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ABSTRACT 
This study presents the method for detection and isolation of component faults and 

degradation modes in industrial gas turbine engine. Performance of gas turbine engines 
gradually deteriorate over the service life due to degradation of the gas path components such 
as compressor, combustor and turbines. These physical faults gradually evolve over a 
prolonged period of operation and lead to degradation of the performance parameters, such 
as efficiency and flow capacity of individual gas-path components. 

Performance degradation, in turn, causes changes in the measurable engine parameters, 
such as temperature, pressure, rotational speed, and fuel flow rate. Traditionally these 
component degradation modes and faults in the engine have been detected by measuring the 
changes in these observable parameters through appropriate usage of signal processing and 
pattern recognition tools.  

In this contribution model-based diagnostic approach has been applied, where 
measureable parameters have been used to estimate so-called engine health parameters, i.e. 
component efficiencies and flow capacities.  Health parameter deviations from nominal 
conditions are subsequently used to obtain health indices and the best signature match is then 
used to identify likely component degradation modes and faults. 

Performance diagnostic and fault isolation process is based on multidimensional complex 
health vector space which contains generated health indices, i.e. component capacity and 
efficiency indices for different gas turbine components. Simulated gas turbine degradation 
modes have been diagnosed and isolated by comparing gas turbine health vector against bank 
of fault signatures for different gas-path components. 

NOMENCLATURE 
Variables Subscripts \ Superscripts 

I health index 

 capacity 

  efficiency 

D  discriminant 

,H  health vector 

E,  fault vector 

isolation index 

W  weight factor 

e  fault signature 

cmp  component 

n  number of components 

flt  fault 

k  number of faults 

ort  orthogonality test 

col  collinearity test 

dir  directionality test 

pmt  plane magnitude test 

smt  space magnitude test 
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INTRODUCTION 
The physical faults in a gas turbine engine include problems such as erosion, corrosion, fouling, 

foreign object damage (FOD), worn seals, burned or bowed blades, etc. These physical faults can 
occur individually or in combination and cause changes in performance characteristics of the 
different gas turbine components. These changes in the performance of the gas turbine components 
result in changes in the gas path measurement parameters, which are typically used for diagnostic 
purposes (Li, 2002). 

Current degradation monitoring, fault detection and isolation tools vary widely in their 
complexity and applications and are primarily built upon both model-based and sensor-based 
analyses. Model based techniques exploit gas turbine models to estimate engine internal conditions, 
enabling in that way implementation of various diagnostic methods. Model-based information is the 
foundation of many diagnostics and control strategies, ranging from simple thresholding to 
sophisticated pattern recognition methods. 

Numerous diagnostic algorithms have been developed to estimate engine condition and identify 
faults from the health signals using weighted least squares (Doel, 1994, 2002), Kalman filter (Urban 
and Volponi, 1992) and neural networks (Zedda and Singh, 2000, Lu et al., 2001, Volponi et al., 
2003). More recently various techniques such as Bayesian belief networks (Lee et al., 2010), 
genetic algorithms (Sampath et al., 2003), polynomial functions (Cerri et al., 2011) and different 
hybrid methods (Volponi et al., 2005, 2007) have been explored for use in performance tracking and 
fault diagnosis. 

The developed model-based diagnostic approach is based on the measureable gas turbine 
parameters which have been used to estimate so-called engine health parameters, i.e. efficiencies 
and capacities for different gas-path components. On the another hand, devised diagnostic method 
employs dynamic gas turbine model as a performance tracking tool for generation of predicted 
health parameters for selected engine components. Performance tracking method is based on the 
observer which was constructed using non-linear dynamic gas turbine model with model tuner. The 
health parameters deduced by the performance estimation tool were then introduced into a dynamic 
model via model tuner which was designed using Kalman filtering technique. 

The residual deviations between predicted and estimated component losses and flow capacities 
are subsequently used to generate health indices and the best signature match is then employed to 
identify likely component degradation modes and faults. 
 

