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ABSTRACT
To resolve secondary flows and wakes in turbomachinery measurements, reduction methods
capable of isolating the deterministic and stochastic components of a given signal must be im-
plemented. In the present study, two approaches are applied: a trigger-based phase-locked
ensemble averaging technique and a newly proposed method based on the deconvolution of the
signal in the frequency domain. While the former is used in numerous publications on the meas-
urement of secondary flows, the latter has – to these authors’ knowledge – not yet been used in
this context. Both data reduction techniques are outlined theoretically and applied to unsteady
pressure measurements in a multi-stage axial turbine. Results obtained from the proposed de-
convolution method are in good qualitative agreement with ensemble-averaged data. In some
cases, a quantitative discrepancy is shown, most likely caused by numerical errors. Nevertheless,
within certain boundaries the method is capable of isolating the deterministic signal including
non-rotationally harmonic components without the need for a trigger signal.

NOMENCLATURE
f frequency p̃ periodically fluctuating signal component
G generic signal spectrum p′ stochastically fluctuating signal component
g generic signal components T characteristic period
K number of ensemble traces thr threshold
P signal spectrum x threshold value
p (pressure) signal γ gain factor
p constant signal component ϕ phase

INTRODUCTION
Unsteady Flow in Turbomachinery
Over the last few years, the design process of turbomachinery components such as multi-stage

axial compressors and turbines has changed. While previously the design focused on the time aver-
aged steady-state flow field and design point operation of the compressor or turbine, new and more
powerful numerical methods made it possible to account specifically for unsteady flow effects and
off-design operation during the design process as well. This development has also been driven by the
requirements of the market, as modern gas turbines must be able to operate at part- and low-load con-
ditions while maintaining a high level of efficiency. Thus, the unsteady investigations of the flow field
as conducted by several authors (Meyer, 1958; Niehuis et al., 1990; Restemeier, 2012) and described
in a more general approach by Mailach (2010) needs to be validated by further measurements in order
to prove the ability of numerical methods to predict the unsteady flow correctly.

Simultaneously, the development of unsteady measurement techniques allows the recording of lar-
ger amounts of unsteady flow data in increasingly complex test set-ups. In order to obtain and analyse
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as much information as possible from unsteady measurements, and to reduce the data collected in
a way they can be handled more easily, several methods of data processing and data reduction can
be applied to the raw signals in order to account for the characteristics of different flow phenomena.
Methods to analyse the recorded signals mainly focus on harmonically periodic effects such as the
wakes of rotating blades (Gostelow, 1977). However, a number of non-harmonically occurring un-
steady effects like rotating stall in compressors and rotating instabilities due to windage in turbines
under low load conditions (Binner and Seume, 2014) can be investigated using different data analysis
techniques.

Time-Resolved Probe Measurements
As noted by many authors (e.g. Sieverding, 1985; Sharma et al., 1985; Mailach et al., 2004), the

flow in turbomachinery is highly unsteady, viscous and three-dimensional. Mailach et al. concludes
that the main source of unsteadiness in turbomachinery is the aerodynamic interaction between rotor
and stator blades. These unsteady effects are even more pronounced in conjunction with transonic
blade designs, as shock waves develop in the blade passage and near the trailing edge of the blades,
leading to an increasing unsteady interaction between blade rows (Bräunling, 2009; Rick, 2013). In
addition to the periodically alternating incidence angle at the blade leading edge, which causes an un-
steady pressure distribution on the profile itself, blade profile losses can also change due to transition
effects triggered by the unsteady flow influencing the profile boundary layer (Schlichting and Ger-
sten, 2006). Thus, the detailed knowledge of the behaviour and the development of the unsteady flow
between rotating blade rows is of great importance. Although, several measurement techniques like
hot-wire anemometry and different optical measurement methods have been developed and applied
to the measurement of the unsteady velocity distribution, the measurement of unsteady pressure dis-
tribution using fast response pressure probes is a well suited method to obtain information about the
unsteady flow field between blade rows. In many cases, the magnitude of the unsteady components
of the flow field is fairly small compared to the predominant steady components. This fact leads to
a critical signal-to-noise ratio in real applications, necessitating the application of different kinds of
filters and data reduction methods to the raw signal, as described below.

