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ABSTRACT
Even though shock-capturing techniques are the de-facto standard in the CFD simulation of
turbo-machinery flows, the accurate estimation of shock-induced losses in transonic flows can
be severely hindered by the numerical errors that are generated along a captured shock and
convected downstream. Indeed, and despite their widespread use, shock-capturing techniques
are known to be plagued by a number of drawbacks that are inherent to the numerical details of
the shock-capturing process. In recent works, the authors have developed a novel unstructured
shock fitting technique that has been applied to the computation of transonic, supersonic and
hypersonic flows in both two and three space dimensions. The use of unstructured meshes
allows to relieve most of the algorithmic difficulties that have contributed to the dismissal of
the shock-fitting technique in the framework of structured meshes. In this paper, the proposed
technique is applied to flows of turbo-machinery interest.

NOMENCLATURE
Φ inviscid flux balance
∞ free-stream
α angle of attack
Cp pressure coefficient
M Mach number
e cell index
i grid-point index
is isentropic

INTRODUCTION
CFD codes are nowadays being routinely used, even at the industrial level, not only for the anal-

ysis of existing turbo-machines, but also as one of the building blocks in the design and optimisation
cycle. Modern CFD developers are either interested in making existing CFD codes faster by taking
advantage of the emerging HPC architectures or in coupling existing CFD codes with other simu-
lation tools to build up complex, multidisciplinary optimisation tools. By contrast, little attention is
nowadays being paid to the numerical details of the discretization schemes available in state-of-the-art
CFD codes which are often regarded as being mature enough to be blindly trusted. However, when
simulating flows in turbo-machinery components operating at transonic speeds, it should be kept in
mind that shock-capturing schemes, that represent the de-facto standard in all modern CFD codes, are
plagued by a number of drawbacks that can severely hinder their predictive capabilities when discon-
tinuities, such as shock waves or slip lines, are present. These anomalies include: excessive shock
width, spurious oscillations arising along the captured discontinuity and the reduction of the order of
accuracy within the entire shock-downstream region, to name just a few. Evidence has been found,
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see e.g. Zaide and Roe (2011), that the troubles encountered with shock-capturing discretizations is
intrinsic to the numerical details of the capturing process, in particular to the existence of intermediate
shock points (located in between the pre- and post-shock states) that have little to do with the physical
shock structure, but are a mere numerical artifact. It follows that a definite cure to the shock-capturing
anomalies is unlikely to be ever found and remedies such as anisotropic mesh adaptation, beside hav-
ing their own computational cost, can only alleviate some of the aforementioned drawbacks.

Over the last few years, the authors have started investigating the possibility of reviving an old
technique, older than and alternative to shock-capturing, that can be used to model shock waves as
well as other discontinuities. Shock-fitting dates back to the work by Emmons (1944) and consists
in explicitely tracking the Lagrangian motion of shocks and contact discontinuities that are treated as
“true” discontinuities that bound regions of the flow-field where a smooth solution to the governing
PDEs exists. The technique has been made popular by Moretti and co-workers, see e.g. Moretti and
Abbett (1966), at a time when CFD codes only used structured grids. The advent of fast computer
architectures and some algorithmic difficulties, partly rooted in the use of structured grids, that pre-
vented shock-fitting codes from being general-purpose, have contributed to the gradual dismissal of
the shock-fitting technique, which is nowadays only being used (in the structured-grid framework)
for selected applications, see e.g. Ma and Zhong (2003). The only publications known to the authors
where shock-fitting (on structured grids) has been used for turbo-machinery application are: Hall and
Crawley (1989); Xu and Ni (1989).

The use of unstructured grids, however, allows to relieve most of the algorithmic difficulties en-
countered when shock-fitting had been used in conjunction with structured meshes. This is the key
contribution brought by the authors to the subject [see Paciorri and Bonfiglioli (2009); Ivanov et al.
(2010); Paciorri and Bonfiglioli (2011); Bonfiglioli et al. (2013)] and in this paper we show that the
unstructured shock-fitting technique can be used to compute transonic flows of turbo-machinery in-
terest. This is accomplished by using one external and one internal flow test-case for which numerical
and experimental results are available in the literature. Moreover, the advantages offered by the un-
structured shock-fitting technique are highlighted by comparing shock-fitting and shock-capturing
calculations on unstructured, triangular grids of nearly identical spatial resolution.

