the thermodynamic cycle for a novel detonation based, aircraft engine. First, an 

overview of the existing models is presented, introducing the most common detonation models in the 

literature: the Humphrey cycle, the Zeldovitch - Neumann - van Doring cycle, and the Fickett - Jacobs 
cycle. Algorithms for determining the thermodynamic cycles for the selected three detonation models are 

presented, and numerical results for a case study involving a detonation based, aircraft engine are 
provided. Finally, the theoretical cycle efficiency, the useful work and the cycle specific heat for the 

studied engine are also determined. 

 
NOMENCLATURE 

Latin 
c - Specific heat 

h - Enthalpy 
q - Heat release 

p - Pressure 

v - Specific volume 
w - Specific work 

M - Mass flow rate 
R - Gas constant 

T - Temperature 

X - Mole fractions 
Y - Mass fractions 

Greek 
δn - Nozzle pressure ratio 

η - Efficiency 

πc - Compressor pressure ratio 
σ - Heat losses 

φ - Kinetic energy losses 
 

Superscripts 
H - Humphrey detonation cycle 

FJ - Fickett - Jacobs detonation cycle 
ZND - Zeldovich - von Neumann – Doring detonation cycle 

Subscripts 

1 - Compressor inlet (stagnation parameters) 
2 - Compressor outlet 

3 - Combustor outlet 
5 - Nozzle outler 

atm – Atmospheric 

c – Compressor 
cb - Combustion chamber 

f - Formation 
g - Gas (combustion gas) 

id - Ideal 

n - Nozzle 
p - Constant pressure 

v- Constant volume 
 

1 PULSE DETONATION ENGINE TECHNOLOGY 

The rising interest in the detonation engines originates in the higher efficiency, which can be reached by 

constant-volume combustion. Compared to a constant pressure process, pressure-gain combustors allow 

reaching the same exit temperature at higher pressure, leading to higher cycle efficiency.  
Detonation differs from other combustion processes in the way in which the physical phenomenon 

evolves. The detonation is formed by a leading shock wave which propagates in the explosive mixture. 
The propagating shock wave triggers the chemical reactions and thus, the heat release. In a Pulse 

Detonation Engine (PDE), detonation is generated in a tube (detonation combustion chamber). The 

detonation wave rapidly propagates inside the chamber resulting in a nearly constant-volume heat 
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addition process that determines a high pressure in the combustor and provides the thrust. The interest 

of the scientific community on the research and development of pulse detonation engine has grown in 
the last few years, due to the potential gain in specific power. Very rapid species and energy conversion 

happens during detonation. This rapid conversion rate, which could be 2 or 3 orders of magnitude faster 

than in a flame, can lead to several advantages for propulsion application. Due to the rapidity of the 
process, the equilibrium state in pressure cannot be reached and the process thermodynamically behaves 

as a constant volume process. The latter is more efficient than a constant pressure process, typical of 
conventional propulsion systems.  

The three principal cycles considered in the detonation modeling and in the detonation performance 
estimation are: the Humphrey, the Fickett-Jacobs (FJ) and the Zeldovich-von Neumann-Doring (ZND) 

cycle. In Figure 1, Figure 2 and Figure 3 the cycles are plotted in the p-v and T-s diagrams [1]. The 

Humphrey cycle is the simplest one for the PDE engine cycle modeling. It assumes that the compression 
process is isochoric, followed by an isentropic expansion and an isobaric process to close the cycle. In the 

Humphrey cycle, the post-compression is not represented by the Chapman-Jouguet (CJ) conditions, thus 
the performance of the PDE are under predicted. The FJ cycle consist of a compression and heat release, 

from point (1) to point (3CJ) in Figure 2 The heat release is considered to be an equilibrium process 

strictly one-dimensional. In this case, the process can be assumed equal to the Rayleigh heating. In other 
words, the tangent from point (1) to point (2CJ) is represented by the Rayleigh heating curve. The 

process occurring from point (2CJ) to (3CJ) consists in the isentropic expansion, followed by the isobaric 
process to close the cycle. 