EXPERIMENTAL TEST SETUP
TFD Model Air Turbine Test Rig
The model air turbine test rig at the Institute of Turbomachinery and Fluid-Dynamics (TFD) is

used to collect the experimental data for the present work. The test rig consists of a turbine section
with a conventional steam turbine split-casing design, making it possible to install different types of
turbine configurations by changing the inner components like the rotor and the vane carrier.

The compressed air is provided by three screw compressors with a maximum mass flow rate of
9.2 kg/s and a maximum pressure ratio of 3.3. An automatic controller stabilising the operating point
of the turbine is used. Thus, it is possible to attain good operating point stability for measurements
such as complex steady as well as unsteady probe traverses. This leads to only small measurement
errors due to environmental changes of the measurement point and, thus the experimentally obtained
data can be considered reliable. Table 1 and 2 show an overview of the test rig’s maximum operating
parameters and characteristics.

The power generated by the turbine is dissipated using an electric direct current (DC) machine,
serving as a generator or motor, if needed. The DC-machine permits the independent adjustment
of turbine output power from the rotational speed. The rotational speed is measured by a torque
meter device as well as by a toothed wheel, providing a rotor-based trigger signal for unsteady flow
measurements. The mass flow is measured by a Venturi nozzle located upstream of the turbine inlet,
which has been calibrated at Deutscher Kalibrierdienst (DKD). Thermal effects are accounted for
by correcting the nozzle diameter for the temperature. As the blading section of the turbine has
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Table 1: Maximum operating conditions and inlet
parameters of the model air turbine test rig

Test rig parameters accuracy stability

max. rotational speed n 7500 rpm ±1 rpm ±12 rpm

max. mass flow rate ṁ 9.2 kg/s ±0.18 % ±0.53 %

max. inlet temperature Tin 450 K ±0.4 K ±0.8 K

inlet turbulence Tu 1.2 . . . 2 %

max. power output 1300 kW

Table 2: Turbine model specific para-
meters

Turbine parameters

avg. hub/shroud ratio 0.55

number of stages 7

max. inlet-to-outlet pressure ratio Π 3.3

max. inlet total pressure ptot,in 3.5 bar

an axial length of up to 1.1 m, up to seven turbine stages can be installed on the rotor. During the
measurements conducted for this study, the test rig was equipped with a seven stage high-pressure
steam turbine blading as shown in Fig. 1. Numerous experimental and numerical studies on this
blading have been conducted (Herzog et al., 2007). Additional information about the blading and
experimental results of part- and low load condition measurements can be found in Binner and Seume
(2014) and Binner (2011).

Figure 1: 7-stage turbine rotor and test
rig (Binner and Seume, 2014)

Figure 2: Four-hole probe ZI45 for unsteady flow
measurements (all dimensions in mm) (Rieß and
Braun, 2003)

Unsteady pressure probe ZI45
The unsteady multi-hole pressure probe ZI45 that was developed, tested, and calibrated at the

TFD by Rieß and Braun (2003) was used to conduct the measurements for the present study. The
ZI45 probe uses a cylindrical probe head geometry with a diameter of 4.5 mm. The probe is designed
as a 4-hole probe in order to obtain the unsteady three-dimensional flow vector. Cylindrical piezo-
resistive pressure transducers Kulite XCS-062 are used within the probe. The resonance frequency
(18 to 25 kHz) is well above the blade passing frequency of the measurement data presented below.
Figure 2 shows the overall dimensions of the probe head section. Further information about the
probe and the calibration process can be found in Rieß and Braun (2003) and Bubolz (2005). The
measurement uncertainty of the probe (approximately ±1.82 mbar) is at least an order of magnitude
smaller than the deterministic fluctuations analysed in this study.
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DATA REDUCTION METHODS
The raw time-resolved pressure traces (or any other time-resolved signal recorded by an appropri-

ate measurement device)

p(t) = p+ p̃(t) + p′(t) (1)

are defined as a superposition of three separate components: (1) a constant component, (2) a periodic-
ally fluctuating component, and (3) a stochastically fluctuating component. The aim of the following
data reduction methods is to isolate the deterministic signal pdet(t) = p+ p̃(t). As such, the methods
are intended primarily for the reduction of unsteady measurement data and analysis of the second-
ary flow structures therein. The data are not used to compute performance parameters, mass flow or
other derived quantities. The main advantage of the deconvolution method is its postulated ability to
reconstruct non-rotationally harmonic signal components.

