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ABSTRACT
The aeroacoustic analogy is the hybrid technique most used to predict acoustic noise of open
rotor turbo-machines. However it is not appropriate to turbo-machines operating in confined
spaces - where the diffractions, reflections and near-field flow effects can not be neglected. To
overcome this issue, acoustic sources are propagated using linearized Euler equation and rotor
motion is taken into account by using a sliding mesh method. This technique allows relative
sliding of one grid adjacent to another grid. In addition, we propose a high-order finite volume
solver (based on Moving Least Squares approximation MLS), which works on unstructured
grid, in order to address most of the industrial applications and their complex geometries. In
this paper, two families of MLS-based sliding mesh method are presented. A comparison be-
tween the accuracy of the different sliding mesh approaches is made by using a theoretical
acoustic benchmark.

NOMENCLATURE
ρ0 Mean flow density. V0V0V0 Mean flow velocity.
u0 Axial mean flow velocity. VrelVrelVrel Grid velocity
urel Axial grid velocity. Tm Medium cell size.
v0 Average value of transversal flow velocity. xIxIxI Position vector of the I centroid.
vrel Transversal grid velocity. ΩxxxI Vicinity of xxxI .
p0 Mean flow pressure. S(I) Neighborhood (or Stencil) of xxxI .
UUU Conservative variable vector. u(xxx) Conservative variable.
δρ Flow density fluctuation. û(xxx)|I Approximation of u in the vanicity of xIxIxI .
δu Axial flow velocity fluctuation. J The Cells inside the stencil centered on xIxIxI .
δv Transversal flow velocity fluctuation. uJ Conservative variable vector at the J centroid.
δp Flow pressure fluctuation. NJ

[xxxI ]
(xxx) Shape function of the J centroid centered on xIxIxI .

γ Adiabatic index. nmin Minimum number of point in the stencil.
I Cell Identifier. p Additional point in the stencil.
AI Area of the I cell. nt Total number of point in the stencil.
LI Contour length of the I cell. W 2

e ,W
1
e 2D and 1D exponential weight function.

FFF Vector of flux. xI Axial coordinate of the I cell.
nP Normal vector of the edge at point P . yJ Transversal coordinate of the J cell.
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xxxJ Position vector of the J centroid. Nc Total number of cell in the domain.
xJ , yJ coordinates of the J cell. ϵP,I Difference between pnumI and pexI
dm Smoothing length pexI Exact pressure at the I centroid.
κκκ Shape parameters vector. pnumI Numerical pressure at the I centroid.
κx, κy Axial and Transversal shape parameter. A Area of the domain.

Transversal shape parameter. µIJ Pseudo mass matrix element’s.
xS , yS Axial and Transversal coordinate M Pseudo mass matrix.

of the source. RRR,uuu Space residual vector of the
xR, yR Axial and Transversal coordinate one-variable system and vector of

of the moving grid center. one-variable values at centroids.
d1, d2 Fixed grid and moving grid diameter. uI Value of a variable at the I centroid.
UUU

(R)
P ,UUU

(L)
P Extrapolated left and right variables vector. ω Adimensional rotational velocity.

eeek, λk Eigenvectors and eigenvalues F̂̂F̂F Approximate Riemann Solver.
of the Roe matrix us Axial mean shear flow velocity

αk Wave at inter cell boundary Ms Maximum Mach number
c∞,ρ∞,1/γ∞ Velocity, density and pressure scale r Radial distance to the Domain center
ωn Angular frequency of Monopole source L2(p) Quadratic mean errors of pressure
ϵ Amplitude of monopole source L∞(p) Maximum error of pressure

INTRODUCTION

In Aeroacoustics, two computational approaches are possible: the direct and the hybrid approach.
Currently, the most used approach is the hybrid method, especially in the presence of complex geome-
tries (rotor/stator interactions, fans and etc.). It consists of separating the aerodynamic contribution
from the acoustic one. Thus, the computational constraints and time are considerably reduced. This
is the approach adopted in this work. The aeroacoustic analogy is the hybrid technique most used
to predict the acoustic noise of open rotor turbo-machines. However, it is not appropriate to turbo-
machines operating in confined spaces - where the diffractions, reflections and near-field flow effects
can not be neglected. To overcome this issue, acoustic sources are propagated using Linearized Euler
Equation (LEE) . In addition to the use of LEE, the main issue in this work is to consider the rotor
motion into the propagation field. One of the numerical technique widely used is the sliding mesh
method.