The most accurate model for a detonation cycle is the Zeldovich-von Neumann-Doering (ZND). The 
detonation wave consists in a normal shock wave progressing into the undisturbed fuel-oxidiser mixture, 

followed by release of heat in a constant-area region (Rayleigh flow). The strength of the leading shock 

wave is uniquely determined by the initial conditions and the amount of heat added. The entire process is 
constrained by the Chapman-Jouguet condition. The latter implies that, after the heat addition-area, the 

local Mach number is equal to 1. The heat addition region is followed by a complex flow region, where 
the non-steady Taylor expansion waves take place. Figure 4 shows the phases of a PDE engine [1]. 

 
Figure 1: - Humphrey cycle in the p-v and T-s planes [1] 

 
Figure 2: – Fickett-Jacobs cycle in the p-v and T-s planes [1] 
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Figure 3 – ZND cycle in the p-v and T-s planes [1] 

 

 
Figure 4: –PDE cycle phases [1] 

Considering the ideal PDE cycle modeled with the ZND assumptions, one can compare the efficiency of 
the typical constant pressure-based combustion cycle (Brayton) to the efficiency of the ideal Humphrey 

and the ideal PDE. In Figure 5, the thermal efficiency is plotted in function of the ratio between the 

pressure at the end of the adiabatic isentropic compression and the free stream static pressure. The 
three cycles are compared considering heat addition , where  is defined as follows:  

 

 
(1) 

 
 

 
Where is the mass fuel-air ratio and is the lower heating value of the fuel.  

 
Figure 5 –Thermal efficiency of Brayton, Humphrey and PDE ideal cycles 
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It is important to say that the efficiency of the cycle component (compressor, expander, combustion 

chamber) affects the cycle efficiency, yielding to lower thermodynamic efficiency for the PDE with respect 
to the Brayton for high values of  [2]. 

 

2 INPUT DATA, CONSTANTS AND STANDARD PARAMETERS 

The case study selected for the present paper is defined by the following input data [3]: 

Table 1: Input data for the case study 

Parameter Symbol Value Measurement 
Unit 

Engine compressor total to static pressure ratio πc 6 - 

Gas constant for air R 287.3 J/kg/K 

Gas constant for burned gas  Rg 288.4 J/kg/K 

Specific heat ratio for air  γ 1.4 - 

Specific heat ratio for burned gas γg 1.33 - 

Specific heat at constant pressure ratio for air cp 1005 J/kg 

Specific heat at constant pressure ratio for burned gases cpg 1165 J/kg 

Standard atmospheric conditions: pressure, temperature, 

entropy 

Patm,  
Tatm,  
satm 

101330 

288 

660.122 

Pa 

K 

J/kg/K 

Compressor efficiency for centrifugal compressors Ηc 0.85 - 

Combustor heat losses σcb 0.9 - 

Exhaust nozzle kinetic energy losses  φn 0.95 - 

 
The case study engine is fuelled by a stoechiometric mixture of air and acetylene. The mixture properties 

are provided in Table 2. 
Table 2: Fuel mixture properties 

 Reactants 

Species C2H2 O2 N2 Total 

Moles 2 5 18.810 25.810 

MW 26 32 28 86 

X 0.07749 0.19373 0.72878 1 

Y 0.07040 0.21660 0.71300 1 

hf [kJ/kg] 8721.077 0 0 8721.077 

q [J/kg] 613938.6 0 0 613938.6 

 Products 

Species CO2 H2O N2 Total 

Moles 4 2 18.810 24.810 

MW 44 18 28 90 

X 0.16123 0.08061 0.75816 1 

Y 0.23827 0.04873 0.71300 1 

hf [kJ/kg] -8944.227 -13435.833 0 -22380.061 

q [J/kg] -2131115.5 -654815.0 0 -2785931.5 

Since the specific heat at constant pressure is defined as a mixture average, the sensible enthalpies of 

the species in the mixture cancel out when determining the heat of reaction for the acetylene 
combustion, so they were neglected. The data in Table 1 comes from reference [4]. 

Based on the data in Table 2, the heat of combustion is:  
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(2) 
 

 

3 IDEAL THERMODYNAMIC CYCLE 

3.1 Initial conditions 

State 1id, the compressor inlet, also coincides with the engine inlet, as the TIDE engine is not equipped 
with any air intake ducting. Thus, state 1id will correspond to air at atmospheric conditions under which 

the engine operates. 
For the present work, standard atmospheric conditions at sea level and at zero flight velocity are 

assumed for the starting point of the TIDE engine thermodynamic cycle. Certainly, a real engine is 

expected to operate under a vast region of intake conditions, due to various altitudes, flight velocities, or 
specific atmospheric conditions. However, the resulting thermodynamic cycles are outside the scope of 

the present work. Furthermore, once the algorithm for computing the thermodynamic cycle is 
established, as per this work, applying various inlet conditions becomes straight forward. 