MATHEMATICAL AND COMPUTATIONAL MODELS
In this article attention is payed to the effects that different practices used to simulate shock-waves

produce on the solution quality near the shocks and within those smooth regions of the flow field that
are located downstream of the modelled shock-waves. Therefore, a mathematical model (the Euler
equations) describing the dynamics of an inviscid, perfect gas, is deemed adequate for the purpose.

In the next two paragraphs the two approaches, namely shock-capturing and shock-fitting, that
have been examined in this study will be briefly described. The shock-capturing discretization will be
presented first, since it is also used in the shock-fitting approach to solve the governing PDEs in the
smooth regions of the flow-field.

Shock-capturing
The eulfs code is an in-house, unstructured CFD solver that has been developed over the last

twenty years; see Bonfiglioli (2000) for a detailed description of its basic features and Bonfiglioli
and Paciorri (2013) for more recent developments. It relies on Fluctuation Splitting (FS), or Residual
Distribution schemes, see Deconinck et al. (1993a); van der Weide et al. (1999); Abgrall (2006), for
the spatial discretisation. In the FS approach the dependent variables are stored at the vertices of
the computational mesh which is made up of triangles in the 2D space, and tetrahedra in 3D and are
assumed to vary linearly and continuously in space. The inviscid flux balance Φe (also referred to as
the cell residual or cell fluctuation) is evaluated over each triangular/tetrahedral element e by means of
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Figure 1: Residual distribution concept.

a conservative linearisation Deconinck et al. (1993b) based on the parameter vector, see Roe (1981),
and scattered to the element vertices using signals Φe

i , see Fig. 1(a). Within a cell e, the signals have
to sum up to the net flux for conservation:

∑
i∈e Φ

e
i = Φe. The nodal residual is then assembled by

collecting fractions Φe
i of the net fluxes Φe associated with all the elements by which the node i is

surrounded, as schematically shown in Fig. 1(b). The various FS schemes proposed in the literature
differ by the way cell residuals are split into signals. It is possible to construct schemes that depend
linearly upon the solution (when solving a linear PDE) and are either monotonicity preserving, but
limited to first order of accuracy, which is the case of the N scheme, or, if second order accurate, may
lead to oscillatory behaviour in the neighbourhood of a captured discontinuity, which is the case of the
LDA scheme. A non-linear scheme which captures the discontinuities monotonically and preserves
second order of accuracy in smooth regions of the flow-field can be constructed by using a solution-
dependent weighting function which blends the linear N and LDA schemes in such a way that the
former scheme is activated only in the neighbourhood of the captured discontinuities whereas the
latter is used elsewhere.

Shock-fitting
The unstructured shock-fitting algorithm that has been recently developed by the authors Paciorri

and Bonfiglioli (2009, 2011); Bonfiglioli et al. (2013, 2014) consists of two key ingredients: i) a local
re-meshing technique that constructs a time-dependent mesh in which the fitted discontinuities are
internal boundaries of zero thickness and ii) an algorithm for solving the Rankine-Hugoniot jump
relations that provides the Lagrangian velocity of the discontinuity and an updated set of dependent
variables within the downstream side of the fitted shock. More precisely, in two space dimensions the
fitted shock fronts are made of polygonal curves, i.e. a connected series of line segments (which we
call the shock edges) that join the shock points. Two sets of flow states, corresponding to the upstream
and downstream sides of the discontinuity, are assigned to each of the shock-points located on either
side of the shock front. The downstream state and the shock speed are computed according to the
Rankine-Hugoniot jump relations and the fitted shock is allowed to move throughout a background
triangular mesh that covers the entire computational domain. At each time step, the shock line is
inserted into the background mesh while ensuring that the edges that make up the shock front are
also part of the triangular grid that covers the entire computational domain. The shock-insertion
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algorithm proposed in our previous work, see Paciorri and Bonfiglioli (2009, 2011), has recently been
reformulated and generalised by Zaide and Ollivier-Gooch (2014). The mesh modified by the shock-
insertion algorithm is what we refer to as the “shock-fitting” grid, which differs from the background
triangulation only in the neighbourhood of the shock front. The fitted shocks are treated as interior
boundaries by the eulfs shock-capturing code described in the previous section which is used to
solve the discretised governing equations in the smooth regions of the flow-field.