Phase-Locked Ensemble Average
The phase-locked ensemble average (PLEA) as proposed by Gostelow (1977) is a well-known

and widely used method for the reduction of strongly periodic data. If the periodic fluctuation can be
regarded as stationary, ensemble averaging a number of K traces (each the duration of a multiple of
the characteristic period) will eliminate the stochastic component while preserving the deterministic
signal. It is crucial to ensure that individual ensemble members are in phase before averaging.

In practical terms, if a time-resolved pressure signal and a synchronous trigger signal (e.g. one
short rectangular pulse per revolution) are recorded, the pressure signal can be cut into traces corres-
ponding to one revolution of the turbine. Depending on the stability of the rotational speed, the traces
will contain varying numbers of discrete measurements. In that case, phase-locking can be achieved
by simple linear or nearest neighbour interpolation on a common grid.

The PLEA is computed according to

pdet(t) = lim
K→∞

1

K

K∑
k=1

p (t+ kT ) = p+ lim
K→∞

1

K

K∑
k=1

[p̃ (t+ kT ) + p′ (t+ kT )] (2)

∵ lim
K→∞

1

K

K∑
k=1

p′ (t+ kT )→ 0 , (3)

where T is a multiple of the characteristic period (e.g. corresponding to one revolution of the turbine
shaft). While the size of the ensemble, K, necessary to achieve satisfactory results depends on the
signal-to-noise ratio, it has been found that averaging 300 to 500 traces (i.e. revolutions) is sufficient
for the data used in this paper. Other authors have deemed ensembles of 100 (Ristic et al., 1999) or
even 50 traces (Restemeier, 2012) adequate, though 232 traces were used in the latter study.

The stochastic component is readily found by subtracting the deterministic component from the
phase-locked raw data traces

p′k = p′(t+ kT ) = p(t+ kT )− pdet(t) (4)

containing signal noise as well as measured fluctuations, e.g. turbulence.
The main drawback of the PLEA method is its limitation to the recovery of those periodic com-

ponents of the signal whose frequency is a (sub-)multiple of the characteristic frequency, e.g. the
rotational frequency. The deconvolution method proposed in the following section is an attempt to
resolve this problem.

4



Deconvolution
A method proposed by Camp and Shin (1995) and augmented by Lengani et al. (2012) can be

used to analyse the stochastic components of a given signal: After using the Fast-Fourier-Method to
transform the signal in the frequency domain, all (sub-)multiples of the rotational frequency are set to
zero as well as other distinctly periodic components (Lengani et al., 2012). The remaining “chopped”
spectrum may then be inversely Fourier-transformed or used to compute the integral turbulent length
scale via the autocorrelation function.

Algorithm
The deconvolution method proposed here is based on that approach as well as the CLEAN al-

gorithm first introduced by Högbom (1974) to achieve the opposite, i.e. the recovery of the periodic
signal component and, thus, posing an alternative to the PLEA without the need for a trigger signal.
Instead of eliminating the periodic components of the signal spectrum after transformation in the fre-
quency domain, they are extracted in an iterative process to assemble the deterministic signal. The
algorithm (cf. Fig. 3) implements the following steps:

1. Computation of the complex spectrum P(f) = F(p)(t) by Fourier transformation

2. Definition of a threshold value Pthr serving as abort criterion of the iteration loop

3. Computation of the absolute-valued spectrum Pabs(f) = |P(f)|

4. Identification of the frequency fmax of the maximum amplitude Pmax = max (Pabs(f)) as well
as the corresponding phase ϕmax