Thus, p1id, T1id and s1id are the standard atmospheric conditions defined earlier. 

The specific volume is given by [5]: 
 

(3) 
 

 
 

Equation (3) can be applied to determine v1id. 

The enthalpy is determined using [3]: 
 

(4) 
 

Equation (4) can be applied to determine h1id. 

 
3.2 Ideal compression 

The whole paper should be formatted as a single column. 
State 2id, the compressor outlet, also coincides with the combustor inlet. The air compression is assumed 

adiabatic (no heat losses in the engine compressor). State 2id, the ideal compression, is reached from 

state 1id through an isentropic adiabatic compression. Since path 1id - 2id is isentropic: 
 

(5) 
 

 
The pressure at state 2id is determined by: 

 

(6) 
 

 
The entropy at a given temperature and pressure, can be determined from the entropy at a reference 

state 0 by [5]: 
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(7) 

 
 

 

 
Applying Equation (7) for state 2id, and using state 1id as reference, the temperature T2id can be 

determined as: 
 

(8) 
 

 

 
 

Next, knowing T2id, Equation (4) can be applied to determine the enthalpy h2id. 
The specific volume v2id can be determined using Equation (3) for the conditions at state 2id. 

 

3.3 Ideal detonation 

State 3id corresponds to a point immediately downstream of the detonation wave. It is important to note 

that state 3id does not have a fixed geometrical location throughout the detonation cycle, but travels 
through the combustor together with the detonation wave. During the detonation process, the system is 

temporarily non-uniform and, therefore, the line representing the 2id – 3id evolution in Figures 1 - 2 is 
not an actual thermodynamic path, but merely a conventional representation of the non-equilibrium 

detonation process [6]. The heat of combustion is given by Equation (2). For the PDC evolution, three 

detonation models will be considered: the Humphrey cycle [8], the Fickett - Jacobs cycle [9, 10], and the 
Zeldovitch - Neumann - van Doring cycle [11]. It is important to note that, contrary to classic 

thermodynamic cycles, the detonation cycle is not a succession of equilibrium states. 
 

3.3.1 The Humphrey cycle 

 
The Humphrey cycle path includes state 3Hid. The path 2 - 3H

id is assumed as a constant volume heating 

up to a temperature corresponding to the heat release given by Equation (4). 
For a constant volume evolution: 

 

(9) 
 

 
The heat release by chemical reaction can be written, in the ideal case, for a constant volume process: 

 
(10) 

 

 
The specific heat at constant pressure and at constant volume and the temperature in state 3Hid can be 

determined as [5]: 
 

(11) 

 
 

Finally, by combining Equations (10) – (11): 
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(12) 
 

 

 
The pressure is determined using Equation (3) for state 3Hid. 

The enthalpy hH
3id is found by applying Equation (4) for temperature TH

3id for burned gas. 
Similarly, the entropy at state 3Hid is calculated by using Equation (7) with state 2id as the reference 

state. 
 

3.3.2 The Fickett - Jacobs cycle 

 
The Fickett - Jacobs cycle path includes state 3Fid. The approach assumes that the detonation can be 

modeled as a compression with heat addition process. Under the Chapman - Jouguet theory [12, 13], the 
heat release through detonation is assumed instantaneous, and the process is identical to a Rayleigh 

heating and the process can be regarded as being in local thermodynamic equilibrium [14]. Thus, in the 

p-v plane, the point 3Fid is found at the intersection of the reactive Hougoniot curve corresponding to the 
acetylene adiabatic flame temperature with the tangent from point 2id to the same reactive Hougoniot 

curve [12], also known as the Rayleigh line [4]. 
The general reactive Hougoniot curve based on the state 2id parameters and on the heat release given 

by Equation (2) is [15]: 
 

 

(13) 
 

 
 

 

A line passing through point 2id in the p-v plane can be written as: 
 

(14) 
 

 

