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      ABSTRACT 
The flow field of a typical steam valve geometry used for large power stations is computed 

with CFD methods at different operation conditions. Unsteady CFD calculations using the 
Zonal-Forced-LES model are performed to model the flow instabilities and the dynamic 
forces. These time-dependent forces are transferred to highly non-linear time-dependent FEM 
calculations to analyse the vibration level generated by the dynamic forces.  

The flow analysis shows that wall jet separation, shear layer instabilities and acoustic 
modes contribute significantly to the dynamic steam forces at part load operation. Geometry 
modifications which affect these phenomena are presented and evaluated at different 
operation conditions. 

     NOMENCLATURE  
 
a Acceleration [m/s²] 
aref Reference acceleration [m/s²] 
cs Speed of sound [m/s] 
D Diameter [m] 
F Force [N] 
Fref Reference force [N] 
f Frequency [1/s] 
h Gap height [m] 
j Mass flux [kg/(m².s)]
j* Critical mass flux [kg/(m².s)]
l Lift of the valve plug [m] 
mሶ  Mass flow rate [kg/s] 

 

Ma Mach number [-] 
p Pressure [bar] 
pin Inlet pressure [bar] 
pout Outlet pressure [bar] 
pt,in Total inlet pressure [bar] 
pො Rel. pressure fluctuation [-] 
q Non dimensional mass flow [-] 
r Radius [m] 
St Strouhal number [-] 
Π Pressure ratio of the valve [-] 
Π୅୲୲ୟୡ୦ Pressure ratio of attachment [-] 
Πେ୭ୟ୬ୢୟ Pressure ratio of Coanda jet [-] 

 

     INTRODUCTION 
     The power output of steam turbine plants can be controlled by adjusting the pressure in the 
boiler and throttling the mass flow by steam turbine inlet valves. As the adjustment of the live steam 
pressure is slow and limited due to the characteristics of the boiler, inlet valves are always necessary 
to control the power output of a steam turbine. Due to large pressure drops and high mass flow 
rates, a large amount of energy is dissipated in the valve. Depending on the design of the valve a 
certain amount of the dissipated energy is converted to sound and vibration.  
At part load operation conditions, at which large pressure drops and still high mass flow rates exist, 
the dissipation is large. At these operation conditions undesired valve vibrations are reported. For 
instance, Zaryankin [20] investigated valve failures rates of steam turbine inlet valves. The analysis 
shows, that valves which are used in base load plants have the lowest failure rate. Turbine inlet 
valves, which are used in cogeneration plants operate more often in part load and have 
comparatively high mass flow rates due to steam extraction. According to Zaryankin [20] these 
valves have a failure rate which is 2 to 3 times higher than the failure rate of valves used in base 
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load plants. The highest failure rate is observed at steam turbines used in chemical plants and steel 
works which often operate in part load.   
As the amount of volatile renewable energy fed into the power grid increases, thermal power 
stations will have to operate more often in part load. So the operation conditions which are 
undesired in terms of valve vibration occur more often and research has to be conducted to reduce 
the valve vibrations at part load operation. Certain parts of steam valves can be damaged at these 
operation conditions. Kostyuk[8] et al. report destroyed nozzle boxes and valve seats. Zhang et al. 
[22] report of a valve stem rupture. 
     Early research on flow induced valve vibrations using scaled models was done by Heymann [6] 
in the seventies. Measurements in model valves show, that the sound generated by the valve 
depends on the flow topology and on the operation point. Two flow topologies are distinguished by 
Haymann. These are the attached flow topology and the detached flow topology. The detached flow 
generates a significantly higher sound level than the attached flow. The reason for the transition 
between the two topologies could not be clarified at that time. Later investigations by the Domnick 
et al. [3] of a similar valve geometry show, that the transition of the flow topology is related to the 
Coanda effect. It is also shown, that the flow topology correlates with the vibrational level of the 
steam valve. In case of the detached flow, the vibrations measured at the steam valve are 
significantly higher than in case of attached flow.  
Besides wall jet separation other fluid dynamic phenomena can cause undesired dynamic steam 
forces and vibration. Several researchers as Nakano [13], Ziada [23] and Widell [18] report of 
acoustic modes which are excited in valves and generate undesired vibration or noise. Depending 
on the geometry of the valve, different mechanisms exist, which can excite the mode. These can be 
for instance oblique or normal oscillating shocks, jet instabilities or fluid structure interaction.  
     Other researchers report that normal shocks, which exist at certain operation conditions in 
convergent-divergent valve gaps, can cause severe valve vibration if they start to oscillate. The 
investigations of Pluviose [15], Stastny [16] and Zhang [21] show that dynamic forces and pressure 
pulsations are significantly reduced if the shape of the valve gap is changed from convergent-
divergent to pure convergent. In this case the shock cannot exist in the valve gap where it can 
impress high dynamic forces directly to the valve plug.  
     If hemispherical shaped valve plugs are used, strong dynamic forces can arise due to asymmetric 
flow separations from the valve plug. Comprehensive experimental as well as numerical research on 
this topic is done by Morita et al. [12] who observed the transient behavior of the flow and 
determined the operational range at which the asymmetric flow separation occurs. Additionally 
Zanazzi [19] contributes to a better understanding of the flow field by conducting unsteady 
simulations in which the SAS turbulence model by Menter [11] is applied. Zhang and Engeda [21] 
compare a mushroom type valve plug to flat bottom valve plug and show that the flat bottom Valve 
plug is favorable in terms of dynamic load and vibration. 
     A further effect that can cause valve vibration is vortex shedding. Usually vortex shedding 
mechanism is coupled to another effect that triggers the separation of vortices. For instance Darwish 
and Bates [2] report of vibration in a steam check valve in which the vortex shedding is coupled to a 
torsional mode of the valve actor. Janzen [7] et al. report of noise and vibration problems caused by 
vortex shedding in a gate valve. In this case the vortex shedding is coupled with acoustic modes. 
     These examples show, that various mechanisms exist, that can cause valve vibration. In several 
cases two or more effects generating vibration coexist and amplify each other. Due to that 
comprehensive unsteady numerical simulations are necessary to capture the effects generating 
vibrations. 