5. Multiplication of the maximum Amplitude Pmax and a pre-defined loop gain γ (0 < gain ≤ 1)

6. Formation of a generic cosine signal gi(t) of the same length as the original noisy signal, amp-
litude γPmax, and Phase ϕmax, where i denotes the loop counter

7. Fourier-Transformation of the generic signal Gi(f) = F (gi) (t)

8. Subtraction of the spectra P′
abs(f) = Pabs(f)−Gi(f) while eliminating negative values by set-

ting them to 0

9. Iteration by defining Pabs := P′
abs and continuing with item 3, while the maximum of P′

abs is
less than the threshold value defined above

10. Computation of pdet =
∑

i gi(t) if max (P′
max(f)) < Pthr

Ideally, the remaining spectrum would contain the intermittent signal components with artefacts due
to the leakage-effect of periodic component frequencies eliminated. Depending on the choice of
the threshold value, the reassembled signal contains all deterministic periodic components of the raw
signal including the constant component. Provided all periodic component frequencies of the recorded
signal are a (sub-)multiple of the characteristic frequency, the deconvolved signal is equivalent to the
ensemble-averaged signal. A comparison of both methods, based on a generic signal, is made in the
following section.

The iterative process in the frequency domain is illustrated in Fig. 4. The initial absolute-valued
spectrum Pabs(f) of a generic signal (cf. Fig. 5) is plotted in the uppermost graph, the largest signal
component being the constant pressure at 0 Hz which, due to the logarithmic scale, is not visible.
There are several periodic components above the dashed threshold, but there are also some spurious
components. These are not actually periodic components but side lobes resulting from the FFT win-
dow function. When the constant component is processed during the first (or the first few) iterations,
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these side lobes (and those of other signal components) are removed (item 8), hence the iterative
process. Gradually, all periodic components above the threshold value are processed and the “clean”
signal is compiled.

Noise of the same frequency as each of the periodic signal components contributes to the amp-
litude of the initial signal spectrum. To ensure that no signal component below the threshold value is
processed, the loop gain would have to be infinitesimal (Högbom, 1974). This however is not prac-
tical so that a value of γ = 0.3 . . . 1 is chosen. If the gain factor is chosen to be unity, erroneous
components contained in the signal at the periodic frequencies, i.e. noise or side lobes resulting from
the FFT, are processed as part of the deterministic signal and contribute to its amplitude.

Start

Yabs(fmax > Pthres)

P (f) = F(p)(t)

Pabs(f) = |P (f)|

Pabs(fmax) = max (Pabs(f))

ϕmax = arg (P (fmax))

Gi(f) = F(gi)(t)

Pabs,new(f0) < 0

Pabs,new(f0) := 0

Pabs(f) := Pabs,new(f)

p(t)

Ythres

Gain γ

gi(t) = γ · Pabs(fmax) · . . .
cos (2πfmaxt+ ϕmax)

true

false

pdet(t) =
∑

i gi(t)

Pabs,new(f)

= Pabs(f)−Gi(f)

Pabs(f
′
max) = max (Pabs(f))

ϕmax = arg (P (f ′max))

End
fmax := f ′max

Figure 3: Flowchart of the deconvolution algorithm
Figure 4: Deconvolution iterations
in the frequency domain

Abort Criterion
A critical step of the algorithm is finding an appropriate threshold value to define the abort cri-

terion in item 2. In the present study, two approaches were used: manual definition of a constant
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threshold value and various multiples of the root mean square of the zero-centered signal spectrum

xthr = α ·

√∑N
i=1 (Fi (p(t)− p(t)))2

N
, (5)

where xthr denotes the threshold value and α is an arbitrary factor. Other approaches are conceivable,
such as an iterative re-definition of the threshold value in the deconvolution loop and definitions based
on the relative power extracted from the original signal’s autospectrum and may be implemented in
further studies.