 
 

where m  is the slope of the Raighleigh line. 
By substituting Equation (14) into Equation (13), a second order equation in v is obtained. To impose the 

condition that the line defined by Equation (14) is a Rayleigh line, i.e. tangent to the Hugoniot curve (13), 
the discriminant of the previously mentioned second order equation must be zero. Under this condition, 

another second order equation in m is obtained: 

 
(15) 
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Solving Equation (15), the slope of the Rayleigh line is known. Since the upper Chapman – Jouguet is 

sought, the solution with the negative sign in front of the discriminant square root solution will be 
selected. Next, the specific volume in state 3Fid can be obtained from the zero discriminant second order 

equation as: 

 
(16) 

 
 

 
 

The pressure in state 3Fid can now be determined by substituting Equation (16) in Equation (14): 

 
(17) 

 
 

 

 
The temperature can be determined by applying the equation of state (3) for the conditions in state 3Fid. 

With the known temperature, the enthalpy hF
3id is found by applying Equation (4) for burned gas. 

Similarly, the entropy is calculated by using Equation (7) with state 2id as the reference state. 

 
3.3.2 The Zeldovich – von Neumann - Doring cycle 

 

The Zeldovich – von Neumann - Doring cycle path includes states 3’Zid and 3’Zid. The ZND model 
assumes the detonation is composed of an initial non-reactive shock wave, along the so-called inert 

Hugoniot and bringing the thermodynamic system is state 3’Zid, immediately followed by heat release 
along a Rayleigh line [14], bringing the system in state 3’Zid. 

The point in the p-v plane corresponding to state 3’Zid can be found at the intersection between the inert 

Hugoniot and the Rayleigh line. As the Rayleigh line is unique for given initial conditions and heat release, 
it is defined by Equation (14) as well. The inert Hugoniot, in its turn, can be defined by annulling the heat 

release term in Equation (13): 
 

(18) 

 
 

 
 

Similarly to the FJ cycle, by substituting Equation (14) into Equation (18), a second order equation in v 
can be obtained: 

 

(19) 
 

 
 

 

Equation (19) provides two solutions, corresponding to the two intersection points. One point represents 
state 2id, while the other, whose volume is given by the solution of Equation (19) with the positive sign 

in front of the discriminant square root, is the sought point. 
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Next, the pressure is determined by substituting the previously determined specific volume into Equation 

(14). 
As before, the temperature can be determined by applying the equation of state (3) for the conditions in 

state 3’Zid. With the known temperature, the enthalpy hZ
3’id is found by applying Equation (4) for burned 

gas. Similarly, the entropy sZ
3id is calculated by using Equation (7) for air. 

Since both states 3Fid and 3Zid correspond to the upper Chapman – Jouguet point [4], they must be 

identical for the same cycle parameters. 
 

3.4 Ideal Expansion 

State 4id represents the engine nozzle outlet. The air expansion is assumed adiabatic (no heat losses in 

the engine combustor and nozzle). State 4id, the ideal expansion, is reached from either of the states 3id 

through an isentropic adiabatic expansion. Since the parameters characterizing state 3id are different for 
each of the three considered detonation models, three different parameters sets characterizing state 4id 

will be obtained. However, the algorithm for determining them is the same, only the initial state 3id being 
different. 

As path 3id - 4id is isentropic: 

 
(20) 

 
 

The expansion is assumed to be complete, down to the atmospheric pressure: 
 

(21) 

 
 

Applying Equation (8) for burned gas, the temperature T4id can be determined. Next, knowing T4id, 
Equation (4) can be applied to determine the enthalpy h4id with the coefficients for burned gas. 

The specific volume v4id can be determined using Equation (3) for the conditions at state 4id. 

 
3.5 Ideal Cycle Closure 

 
The ideal cycle is closed by a fictitious isobar that connects states 4id and 1. 

 

3.6 Ideal Cycle Results 

 

The numerical results of the previously presented algorithm applied for the case study studied in this 
paper are presented in Table 3, and Figure 6. 