MODEL STRUCTURE 
The generic simulation tool “GasTurboLib” (Panov, 2009), was used to build non-linear model 

of twin-shaft gas turbine engine. Created dynamic model is a physics based and has component-
oriented architecture, where each module represents individual component. Different engine 
configurations can be created using this generic simulation tool and these models can be used for 
real-time simulations. 

 
The component models include conservation of mechanical energy for engine shafts, heat-

soaking effects for metal parts, and conservation of thermodynamic energy within different gas 
volumes in the engine. The detailed dynamics model of gas turbine engine can be expressed with a 
system of non-linear differential equations in state space: 

vuxfx x ,,            (1.1) 
vuxgy y ,,            (1.2)  

 
where x  is state coordinate vector, u  is control vector, v  is vector of operating conditions, and 
vector y  contains measurable my  and non-measurable parameters ny . 
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As a gas turbine engine undergoes internal changes, these changes may be manifested in 
performance degradation. To account for this degradation original state and output equation could 
be augmented with an additional vector h  containing health parameters: 
 

vuhxfx x ,,,           (2.1) 
vuhxgy y ,,,           (2.2) 

 
The vector h  contains health parameters that indicate the engine health conditions. Health 

parameters are usually represented by efficiencies and flow capacities of the engine components. As 
they deviate from their normal health conditions, the performance delivered by each component 
degrades, and this can be recognized as a shift in component characteristics (Razak, 2007). 
Generally speaking, we can recognize two main reasons for engine performance deviation: engine-
to-engine variations and engine deterioration. 

Since the gas turbine model represents “nominal” engine, it must be adapted to the performance 
of the real engine as it deviates from nominal baseline with time. To address this problem, tuning of 
the engine model can be performed so that model aligns to the actual engine being monitored using 
model based tracking approach (Fig. 1.). 

In this study performance tracking was achieved by the two step process. The gas turbine health 
parameters are estimated by performance estimation tool, and then subsequently they are introduced 
into dynamic real-time model via model tuner (Panov, 2014).  
Selected set of health parameters is obtained using estimation function: 
 

)( mz ygz            (3) 
 
which is based on the performance model that utilizes the mass and thermodynamic energy 
balances. 

Vector z  contains estimated health parameters, component capacities and efficiencies, which 
are obtained from available engine instrumentation readings. 

Vector of measured engine parameters my , beside temperature and pressure measurements at 
different engine stations, contains also speed and acceleration rate of rotating shafts, addressing in 
that way dynamic behaviour of monitored health parameters. 

To secure numerical stability of the dynamic gas turbine model, tuning of the health parameters 
must be done with care. Applied model tuning process based on Kalman filtering technique 
generates smooth tuners, enabling in that way robust execution of real-time dynamic models 
(Panov, 2011). 

The estimated health parameters z  based on the measurements from engine instrumentation are 
compared with smoothed estimates of health variables ẑ , where resulting vector is then used for 
generation of model tuners  and correction of the state variables x . Therefore above gas turbine 
dynamic model, expanded with model tuner takes following form: 

 

zzKhf
vuhxfx x

ˆ
0

ˆ,ˆ
ˆ,,,ˆ,ˆ

ˆ
ˆ

        (4.1) 

ˆ,,,ˆ,ˆˆ vuhxgy y           (4.2) 
 
where function K  represents tuner gain, which can be considered as a design parameter that is 
specified by user, and vectors x̂  and ĥ  represent the estimates of the state variables and predicted 
health parameters, respectively. Gain matrix K  is designed using linear quadratic theory to form 
Kalman filter gain matrix. 
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Model-based diagnostics employs engine models tuned to match the observed engine state in 
the same manner as model-based performance tracking (Panov, 2013). The residual deviations 
between predicted and estimated health parameters are modelled, again usually as variations in 
component losses and flow capacity, and the best match is used to identify likely component 
degradation modes and faults (Fig. 1.). 