Comparison of Methods
The quantitative performance of both methods is compared, by using them to reduce the data of a

generic signal. The signal is composed of a constant component, sine waves (frequencies similar to the
rotational and blade passing frequencies of the measurement data presented below), and a triangular
pulse (with a frequency half that of the assumed blade passing frequency) and superimposed with
normally distributed random noise. The signal, its trace without noise and the PLEA as well as the
deconvolution of the data are plotted in Fig. 5. The length of the deconvolved signal is identical to the
original signal. The plotted trace represents approximately the same period as the PLEA, but is taken
from the middle of the deconvolved signal.

Figure 5: Generic signal with superimposed, normally distributed noise reduced by PLEA
(above) and deconvolution (below).

It is clear, that the deconvolution method is capable of reassembling the deterministic signal in
this generic case. To obtain a quantitative measure of the deviation of the reduced signals from the
clean signal, the latter is subtracted from the former and the root mean square of the remainder is
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Figure 6: FFT spectrum of the noisy generic
signal.

Figure 7: FFT spectrum of a time-resolved
signal recorded with the ZI45 probe.

computed. The result is normalised by the root mean square of the noise (i.e. the difference between
the noisy and the clean signal). The relative deviation of the PLEA is 4.15 %, while the deviation of
the deconvolved signal is 1.52 % when evaluating the entire length of the signal, i.e. the same length
as the original trace. The PLEA was computed from ensembles of 580 traces and the same data,
though not phase-locked, was used for the deconvolution. Using larger ensembles of approximately
2900 traces reduces the PLEA deviation to less than 2 %.

Due to the limited resolution of numerical systems, adding the sinusoidal components of the
deconvolution leads to “interference” effects. As a result, the deconvolved signal deviates strongly
from the original signal near the beginning and end. When the relative deviation is computed for
the deconvolved trace plotted in Fig. 5, it is reduced to 1.37 %. Increasing the signal length has the
unfavourable side effect of intensifying this effect.

Another drawback of the proposed method in comparison to PLEA is a longer computation time.
If implemented efficiently, the PLEA may need very little time even for large quantities of data. The
computation time of the deconvolution, due to its iterative nature and use of Fourier transformations,
exceeds that needed for PLEA—at times by far. However, the time needed is dependent on the nature
of the signal as well as the selected threshold criterion. For the generic signal presented in Fig. 5, the
reduction by deconvolution takes approximately ten times as long as the reduction by PLEA.

While a generic signal offers the opportunity to compare the reduced signals to a known “clean”
signal, the superimposed noise does not mirror the conditions of actual measurement data. The spec-
trum of the generic signal (Fig. 6) illustrates the inadequacy of normally distributed white noise. The
identification of periodic components is fairly trivial. Hence, the method is applied to measured data
in the following section in order to determine its performance in realistic applications.

APPLICATION TO MEASURED DATA
The Fourier spectra of measured time-resolved data are generally more complex than the generic

signal spectrum (cf. Fig. 6 and Fig. 7). Therefore the identification of deterministic components
is not as straightforward. In order to demonstrate the applicability, as well as the limitations of the
deconvolution method when used on measurement data, a set of time-resolved pressure measurements
were recorded aft of the stage 7 rotor of the test turbine described above.

The probe can be calibrated to measure the three-dimensional flow vector, but any further calibra-
tion has been omitted to avoid any additional sources of uncertainty as the flow vector is not relevant
in this case. The deterministic spectrum is expected to be dominated by wake structures at blade
passing frequency with some influence of the rotational frequency. No periodic components with
frequencies other than (sub-)multiples of the rotational frequencies are expected to have significant
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influence. Hence, ensemble averaging and deconvolution are expected to yield similar results for the
same data.

The data was recorded at 200 kS/s for 5 seconds using synchronised sampling of the four probe
channels as well as one trigger signal. Though it is not a prerequisite for the deconvolution method, the
trigger signal can be used to cut the reassembled signal into sections corresponding to approximately
one revolution of the rotor. For direct comparison with PLEA results, the obtained sections are then
phase-locked by interpolation.