Illustration of the sliding mesh concept.
The moving grid slide over the fixed grid

This technique allows relative sliding from one grid
adjacent to another grid. In the case of turboma-
chinery, one of the grids is related to the stator
(fixed) and the other is related to the rotor (mov-
ing). Therefore, non-matching cells may appear at
the interface between static and moving grids. As
shown in Fig. 1, this situation introduces a problem
of interpolation. In addition to that, when a high-
order method is applied, the interpolation scheme
used in the sliding mesh model needs to present at
least the same order of convergence than the numer-
ical scheme, in order to prevent loss of accuracy.

A high order (> 3) discontinuous Galerkin method with sliding mesh capabilities was proposed by
Ferrer and Willden [2012]. In this work, it is presented a sliding mesh model based on the use of
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Moving Least Squares (MLS) approximants. A high-order finite volume method is applied and it
computes the derivatives of the Taylor’s expansion in each control volume using MLS approximants.
In addition, this new sliding mesh model fits naturally in a high-order finite volume framework for the
computation of acoustic wave propagation into turbomachinery. Using a numerical benchmark test,
four different approaches for the transmission of information from one grid to another will be studied.

1 NUMERICAL METHODS

1.1 General framework:

Governing equations: We consider the behaviour of small acoustic perturbationsUUU = [δρ, ρ0δu, ρ0
δv, δp]T on top of a steady mean flow U0U0U0 = [ρ0, u0, v0, p0]

T by using Linearized Euler Equation LEE.
To achieve numerical stability, the equations are written in a conservative form, as following:

∂UUU

∂t
+

∂EEE

∂x
+

∂FFF

∂y
+HHH = SSS (1)

where EEE and FFF are the flux vectors. SSS represents a possible source term. The vector HHH contains
the refraction terms (It is equal to zero if the mean flow is uniform). Complete expressions of the
vectors are given in Appendix 1. To take into account the motion of the grid we write the governing
equation in an Arbitrary Lagrangian Eulerian (ALE) setting. In other words, we substract the grid
velocity VrelVrelVrel = [urel, vrel]

T from mean flow velocity V0V0V0 = [u0, v0]
T . The cases VrelVrelVrel = V0V0V0 corresponds

to a Lagrangian system, and VrelVrelVrel = 000 is a Eulerian one. In the present formulation, VrelVrelVrel is arbitrarily
specified.

Spatial discretization approach: To discretize this problem we use a cell-centered finite volume
(FV) method on triangular unstructured grid. Let’s consider FFF=(EEE,FFF )T . The integration of Eqn. (1)
into a control surface AI gives:

1

AI

∫
AI

∂UUU

∂t
ds︸ ︷︷ ︸

A

= − 1

AI

∫
AI

∇∇∇ ·FFF ds︸ ︷︷ ︸
B

+
1

AI

∫
AI

(SSS −HHH) ds︸ ︷︷ ︸
C

(2)

b b bc
ut

RL

P
nP

bc

bc

bc

rs

Fig. 1: Flux approximation
at the P-point

Convective flux approximation: The surface integration of
convective flux (Eqn.(2)) is transformed by the use of diver-
gence theorem to contour integration :∫

AI

∇∇∇ ·FFF ds =
∮
LI

FFF · nnn dl (3)

Therefore, the finite volume method lead us to a Riemann prob-
lem for convective flux estimation at each integration point of
inter-cell boundary LI . Let’s consider P an integration point
which belong to an inter-cell boundary. As it is shown in Fig.
1, the global approach for the evaluation of flux at the P -point
is the following:

– First, we extrapolate variables from the left centroid (L) and the right centroid (R) to the P -point
by using a high order reconstruction which will be developed in the next section.