Table 3: The ideal cycle 

State 
P 
 [Pa] 

T  
[K] 

v [m3 / 
kg] 

h  
[J/kg] 

s  
[J/kg K] 

w or q  
[J/kg] 

m 

1 101330 288.00 0.81656 289440.000 6660.122 0.000 - 

2id 607980 480.67 0.22714 483068.980 6660.122 193628.980 - 

3Hid 5534858 4359.14 0.22714 5078396.133 8591.799 -822768.278 - 

3Fid 10822706 4985.69 0.13286 5808323.610 8554.859 -822768.278 -40.47654 

3’Zid 21037432 2824.72 0.03858 2838843.533 7421.803 0.000 -40.47654 

3Zid 10822706 4985.69 0.13286 5808323.610 8554.859 -822768.278 -40.47654 

idid ss 34

atmid pp4
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4Hid 101330 1619.23 4.60857 1886403.871 8591.799 -3191992.262 - 

4Fid 101330 1568.69 4.46473 1827527.902 8554.859 -3980795.708 - 

4Zid 101330 1568.69 4.46473 1827527.902 8554.859 -3980795.708 - 

 
In order to determine the proper temperature, enthalpy and the entropy between state 2id and each of 

the states 3id, as well as along the final isobars 4id - 1, it is important to note that the working fluid 
composition changes during the evolutions from air to burned gas, and from burned gas to air, 

respectively, which affects both the gas constant and the curve fit coefficients for enthalpy and entropy 

at one bar. 
To circumvent this problem, a progress variable, φ, was introduced, and the affected variables along the 

gas composition changing evolutions 2id - 3id (or, rather, 3’id – 3id in the ZND case), and 4id – 1 are 
determined as: 

 
(22) 

 

 
where a is temperature, enthalpy, or entropy, and the progress variable Φ, varies between 0 (for states 

3id and 4id) and 1 (for states 2id and 1). 

 
Figure 6: p-v diagram of the ideal cycle (left), T-s diagram of the ideal cycle (right) 

 

4 REAL THERMODYNAMIC CYCLE 

4.1 Initial Conditions 

The real initial conditions are identical to the ideal initial conditions. State 1 will correspond to air at 
atmospheric conditions under which the engine operates. 

 

4.2 Real Compression 

State 2, the real compression is reached, from state 1, through a non-isentropic adiabatic compression. 

For state 2, the path 1 - 2 is still adiabatic, but not isentropic anymore. Instead of the ideal work, defined 
as [3]: 

 
(23) 

 

 
the real compressor work will be used to bring the air in state 2id: 
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(24) 
 

 

 
By combining Equations (23) and (24), the state 2 enthalpy is: 

 
(25) 

 
 

 

Applying Equation (25), and using Equation (4) for state 2, for air, the temperature T2 can be 
determined. 

The pressure is the same in states 2id and 2: 
 

(26) 

 
 

The specific volume v2 can be determined using Equation (3) for the conditions at state 2. 
The entropy at state 2 can be determined using Equation (7) for air, with state 1 as the reference state. 

 
4.3 Real Detonation 

State 3 represented the real detonation. As for the ideal case, state 3 does not have a fixed geometrical 

location throughout the detonation cycle, but travels through the combustor together with the detonation 
wave, and  the line representing the 2 – 3 evolution in Figures 3 - 4 is not an actual thermodynamic path, 

but merely a conventional representation of the non-equilibrium detonation process [14]. For the real 
case, heat losses due to heat transfer through the combustion walls and incomplete combustion are 

considered, so the heat released by the detonation process is: 

 
(27) 

 
 

As before, the Humphrey cycle, the Fickett - Jacobs cycle, and the Zeldovitch - Neumann - van Doring 

cycles will be considered. The algorithm for all the three models remains identical with the ideal case, but 
with the heat release given by Equation (27) instead of Equation (2). 

 
4.4 Real Expansion 

State 4 represents the engine nozzle outlet. The air expansion is assumed adiabatic (no heat losses in the 
engine combustor and nozzle). State 4, the real expansion, is reached from either of the states 3 through 

a non-isentropic adiabatic expansion. Since the parameters characterizing state 3 are different for each of 

the three considered detonation models, three different parameters sets characterizing state 4 will be 
obtained. However, the algorithm for determining them is the same, only the initial state 3 being 

different. 
The ideal expansion work between states 3 and 4 is expressed as [5]: 

 

(28) 
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where the nozzle pressure ratio is defined as: 
 

(29) 
 

 
 

The real expansion work is determined by taking into account the kinetic energy losses in the nozzle: 

 
(30) 

 
 

Then, the enthalpy at state 4 is: 

 
(31) 

 
 

Applying Equation (4) for burned gas, the temperature T4 can be determined. As for the ideal case, the 
expansion is assumed to be complete, down to the atmospheric pressure: 

 

(32) 
 

 
The specific volume v4 can now be determined using Equation (3) for the conditions at state 4. 