     BASELINE DESIGN OF THE VALVE 
     The baseline design is a characteristic design of a steam valve as installed in large power 
stations. If this valve is operated in the admissible range of design mass flow, vibration can be 
clearly measured but the vibrational level does not exceed the acceptable level.  
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The structural dynamics are computed by ANSYS14. The FEM model includes the valve plug, 
the coupling and the valve actuator. As the bearings, which guide the valve stem and the valve plug, 
have a certain clearance, the plug and the stem can also be displaced in radial direction. This effect 
is modeled in the FEM calculations by defining contact surfaces. Additionally piston rings and a 
packing (I) exist in the valve, which impress frictional forces on the valve plug. These frictional 
forces are also modeled by contact surfaces. The spring package (H) is modeled by an analogous 
body. Due to the frictional effects and the contacts, the FEM model is nonlinear. Hence it is solved 
in the time domain. An implicit solver using the Newmark interpolation scheme is applied. A 
detailed description of the implicit numerical scheme is described by Chung and Hulbert [1]. The 
dependency of the elastic modulus on the temperature is accounted by defining temperature 
dependent material properties and a temperature distribution in the valve plug.  

     WALL JET SEPARATION 
     From operational experience it is known, that the valve discussed here, shows some vibration at 
low part load operation. This vibration is acceptable if the operation curve of the valve is within the 
admissible range. An example for this kind of vibration is given in fig. 2 which shows operational 
records of two power stations. It shows the normalized vibration, the pressure ratio and the lift of 
the valve plug while the power output of the plant is increased. At the beginning of the operational 
record, the pressure ratio and the lift are low and the vibration is high. During a constant increase of 
lift and pressure ratio the vibrational level is reduced suddenly. These transition points (TPs) can be 
reproduced in a single plant but they differ between power plants with different design flow rate.  

 
Fig. 2: Operational records showing transition points at partload operation 

 
     Steady state CFD analysis 
     Steady state CFD calculations, which are performed prior to the unsteady calculations show that 
two major flow topologies exist at part load operation in the steam valve diffuser. As in the case 
described by Heymann[6] the flow can be attached or detached. In case of the attached flow, the jet 
formed in the valve gap between the valve seat and the valve plug attaches to the seat and the sub-
sequent diffuser. In case of detached flow the jet is separated from the seat by an oblique shock and 
flows into the center of the diffuser. The oblique shock results from the under expansion of the su-
personic jet having expansion and recompression zones. At low overall pressure ratios the local 
pressure in the region of the valve seat is smaller than the pressure in the valve gap forming the jet. 
Hence the jet expands directly after the valve gap. Due to the nature of the supersonic jet, the pres-
sure in the first expansion zone drops below the pressure of the surrounding steam. This causes a 
subsequent recompression which forms a shock causing the separation if a certain degree of under 
expansion is exceeded. 
      The pressure ratio, at which the detached jet attaches, is determined in CFD calculations by in-
creasing the pressure ratio gradually at a constant lift of the plug. This procedure is repeated at dif-
ferent lifts. The results are plotted in fig. 3, which shows that the pressure ratio of attachment in-
creases with increasing lift of the valve plug. The pressure ratio of the valve is defined in eq. (1). 
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     Additionally, the operating curves of the two valves whose vibration is shown in fig. 2 are plot-
ted in fig. 5. The transitional points at which the vibration suddenly drops are demarked on these 
curves. As these points are close to the intersection with the line of attachment, the high vibrational 
level can be related to the detached jet and the low level can be related to the attached jet.  