 
 

 
Fig. 1. Model Based Diagnostics & Isolation 

A number of causes can result in gas turbine performance deterioration. Goal of diagnostics is to 
attempt to detect one or more of these causes that are responsible for the deterioration of engine 
performance. Usually this detection process is based on monitoring of so-called “health indices”. 

Health indices are means of determining the deteriorated component characteristics. They 
represent the percentage change in component characteristics usually due to component faults or 
gradual degradation. Typically two health indices can be defined for any component and they 
correspond to the capacity and efficiency index: 

 

hh

h

I 100100         (5.1) 

 

hh

h

I 100100         (5.2) 

 

DIAGNOSTICS 
Fault detection and isolation play a critical role in enhancing the engine reliability and reducing 

operating cost of gas turbine engines. Engine component degradation and faults may occur in 
various degrees of severity and at various locations, and numerous scenarios are possible. We can 
distinguish three general classes of engine faults, namely, sensor, actuator and gas turbine 
component faults. This contribution considers only detection and isolation of the gas path 
component faults and degradation modes. Performance diagnostic and fault isolation process is 
based on multidimensional complex heath vector space which contains health indices, i.e. 
component capacity and efficiency indices for different gas turbine components. 

Health vector 
Gas turbine health vector is defined in n-dimensional Euclidean space n : 

nI

I1

           (6) 
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where number of dimensions corresponds to the number of engine components under consideration. 
Scalars iI  are complex numbers constructed using component indices, where real part is 
represented by efficiency index, and complex part by capacity index of the corresponding 
component. 

iII

iII

nn

11

    (7) 

 
Health vector of specific engine component in n-
dimensional space is defined as follows: 

0

0

0

0

iIII
cmpcmpcmpcmp   (8) 

where ncmp ,...,1 . 
 

Component health vector in complex plane is represented with corresponding element in the gas 
turbine health vector, i.e. with real and imaginary part of component efficiency and capacity 
respectively.  

iII
cmpcmpcmp          (9) 

 

Fault vector - signatures 
Gas turbine fault vector, similarly as a health vector is defined in n-dimensional space n : 

ne

e1

           (10) 

where number of dimensions corresponds to the number of engine components for which diagnostic 
process is applied. Each engine component could exhibit different faults or degradation modes, and 
they are described with corresponding component health indices, i.e. efficiency and capacity index. 
Therefore fault vector, i.e. signature of particular component fault in n-dimensional space is 
described with complex element in n-dimensional 
vector: 
 

0

0

iee
fltfltflt     (11) 

 
where kflt ,...,1  and nk . 
 
Number of faults is equal or greater of number of 
engine components, because same engine component can suffer from different faults or degradation 
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modes. Corresponding fault vector in complex plane is represented with complex vector, containing 
component efficiency and capacity signatures as real and complex part respectively: 
 

iee
fltfltflt          (12) 

Classification discriminants 
In reality there is a very wide range of different engine faults. Classification of faults is usually 

based on different criteria, and generally they can be divided into single and multiple faults. It 
would be ideal to address all these faults (sensor, actuator and component faults) under one unified 
diagnostic framework, and several researchers have investigated the development of such diagnostic 
framework (Dewallef and Leonard, 2003, Volponi et al., 2003, Surrender and Ganguli, 2004). 

In practice, for the analysis of the engine degradation, engine faults have to be divided into the 
limited number of fault classes. Typically it is considered that every fault class corresponds to 
particular engine component. 

To isolate the diagnostic information, a classifier is added to model-based detection process, and 
numerous techniques have been applied in the past as a classification engines. In presented 
application the simulated gas turbine degradation modes have been diagnosed and isolated using 
pattern-recognition approach, by comparing gas turbine health vector against bank of fault 
signatures for different gas-path components. 