Figure 8 shows the comparison of PLEA and deconvolved signal reassembly at various radial
positions in the measurement plane. Different abort criteria have been used for the deconvolution
algorithm, each based empirically on the signal type and its specific signal-to-noise ratio. The results
were obtained using two predefined, constant abort criteria and one derived from the signal. The latter
threshold corresponds to 5 ·RMS (F(p)(t)) in the case denoted auto. More than 500 revolutions were
used to obtain the PLEA in all cases.
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Figure 8: Reduction of experimental data by PLEA and deconvolution at approximately 99 %,
65 %, 57.5 %, and 50 % (top left, bottom left, top right, bottom right) relative channel height.

The four plots represent the reduced signals at approximately 50 %, 57.5 %, 65 %, and 99 % re-
lative channel height. The reduction results of the sinusoidal signals at 50 % and 65 % correspond
well with the PLEA result of the same data. The deconvolved signal at 99 % shows larger deviations
from the PLEA. The result is, however, dependent on the abort criterion. The earliest abort of the
deconvolution loop produces the best result in this case.

The grey area represents the magnitude of the stochastic signal components, i.e. the intermittent
flow phenomena, turbulence, and noise. These values are based on the PLEA and represent the
standard deviation of the noise computed from all phase-locked traces as a function of the rotor phase.

Contour plots of the entire radial traverse data reduced by deconvolution and PLEA are plotted in
Fig. 9 and 10, respectively. The difference of both is plotted in Fig. 11; in most areas the difference
is less than ±10 %. The results indicate qualitative agreement of the two methods in respect to width
and phase of the wakes as well as the absence of non-harmonic fluctuating components. The most
notable difference is the reduced signal at approximately 57.5 % relative channel height (cf. Fig. 8,
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top right). The error is a result of “interference” effects caused by limited numerical resolution of the
frequency of signal components. Small differences of the frequencies of the generic signals gi lead to
errors in both the high and low frequency fluctuations. The seemingly constant error is most likely a
result of a spurious low frequency fluctuation in the deconvolved signal.
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Figure 9: Polar contour plot of deconvolved
pressure signals at various radial positions.
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Figure 10: Polar contour plot of the PLEA of the
same data used for the deconvolution in Fig. 9.

0 1 2 3 4 5 6

0%

25%

50%

75%

Blade passages

R
el
.
ch

an
n
el

h
ei
g
h
t

−0.1

0

0.1

0.3

0.4

0.6

p
D

e
c
o
n
−
p
P
L
E
A

p
m

a
x
−
p
m

in
/[
−
]

Figure 11: Polar contour plot of the of the difference of the data in Fig. 9 and 10.

CONCLUSIONS
The deconvolution data reduction method is proposed as an alternative to the phase-locked en-

semble averaging method (PLEA) for the reduction of time-resolved turbomachinery measurements.
The method makes the reassembly of deterministic (i.e. periodic) signal components from noisy raw
signals possible without the necessity for a trigger signal.

Adequacy of the deconvolution method has been shown in comparison with PLEA results when
applied to generic signals and pressure measurement data. For generic data sets with normally dis-
tributed noise, deconvolution proves to be more accurate than PLEA in the reassembly of the determ-
inistic signal components. When applied to noisy measurement data, problems arise from the limited
resolution of discrete numerical spectra as the reassembled signal components create interference-like
effects when added. The problem of defining a threshold value for the abort criterion of the deconvo-
lution iteration is approached by defining constant values and multiples of the root mean squares of
the signal spectra. A potential source of errors lies in insufficient stability of the rotational speed. Its
maximum influence can be quantified if the rotational frequency deviation is known. In most cases it
can be expected to be small as high sampling rates entail short sampling times.

The deconvolution method is theoretically able to reassemble rotationally harmonic and, in con-
trast to PLEA, non-harmonic signal components as long as they are periodic. While the reassembly
of rotationally harmonic components has been shown in comparison to PLEA and application to
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measurement data, the feasibility of non-harmonic component reassembly has yet to be shown by ap-
plication on appropriate measurement data in a next step. The method is well suited for the validation
of PLEA results or the reduction of data recorded without synchronous trigger signals. It allows the
quantification of target values such as the width of wake structures which cannot be easily derived
from spectral information directly.
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