 
Fig. 5: Comparison between topology prediction tool and measured transition points 

 
     Unsteady analysis 
     To clarify the effects generated by the pressure fluctuations, unsteady CFD simulations are per-
formed. The flow is investigated at 20% lift. The attached as well as the detached flow topology are 
analyzed. The dynamic forces generated by the flow are transferred to the FEM to investigate the 
vibrational behavior.  
  The unsteady investigation reveals that the attached and the detached flow topology can be subdi-
vided into sub-topologies. The sub-topologies, which depend on the pressure ratio, are shown in fig. 
6. At pressure ratios which are significantly higher than the pressure ratio of attachment the com-
pletely attached wall jet can be found. In this case the dynamic transverse forces which are shown in 
fig. 7 are low. If the pressure ratio is close to the pressure ratio of attachment, the entire jet is at-
tached, but a separation bubble appears. In this case the transverse forces are significantly higher 
than in the case of the completely attached wall jet. If the pressure ratio is beneath the pressure ratio 
of attachment, the jet detaches from the wall. Just beneath the pressure ratio of attachment the sepa-
rated jet reattaches asymmetrically to the wall of the valve diffuser. In this case the highest dynamic 
transverse forces can be found. The asymmetric pattern is caused by an asymmetric pressure distri-
bution at the valve seat. The jet tends to reattach in regions where the local pressure is slightly high-
er and causes thereby strong pressure fluctuations. In reverse the asymmetric flow pattern maintains 
the asymmetric pressure distribution. A more detailed discussion on the asymmetry can be found in 
Domnick et al. [4]. At pressure ratios significantly lower than the pressure ratio of attachment the 
jet remains detached and flows in the center of the diffuser. With increasing distance to the pressure 
ratio of attachment, the intensity of the dynamic transverse force decreases. The dynamic axial force 
shown in fig. 8 primary depends on the overall pressure ratio. With decreasing pressure ratio the 
dynamic axial force increases.  
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found. In addition the transverse forces are reduced in the two analyzed operating points by the im-
proved design. 

Fig. 17: RMS value of the vibrational accelera-
tion at the coupling of the design variants gener-

ated by the attached and the detached flow 

Fig. 18: RMS value of the vibrational accelera-
tion at the coupling of the baseline design and 
the improved design at two operating points 

     CONCLUSIONS 
     The major flow phenomena, generating pressure fluctuation and hence vibration at part load 
operation, are analyzed using CFD and FEM methods. The attachment of the wall jet in the steam 
diffuser predicted by CFD correlates with sudden drops in valve vibration observed in power 
stations. The attached wall jet is favorable as it causes less vibration. As the desired attachment of 
the wall jet is related to the Coanda effect, the relative wall curvature at the valve seat determines 
the attachment of the jet to the valve seat. Thus the attachment of the jet can be improved if the seat 
is less curved.  
     If the flow is attached, an acoustic mode contributes significantly to the axial forces and to the 
axial vibration of the valve stem. This mode excited by the shear layer in the valve diffuser 
impresses in the back cavity of the valve dynamic pressure forces on the valve plug. For attached 
flow the dynamic axial forces and the vibration can be reduced by acoustically improved plugs with 
large cross section connections to the back cavity. Also the excitation of the mode can be reduced 
by disturbing the shear layer that excites the mode in case of attached flow. But both methods of 
design improvement show significant less impact on the axial vibration if the flow is detached. So 
the crucial point in improving this valve geometry is the avoidance of the wall jet separation, which 
leads to undesired transverse vibration. If the attached flow is ensured in a wide operational range, 
shear layer disturbance and using acoustically improved plugs can provide less axial vibration. 
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