In order to classify the fault signatures correctly according to the corresponding gas turbine 
conditions, several discriminant test functions were selected (Aretakis and Mathioudakis, 1998). 
Three discriminant function are applied in complex vector space (orthogonality, colinearity and 
magnitude test), and additional two tests are applied in complex vector plane (directionality and 
magnitude test). 

 

Orthogonality test – complex space 
Orthogonality test is based on the vector dot product in n-dimensional n  complex vector 

space: 
 

m
mort

flt EHD ,  and mflt          (13) 
 
where kflt ,...,1  ; km ,...,1  and k  - number of faults. 
 

0

0
11

, iee

iII

iII

D
fltflt

nn

mort
flt    (14) 

 
In case that angle between gas turbine health vector and fault vector, is right angle: 

 
o90  => 0cos          (15) 

vectors are said to be mutually orthogonal and discriminant based on vector dot product is equal to 
zero: 
 

0cos,
mm

mort
flt HD         (16) 
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Collinearity test – complex space 
Wedge product or Grassmann product of vectors in n-dimensional vector space n  is used to 

define Collinearity test:  
flt

col
flt EHD ^           (17) 

Grassmann product is generalization of vector cross product in 3-dimensional vector space 3 , 
which is used to describe collinear vectors. Two vectors are said to be collinear if they are parallel, 
i.e. angle between vectors is defined as follows: 

,...2,,0  => 0sin          (18) 
Wedge product of gas turbine health vector and fault vector, which are collinear returns zero 

vector:  

0
0
0
0

0

0

^^

11

iee

iII

iII

fltflt

nn

flt     (19) 

and hence discriminant based on the magnitude of the wedge product is equal to zero: 
 

0sinfltflt
col
fltD

       (20) 

Directionality test – complex plane 
Dot product of component health vector and fault vector in the complex plane: 

cosfltcmpfltcmp      (21) 
where ncmp ,...,1  and n - number of components. 
is used for definition of the Directionality test in the complex plane:  

fltcmp

fltcmpdir
fltD arccos       (22) 

In case that component health vector and fault vector have same direction in the complex plane, 
angle between them is equal to zero ( 0 ), and hence corresponding discriminant has the same 
value: 

0dir
fltD            (23) 
 

Magnitude test – complex space 
Gas turbine and component health vector magnitudes are used for definition of Magnitude test 

in complex space: 
HHD cmp

smt
flt       (24) 

 
In case that Euclidian length of gas turbine health vector:  

2
1

1

2
n

i
iI       (25) 

is equal to Euclidian length of component health vector: 
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cmpcmpcmp II           (26) 
 
discriminant of magnitude test in n-dimensional complex vector space is equal to zero: 

0HHD cmp
smt
flt          (27) 

 

Magnitude test – complex plane 
Magnitude test in complex plane is represented with difference between magnitude of 

component health vector and fault vector in complex plane: 

fltcmp
pmt
fltD        (28) 

 
When Euclidian length of component health vector: 

cmpcmpcmp        (29) 
 
is equal to length of fault vector in complex plane: 

fltfltflt        (30) 
 
corresponding discriminant has value of zero: 

0fltcmp
pmt
fltD       (31) 

 

ISOLATION – DISCRIMINANT VECTOR, ISOLATION INDEX, WEIGHT FACTOR 
Once diagnostic process is completed, which consists of determination of selected 

discriminants, isolation process can be applied. Isolation process is based on fault isolation index, 
which is derived using norm of discriminant vectors and probabilistic weight factor.   

 
For each considered fault, discriminant vector is constructed using previously determined 

corresponding discriminants: 
dfltflt

smt
flt

pmt
flt

dir
flt

col
flt

mort
flt

ort
fltflt DDDDDDDDD ,1,

,1, ,...,,,,,,...,     (32) 
where d  is number of selected discriminants. 