Numerical results
In this section we present numerical results for two different transonic flow configurations, one

external and one internal.
The external flow test-case is primarily aimed at demonstrating that shock-fitting is capable of

delivering accurate results even on very coarse grids. The internal flow case shows that the proposed
unstructured shock-fitting algorithm is capable of dealing with the complex shock topologies that are
encountered in turbo-machinery applications.

Both flow configurations examined here involve two-dimensional geometries. The three-dimensional
version of the present unstructured shock-fitting algorithm is conceptually identical to its two-dimensional
version described above and has already been applied, see Bonfiglioli et al. (2013), to the simulation
of supersonic and hypersonic flows featuring isolated as well as interacting shocks. The application
of the unstructured shock-fitting algorithm to three-dimensional turbo-machinery configurations is
however challenging from the mesh-generation viewpoint, since it requires to handle the interaction
of the fitted shock surfaces with the wetted surfaces of the turbo-machine. This is a feature which
is not currently available in the 3D algorithm and, therefore, the applications presented herein are
limited to two-dimensional configurations.

External, transonic flow past the NACA 0012 airfoil
The superior accuracy that fitted shock-waves deliver over captured ones is here illustrated by

reference to a well documented external flow test-case, namely the two-dimensional, inviscid, tran-
sonic flow past the NACA 0012 airfoil at α∞ = 0◦ degrees angle of incidence and free-stream Mach
number equal to M∞ = 0.80.

Reference solutions for this geometry and flow configuration have been obtained by Vassberg
and Jameson (2010) with three well-known flow solvers (FLO82, OVERFLOW and CFL3D) using a
family of 8 structured meshes with resolution up to 4096×4096 control volumes in each coordinate
direction, i.e. about 16 million cells, see Vassberg (2009). Such an extreme resolution has been
chosen in Vassberg and Jameson (2010) in order to analyse the asymptotic convergence properties of
different solvers on a specific inviscid, transonic problem. The reference solution we shall refer to in
the following has been obtained using Jameson’s FLO82 solver on the finest grid.

The unstructured shock-capturing calculation has been obtained using the grid shown in Fig. 2,
which features 9912 triangles and 5024 mesh-points, 77 of which are placed along the airfoil’s profile.
The shock-fitting grid (which uses the shock-capturing mesh as background triangulation) is made of
9982 triangles and 5078 mesh-points.

A first comparison between the shock-capturing and shock-fitting solutions is shown in Fig. 3,
where pressure iso-contour lines are displayed: it is evident that shock-fitting allows to obtain a much
more realistic shock-thickness than shock-capturing, using grids of almost identical spatial resolution.
The Cp distribution along the profile computed using unstructured shock-capturing and shock-fitting
is compared with the reference solution in Fig. 4. Not only the unstructured shock-capturing cal-
culation predicts an un-physically large shock-thickness, see Fig. 4(a), it also completely misses the
so-called Zierep (2003) singularity that occurs at the foot of the shock which, by contrast, is picked-
up by the unstructured shock-fitting and reference shock-capturing solutions. Figure 4(b) also reveals
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(a) Full computational domain. (b) Detail of the mesh around the profile.