– Secondly, the extrapolated left UUU (L)
P and right UUU (R)

P states at the edge integration point are used as
input data for an approximate Riemann solver : FFF(UUUP ) · nnnP ≈ F̂̂F̂F (UUU

(L)
P ,UUU

(R)
P ,nnnP )
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Approximate Riemann solver in ALE setting: For the sake of accuracy, Roe’s approximate Rie-
mann solver has been selected among other (Rusanov, FVS, LLF ...) to carry out the numerical
simulations using moving grids :

F̂̂F̂F (UUU
(L)
P ,UUU

(R)
P ,nnnP ) =

1

2

[
FFF(UUU (R)

P ) +FFF(UUU (L)
P )

]
· nnnP − 1

2

4∑
k=1

α̃k|λ̃k|ẽk (4)

Where eeek and λk are respectively the eigenvector and the eigenvalues of the Roe’s matrix. αk represent
the wave strengths along the eigenvector axes. It is remarkable that the eigenvalues of the Roe’s matrix
(which match to the wave speeds along eigenvector axes) ”feel” the motion of the grid. In 2D the set
of eigenvalues becomes λ̃1, λ̃2, λ̃3, λ̃4 = V P

0,n − V P
rel,n + c0, x− V P

rel,n − c0, V
P
0,n − V P

rel,n, V
P
0,n − V P

rel,n

where V P
0,n and V P

rel,n represent, respectively, the normal flow velocity and the normal grid velocity at
cell interface boundary. The wave strengths and the eigenvectors remain unchanged with respect to a
static mesh formulation. For more detail information about the Roe’s in ALE setting please check on
Trepanier et al. [1991] and Roe. [1981] publication.

1.2 High order reconstruction using MLS approximation

Estimation of high order derivatives of Taylor’s expansion: The main difficulty in extrapolating
variables from the centroid to the gauss node is estimating the higher order derivatives of Taylor’s
expansion. We overcome this difficulty by using the Moving Least Squares (MLS) approximation.
For each cell (I), we start from a high-order representation of a variable u(xxx) in the vicinity of xIxIxI ,
given by:

û(xxx)|I =
∑

J∈S(I)
NJ

[xIxIxI ]
(xxx) · uJ (5)

where S(I) = {J ∈ N, xJxJxJ ∈ ΩxxxI} is the stencil of the I cell (composed by the I cell and its neighbor-
hood, see Fig. 2), NJ

[xxxI ]
(xxx) is the shape function associated to the J cell obtained by using a weighted

least-squares fitting procedure centred on xIxIxI . And uJ is the variable at the centroid of the J cell.
Then, we use this representation of the solution to compute higher order derivatives. The shape func-
tions are related to the grid topology. For a non-deforming grid, the shape function and its derivatives
are calculated just once at the beginning of computation. We refer the intersted reader to Liu et al.
[1997] and Cueto-Felgueroso et al. [2006, 2007].

Fig. 2: MLS 5th order scheme stencil
(4th order reconstruction)

nmin = 15 , p = 4

Stencil size: In this work, we use an uniform stencil
size: ∀i, card(S(I)) = nt. The minimum number of points
in the stencil corresponds to the dimension of the polyno-
mial basis used in the weighted least-squares fitting pro-
cedure. It is given by (in 2D) nmin = (ord+ 1)(ord+ 2)/2

where ord is the reconstruction order. If nt = nmin, the
FV-MLS scheme becomes unstable. To solve this prob-
lem, we introduce an additional number of points p such
as nt = nmin + p. It was observed that a p too large in-
duces too much dissipation. This parameter depends on
the reconstruction order and the quality of the grid.
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Fig. 3: Representation of the 1D-exponential
weight function for different values of κx.

Weight function: In order to ponderate the values
of each centroid inside the stencil, a weight func-
tion is required. Here, we use the 1D-exponential
weight function W 1

exp represented by Fig. 3,
which is well suited for LEE and unstructured
grids:

W (xJ − xI , κx) =
e−(

s
c)

2

− e−(
dm
c )

2

1− e−(
dm
c )

2 (6)

where s = |xJ − xI |, j = 1, . . . , nx, dm =
2max (|xJ − xI |) and c = dm

κx
. xI is the x-

coordinate of the I-cell centroid, κx is a shape pa-
rameter and dm is the smoothing length.We recom-
mend a lecture of the book of Liu [2003] for more
details. The 2D-exponential W 2

exp is obtained by
multiplying two 1D-exponentials W 1

exp:

W 2
e (xJxJxJ − xIxIxI ,κκκ) = W 1

e (xJ − xI , κx) ·W 1
e (yJ − yI , κy) (7)

The dispersion and dissipation characteristics of the FV-MLS method are strongly related to the choice
of the shape parameters κx and κy. We refer the reader to Nogueira et al. [2010]. In the case of strongly
directional node distribution the 1D-shape parameters could be different. In this work we use a faintly
skewed unstructured grid, so: κx = κy.