 
Sorting norms of discriminant vectors for all considered faults: 

 
2

1

1

2

,

d

i
ifltfltflt DDN where kflt ,...,1  and k  - number of faults   (33) 

puts them in order where the most likely degradation mode \ fault corresponds to min value: 
kNN ,...,min 1  

 
Norms now can be used to determine fault  isolation indices (Mucino and Li,  2005) for all  the 

examined faults according to the following equation: 
fltfltflt NW 1100          (34) 

where fltW  is fault weight factor defined as arithmetic average of weight factors for component fault 
efficiency and capacity: 

fltflt
WWW flt 2

1
          (35) 
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Component fault weight factors represent probability of having a particular component fault and 
they are defined as follows: 

- Weight factor for component fault efficiency 

2

2

2

)

flt

fltcmp

flt

eI

eW     (36) 
where 

flt
is standard deviation for component fault 

efficiency, 
- Weight factor for component fault capacity 

2

2

2 flt

fltcmp

flt

eI

eW     (37) 
where 

flt
is standard deviation for component fault 

capacity. 
 
In  order  to  classify  an  examined  signature  to  a  
particular fault, which is based on the corresponding fault vector, one can calculate fault isolation 
indices for all considered fault/degradation modes. The isolation process is then completed by 
classifying the signature to the mode that corresponds to the maximum isolation index (the better 
similarity the closer to 100% value). 

NUMERICAL SIMULATION 
 
For numerical simulation of abrupt and progressive degradation of different engine components 

(Kurz and Brun, 2000), two engine models have been created, where one model simulated “real” 
engine and second represented on-line engine model with tracking filter and diagnostic agent. Noise 
and biases of the engine instrumentation are implemented into the model representing “real” engine 
to introduce model-plant mismatch. 

Dynamic model of industrial twin-shaft gas turbine engine has been used in this study. 
Available engine instrumentation for this gas turbine is listed in table Tab. 1. Engine health 
parameters derived by devised performance estimation tool using available engine instrumentation 
are listed in table Tab. 2. 
 
Tab.1. Gas turbine measurements Tab.2. Health parameters for 4 gas turbine 

components 
No Description Sensor Type Notation 
 1 Compressor inlet Pressure 

inP  
2 Compressor inlet Temperature 

inT  
3 Compressor delivery Pressure 

cdP  
4 Compressor delivery Temperature 

cdT  
5 Inter-duct Pressure 

idP  
6 Inter-duct Temperature 

idT  
7 Exhaust Temperature 

exT  
8 Gas generator shaft Speed 

ggn  
9 Power turbine shaft Speed 

ptn  
 

No Component Parameter Notation 
1 Compressor  Efficiency 

comp  
2 Compressor  Capacity 

comp  
3 Combustor Efficiency 

comb  
4 Compressor turbine Efficiency 

ct  
5 Compressor turbine Capacity 

ct  
6 Power turbine Efficiency 

pt  
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Based on the deduced engine health parameters, corresponding health indices have been 
determined, and compered against bank of fault signatures for different gas-path components listed 
in Tab .3. 
 
Tab. 3. Fault vectors for 5 fault signatures 

FAULT CLASSES 
Compressor Combustor Compressor Turbine Power Turbine 

Compressor 
Fouling 

VGV Offset Combustor 
Degradation 

CT Erosion PT Tip Rub 

comp
I  

comp
I  

comp
I  

comp
I  

comb
I  

comb
I  

ct
I  

ct
I  

pt
I  

pt
I  

-2% -3% +1% +9% -4% - -2% +3% -4% - 

    
 
Simulated gas turbine degradation modes have been diagnosed and isolated by classification engine 
based on several discriminant test functions listed in table Tab. 4. 