Figure 2: NACA 0012 airfoil, α∞ = 0◦, M∞ = 0.80: grid used in the shock-capturing calculation.

that the unstructured shock-fitting calculation is free from the un-physical pre- and post-shock oscilla-
tions that plague the reference shock-capturing calculation computed on a grid featuring three orders
of magnitude more mesh-points. It also interesting to note, see Fig. 4(b), that the shock positions pre-
dicted by shock-fitting and the reference shock-capturing calculation differ by less than 0.005 chord
units. This result shows that fitting, rather than capturing, shock waves significantly improves the
performances of a gas-dynamic solver. Indeed, taking into account that using an efficient implemen-
tation, see Grottadaurea et al. (2011), the three-dimensional shock-fitting technique accounts for a
small fraction (10%− 20%) of the overall iteration cost, its superior computational efficiency should
be clear, in the sense that shock-fitting allows to obtain highly accurate solutions on (very) coarse
meshes. This was precisely the reason behind the development of the shock-fitting technique based
on structured meshes in the early CFD era. Shock-fitting was later abandoned when the improvements
in computer speed made fine-grid solutions more affordable and the quest for general purpose codes
clashed with a number of algorithmic complexities incurred by shock-fitting when used on structured
meshes.

Internal, transonic flow past the VKI LS-59 GT rotor blade
The Von Karman Institute gas turbine rotor blade (VKI LS-59) is a high loaded blade with a thick,

rounded trailing edge, as shown in Fig. 5. This blade has been extensively tested, both experimentally
by Kiock et al. (1986) and numerically, see e.g. Arnone et al. (1991); Arnone and Swanson (1993).
The computational domain is a slice, extracted from an infinite cascade, that encloses only one blade.
The upper and lower boundaries of the slice are drawn in such a way that the periodicity condition
can be imposed on these two boundaries. Total temperature, pressure and flow angle are prescribed
on the inlet boundary and static pressure on the outlet. The triangular mesh used in the present
unstructured, shock-capturing calculation is shown in Fig. 5: it is made of 13093 grid-points and
25350 triangles; 256 points are placed along the profile of the blade. Computations relative to an
isentropic exit Mach number of 1.2 are shown in Figs. 6 through 8. Figure 6 compares the density
iso-contour lines computed in the present unstructured shock-capturing and shock-fitting calculations
(shown, respectively, in Figs. 6(b) and 6(c)) with the result obtained by Arnone et al. (1991) using a
449×17 non-periodic C-type structured grid.
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(a) Shock-capturing solution. (b) Shock-fitting solution.

Figure 3: NACA 0012 airfoil, α∞ = 0◦, M∞ = 0.80: pressure iso-contour lines.

(a) Full profile. (b) Detail of the shock-foot region.

Figure 4: NACA 0012 airfoil, α∞ = 0◦, M∞ = 0.80: pressure coefficient distribution along the profile.

Concerning the two shock-capturing calculations, Figs. 6(a) and 6(b), there are noticeable dif-
ferences in the shock structure: the shock reflected off the suction side is better captured in the
unstructured calculation and also the trailing edge shock patterns are different. This is likely due
to differences in the mesh resolution between the structured and unstructured grids. However, also
the shock-capturing and shock-fitting calculations on the unstructured grid show noticeable differ-
ences in the trailing edge shock structure, even if the two triangular grids are nearly identical. The
aforementioned differences can be better seen in Fig. 7, which shows an enlarged view of the density
iso-contour lines in the trailing edge region for both unstructured-grid calculations: shock-capturing
in Fig. 7(a) and shock-fitting in Fig. 7(b). The key difference between these two solutions is the
much more pronounced unsteadiness of the shock-fitting solution, which suggests that it features a
reduced level of numerical viscosity, compared to the shock-capturing one. The entire shock topol-
ogy downstream of the trailing edge is consequently affected and it is therefore different in the two
sets of unstructured-grid calculations. As far as flow unsteadiness is concerned, it should be clear
from the algorithmic description, that the shock-fitting algorithm is inherently un-steady, since both
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Figure 5: VKI LS-59 GT rotor blade: computational domain and unstructured triangular mesh.

the mesh and solution change with (pseudo-)time. Whenever a steady solution to the discretised
governing equations exists, the mesh will reach a stationary configuration and the residuals of the
shock-capturing solver converge towards machine zero. This is clearly not the case for the present
test-case, which exhibits a certain amount of unsteadiness even in the unstructured shock-capturing
calculation. This is in contrast with the reference calculation, see Arnone et al. (1991), were conver-
gence to machine zero is reported. The temporal accuracy of the shock-fitting calculation presented
herein is limited to first order in time and a second-order-accurate version has only recently been
developed, see Bonfiglioli et al. (2014).