Finally, knowing T4, Equation (7) for burned gas can be applied to determine the entropy s4, using states 

3 as the reference states. 
 

4.5 Real Cycle Closure 

 

The real cycle is closed by a fictitious isobar that connects states 4 and 1. 

 
4.6 Real Cycle Results 

 
The numerical results of the previously presented algorithm applied for this case study input data are 

presented in Table 4, and Figure 7. 
Table 4: The real cycle 

State p [Pa] T [K] 
v [m3 / 

kg] 
h [J/kg] 

s [J/kg 

K] 
w or q [J/kg] m 

1 101330 288.00 0.81656 289440.000 6660.122 0.000 - 

2 607980 514.67 0.24320 517238.800 6728.809 227798.800 - 

3H 4759884 4013.95 0.24320 4676257.175 8528.257 -3059882.220 - 

3F 9245427 4579.65 0.14286 5335292.004 8490.386 -3059882.220 -34.43183 

3’Z 17882873 2635.86 0.04251 2649043.053 7398.933 0.000 -34.43183 

3Z 9245427 4579.65 0.14286 5335292.004 8232.754 -3059882.220 -34.43183 

3

4

p

p
n

nidnn ww ,

nwhh 34

atmpp4
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4H 101330 1593.76 4.53607 1856728.797 8562.391 -2819528.379 - 

4F 101330 1556.11 4.42893 1812873.107 8534.544 -3522418.896 - 

4Z 101330 1556.11 4.42893 1812873.107 8534.544 -3522418.896 - 

 
The variation of the gas composition between states 2 and 3, respectively between states 4 and 1, was 

handled in the same way as for the ideal cycle case. 

 
Figure 7: p-v diagram of the real cycle (left), T-s diagram of the real cycle (right) 

 

5 WORK AND EFFICIENCY 

The TIDE cycle net specific work can be determined as [14]: 

 

(33) 
 

 
where the integral is taken along the cycle path, as presented in Figures 6, and respectively 7, left. 

The cycle net specific heat can be determined as [14]: 
 

(34) 

 
 

where the integral is taken along the cycle path, as presented in Figures 6, and respectively 7, right. 
Finally, the cycle efficiency is [14]: 

 

(35) 
 

 
 

 
For the case presented herein, the resulting net work, net heat, and cycle efficiency for the three 

employed models are presented in Table 5. 

Table 5: Net work, net heat and cycle efficiency 

Model 
Net specific work [J/kg] Net specific heat [J/kg] Cycle efficiency [%] 

Ideal Real Ideal Real Ideal Real 

H 1879507.55 1691051.73 2319215.31 2089956.28 81.0406668 80.9132586 

FJ 1948766.86 1764894.31 2632753.53 2391403.21 74.0201027 73.8016197 

ZND 3543540.28 3166220.34 4569887.30 4086266.64 77.5410868 77.4844282 

pdwcycle

Tdsqcycle
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The highest cycle specific is provided by the Zeldovich - von Neumann - Doring cycle, while the highest 
efficiency is provided by the Humphrey model. 

 

6 CONCLUSION 

A review of the existing thermodynamic cycle models for detonation is presented. Based on this review, 

three such models are selected to provide basis for the computation of the TIDE engine thermodynamic 
cycle: the Humphrey cycle, the Zeldovitch - Neumann - van Doring cycle, and the Fickett - Jacobs cycle. 

The algorithms for the computation of the real and ideal thermodynamic cycles for each models are next 
presented, followed by numerical results reflecting the conditions of the TIDE engine. 

Finally, the net specific work and heat, as well as the cycle efficiencies of the TIDE engine according to 

each of the selected detonation model cycles are presented. 
The the Zeldovitch - Neumann - van Doring cycle provides the highest work, of 3543.5 kJ / kg in the ideal 

case, and of 3166.2 kJ / kg in the real case, while the Humphrey cycle provides the highest efficiency, of 
81.0 % in the ideal case, and of 80.9 % in the real case. 
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