Tab. 4. Clasification discriminants for 4-dimensional health vector and 5 fault classes 

 

Simulation results 
Several scenarios of abrupt and progressive component degradation have been simulated to 

assess capability of developed diagnostic tool to capture induced component faults. Numerical 
simulations have been carried out running the engine model at full load steady-state conditions. 
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Component faults have been then subsequently injected as a step and\or ramp change of the 
component efficiency and\or capacity, and trends in health indices have been observed. Following 
component degradation \ fault modes have been considered in this study: compressor fouling, 
compressor VGV offset, combustor degradation, CT erosion and PT tip rub [Tab. 3.]. 

 
Tab. 5. Abrupt compressor fouling and progressive PT rub 

FA
U

LT
 

FAULT CLASSES 
Compressor Combustor Compressor 

Turbine 
Power Turbine 

Compressor 
Fouling 

VGV 
Offset 

Combustor 
Degradation 

CT 
Erosion 

PT 
Tip Rub 

comp
I  

comp
I  

comp
I  

comp
I  

comb
I  

comb
I  

ct
I  

ct
I  

pt
I  

pt
I  

-2% -3% +1% +9% -4% - -2% +3% -4% - 
Abrupt X X         

Progressive         X  

 

Multiple faults simulation 
 

Example of combined abrupt compressor fouling and progressive PT rub fault is presented in 
this section [Tab. 5.]. The fouled compressor is characterized by reduced compressor mass flow and 
deteriorated efficiency for any given speed. Thus, for a fouled compressor, the compressor capacity 
index 

comp
I and the compressor efficiency index 

comp
I  would be observed as negative percentages. 

The effect of damage to the turbine blade tips normally affects the efficiency of the turbine rather 
than the flow and this is mainly due to flow capacity of the turbine being set by the choking of the 
nozzle guide vanes. Power turbine tip rub fault was simulated by negative ramp change in PT 
efficiency 

pt
I . 

 
Figure Fig. 2. depicts health indices generated by performance tracking tool as a response on 

injected step change of compressor efficiency and capacity, and gradual decrease of power turbine 
efficiency, simulating combined abrupt compressor fouling and progressive PT tip rub. 

 

 
Fig. 2. Health indices - Abrupt compressor fouling and progressive PT tip rub 
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One can see that for implanted compressor and power turbine faults, health parameters were 
successfully identified by implemented observer, but identification was postponed due to 
measurement lag in the engine instrumentation. This effect  is  most pronounced in the trend of PT 
efficiency index which was predominantly affected with significant measurement lag of 
thermocouples in the engine hot gas path. 
 

 
Fig. 3. Fault isolation indices - Abrupt compressor fouling and progressive PT tip rub 

 
Response of deployed model-based diagnostic and isolation method on simulated multiple 

component faults is shown in figure Fig. 3. It can be seen that developed method successfully 
resolved simultaneously injected compressor and power turbine faults. In figure Fig. 3., one can see 
that abrupt compressor fouling is successfully classified by isolation index CMF ,  whereas PT tip 
rub mode is captured by progressive increase in PTR  isolation index. 
 

SUMMARY 
 

Traditionally, most of the performance tracking and diagnostic methods of today are developed 
for gas turbine operating at steady state conditions. These methods usually use steady state 
thermodynamic performance models to generate predicted values for health parameters and 
information they provide is used mostly to initiate maintenance actions but not for autonomous on-
line decision making in real-time. 

 
In this contribution real-time on-line performance tracking tool, based on dynamic gas turbine 

model, is used for synthesis of engine health parameters, enabling in that way performance tracking 
and diagnostics under steady-state and transient conditions. 

 
The devised diagnostic and isolation method provides a tool capable of detecting abrupt and 

gradual faults / degradation modes of the different gas-path components in the industrial gas 
turbine. The proposed method has been tested on the numerical test bed for a twin-shaft gas turbine 
engine by simulating single and multiple engine component faults and degradation modes. 

Using proposed diagnostic and isolation framework, it is possible to customize developed 
method to cover various gas turbine types equipped with different engine instrumentation. The 
developed method enables autonomous on-line detection and isolation of gas turbine component 
faults and degradation modes. 
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