It is also worth mentioning that those discontinuities that are not fitted in the shock-fitting calcu-
lation can however be captured thanks to the use of a shock-capturing discretization away from the
fitted discontinuities. This is the case of the λ-shock structure that is visible in both sets of calculation
shown in Fig. 7.

Finally, a more quantitative comparison among the two sets of unstructured-grid calculations, the
reference structured-grid calculation and the available experimental data is given in Fig. 8, which
shows the isentropic Mach number distribution along the blade. Figure 8(a), which has been re-
printed from Arnone et al. (1991), shows the results of the reference calculation (Euler (no wedge)
is the one to compare with) and Fig. 8(b) shows the unstructured shock-capturing and shock-fitting
calculations compared against the experimental data. Not surprisingly, the two sets of unstructured-
grid calculations give identical Mis distributions on the pressure side and, on the suction side, up to the
point where the shock impinges on the blade; differences can be seen in the entire shock-downstream
region and are clearly due to the two different shock modelling practices.

CONCLUSIONS
Despite the fact that shock-fitting has for long been regarded as an obsolete numerical approach,

un-suitable to compute complex flows, our recent work has shown that fitting shocks on unstructured
grids allows to relieve most of the algorithmic difficulties that have contributed to the dismissal of the
shock-fitting technique in favour of the simpler shock-capturing paradigm. We hope that these results
will stimulate a revision of some common beliefs about the shock-fitting approach.
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(a) Re-printed from Arnone et al.
(1991).

(b) Present shock-capturing calcula-
tion.

(c) Present shock-fitting calculation.

Figure 6: VKI LS-59 GT rotor blade (Mis = 1.2): density iso-contours.

(a) Shock-capturing. (b) Shock-fitting.

Figure 7: VKI LS-59 GT rotor blade (Mis = 1.2): density iso-contours revealing the shock structure
in the trailing edge region; unstructured grid calculations.
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(a) Re-printed from Arnone et al. (1991).
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Figure 8: VKI LS-59 GT rotor blade (Mis = 1.2): isentropic Mach number distribution along the
blade.

In this paper, in particular, we have not only shown that unstructured shock-fitting retains the most
notable property also possessed by the shock-fitting technique originally developed for structured
mesh, i.e. remarkable accuracy even on coarse discretizations, but also that unstructured shock-fitting
allows to deal with the complex shock topologies that occur in transonic turbo-machinery flows much
more appropriately than it was possible with structured grids. It is also important to underline that
the unstructured shock-fitting approach is highly modular, in the sense that it can be interfaced with
different mesh generators and (shock-capturing) gas-dynamic solvers, all being treated as black boxes.
Flexibility has been gained thanks to the shift from the structured-grid framework traditionally used
with shock-fitting methods to the unstructured-grid one.

It is also evident, however, that supplementary features are needed for the proposed technique to
be applicable to real life turbo-machinery applications; these include: viscous and three-dimensional
effects. The three-dimensional version of the proposed unstructured shock-fitting algorithm has al-
ready been developed and published by the authors and has no conceptual differences with respect to
its two-dimensional version that has been illustrated in the present paper. The difficulties posed by the
addition of the third spatial dimension have to do with mesh generation along and around the fitted
shock surfaces and the handling of those shock surfaces that interact with solid walls or other shock
surfaces. These are, however, issues that are not specific to shock-fitting, but to mesh generation.
A fruitful collaboration with colleagues working on mesh generations is presently ongoing, and we
therefore believe that these difficulties will be mitigated or even completely overcame by developing
ad-hoc mesh generation tools. Even though not addressed by the authors, the interaction between a
fitted shock and a boundary-layer has already been dealt with in the structured-grid framework so that
its generalisation to unstructured grids should pose no major problem. Therefore, we are confident
that the use of the proposed unstructured shock-fitting approach might become, in a reasonable time
scale, a viable option for the numerical simulation of turbo-machinery flows.
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