 0

 500

 1000

 1500

 2000

 0  500  1000  1500  2000

N
c

Nc

Fig. 4: Circular computational domain of
Nc = 2034 cells without sliding mesh. The
numerotation of cells start from the center
of the grid with a distance criterium .

Temporal term treatment: Using MLS approxi-
mants (Eqn. (5)), a development of time derivative
integration (Part A of Eqn. (2)) for a conservative vari-
able show us:

∫
AI

∂u

∂t

∣∣∣∣∣
I

ds = AI

∑
J∈S(I)

µIJ
∂uJ

∂t
(8)

where,

µIJ =
1

AI

∫
AI

NJ
[xxxI ]

(xxx)ds (9)

So, the finite volume discretisation of 2D-LEE into a
cell I gives:

∑
J∈S(I)

µIJ
∂uJ

∂t
= s̄I −

1

AI

3∑
i=1

Ng∑
j=1

FFF ij · nnniwij︸ ︷︷ ︸
R(uI)

(10)

Finally, the general representation of the system to be solved for a variable u is:

M · ∂u
uu

∂t
= RRR (11)

where M = {µIJ}1≤(I,J)≤Nc , uuu = [u1, ..., uNc ]
T and RRR = [R(u1), ..., R(uNc)]

T . M is called pseudo
mass matrix which expresses the relationship between the I cells and their nearest neighbors and RRR is
the residual term vector. We can clearly see in Fig. 4 that M is a square matrix of size Nc.
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1.3 MLS-based sliding mesh interface

The sliding takes place on a line that is called interface. Note that in practice, the interface is
composed of two coincident edges. One of them belongs to the fixed grid and the other one to the
moving mesh. As the moving grid slides over the fixed grid, the mesh is no longer conformal at the
interface.

Transmission of information: We present two different approaches based on MLS approximation
for the transmission of information from one grid to another. Let us consider a I cell on the interface:
Intersection approach: The flux at the interface edge of the I cell is split between the cell having an
interface edge coincident. This procedure is illustrated in Fig. 5-A. The computation of the edge
intersection introduces additional complexity in the coding as well as in the computing time.
Halo cell approach: Here, we create a halo-cell as a specular image of the I cell. This is schemat-
ically presented in Fig. 5-B. The MLS approximation in the vicinity of the halo cell (Eqn. (5)) is
performed by using the stencil of the closest cell. But the computation of the shape function must be
centered at the halo cell centroid. Then, the extrapolation of variables is done as usual using the new
MLS approximation. However, this technique induces an error of mass conservation, but numerical
experiments have shown that is of the same order than the variable error.

Stencil used at the interface: Two kind of stencil has been tested:
Full stencil: The total stencil of the I cell is computed at each time step by merging stencils of cell I
and those cells having an interface edge coincident with cell I. As the stencil topology changes, the
MLS shape functions and its derivatives must also be re-calculated at each time step. This procedure
is performed on the interface cells and also on the cells near the interface. Finally, the full stencil
formulation leads to a non-negligible additional computational cost. The final stencil of cell I is
shown in Fig. 5-A and 5-B.
Half stencil: In order to avoid both the search of neighbors and the computation of the MLS shape
functions at each time step, we suggest to employ a biased stencil, taking in account only cells from
the grid in which the cell is placed (Fig. 5-A et 5-B). This half-stencil approach is expected to be less
accurate than its full stencil counterpart because the computational stencil of cell I is not centred.

The ways to transfer information and compute the stencil at the interface leads us to four methods:

1-Full stencil intersections (FSI): Fig. 5-A. 3-Half stencil intersections (HSI): Fig. 5-A.
2-Full stencil halo cell (FSH): Fig. 5-B. 4-Half stencil halo cell (HSH): Fig. 5-B.

A) B) Interface

Intersected cells Halo cell

Central cell (I)

Half Stencil

Flux

Full Stencil

Figure 5: The four MLS-based sliding mesh interface approaches
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2 NUMERICAL VALIDATION

2.1 Benchmark description

Acoustic pulse problem: The problem concerns the propagation of a Gaussian pulse using LEE.
This is done for zero mean flow and constant mean density and pressure : U0 = [1, 0, 0, 1/γ]. The
source term, introduced in Eqn. 1 at t = 0, is:

SSS(x, y) = e
−
ln2

b2
r
× [1 0 0 1]T (12)

where r = [(x− xs)
2 + (y − ys)

2]
1/2 is the radial distance to the domain’s center. The half-width

of the Gaussian pulse is set at b = 3. In what follows, all variables are nondimensionalized with
the following reference scales: c∞ for the velocity scale, ρ∞ for the density scale, 1/γ∞ for the
pressure scale and Tm for the length scale where Tm is the medium cell size. The analytical solution
of Gaussian pulse propagation can be easily calculated. Please see Bogey and Bailly [2002] and Tam
and Webb [1993] for details.

Fig. 6: Computational Domain (Nc = 4090)

Computational domain: According to Fig. 6,
the computational domain is divided into two grids:

1. A circular fixed grid of diameter d1 = 100

centred at S(xS = 0, yS = 0).
2. A circular sliding grid of diameter d2 = 20

centered at R(xR = 0, yR = 20) which rotates
around its center with a rotational velocity ω.

The source is located at S(0, 0). In order to perform
a non-axisymmetric benchmark, the moving grid is
not centered on the source (yS ̸= yR).

Boundary condition: At the interface, we test the
different MLS-based sliding mesh interfaces meth-
ods. At the outer boundaries of the domain, we em-
ploy an upwinding technique used by Bernacki et al. [2006] to select only outgoing waves. This kind
of absorbing boundary condition is not the purpose of this paper.So, we refer the reader to Khelladi
et al. [2011] and Nogueira et al. [2009] for detail information.

2.2 Implementation aspects

MLS parameter setting : To reach 4th order of acuracy, we need a 3rd order reconstruction. There-
fore, the shape function derivatives are pushed until 3rd order and then a minimum of nmin = 10 cells
in the stencil surrounding the active cell are used. We add 4 points more (p = 4) in the stencil in order
to have a numerically stable scheme. Finally nt = 14. The shape parameters of MLS are kx = ky = 5.
This choice is a good compromise of dispersion and dissipation.

Numerical integrations: It is well known that if one wants to preserve the targeted order of ac-
curacy of the finite volume scheme, all the intermediate numerical integrations or differentiations
should be estimated at least with the same order of accuracy, see Nogueira et al. [2010]. For these
considerations, we used for the present work the following approximations:
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– 3rd order Gauss-Legendre quadrature for the integration of the flux (Eqn. (3)).

– 7th order symmetric quadrature of Wandzura and Xiao. [2003] is used for the numerical cal-
culous of µij (Eqn. (9)). Shape function derivatives are pushed to the same order as for the
extrapolation of flux.

(A) Half stencil:

(B) Full stencil:

Fig. 7: 4th Order matrix with half
(A) and full (B) stencil at the
interface. Nc = 4327

Solver: The pseudo mass-matrix M is a square matrix of
size Nc. Fig. 7 shows the pseudo mass-matrix of the domain
shown in Fig. 5 for the half stencil and the full stencil ap-
proaches at the interface. Non-zero values appear in blue.
The numeration of cells starts from the center of the rota-
tional grid with a distance criterium. Matrix values depend
on shape functions and hence M is a constant matrix for the
half stencil at the interface. Moreover, the mass-matrix of
the half stencil approach (A) is a block diagonal matrix in
which the first block is associated to the rotational grid and
the second block is associated to the fixed grid. With the
full stencil at the interface, the term µIJ for the I cells near
the interface must be re-computed and the matrix can not be
decomposed. The matrix (B) expresses the link between the
two grids. In general, the diagonal structure is recovered by
enforcing reconstructions that preserves the mean. It is then
possible to solve the system with an explicit method. How-
ever, it has been proved in the paper by Khelladi et al. [2011]
that the maximum order of accuracy reached by this tech-
nique is 3. Therefore, in this work, to reach higher order of
accuracy, we solve the pseudo mass matrix using an implicit
differential algebric solver called IDA, see Hindmarsh et al.
[2005]. The time integration method is the variable-order
(from 1 to 5), variable-coefficient Backward Differentiation
Formula (BDF), with adaptive time-step, described by Li and
Petzold [1999] and Brenan et al. [1996]. For the solution
to the linear system, Newton/Krylov subspace iterative cor-
rections method based on a scaled preconditioned GMRES
solver is used, see Saad and Schultz [1986].

2.3 Results

The objectives of this section are the validation of MLS-based sliding mesh interfaces 4th space
order of accuracy and making a comparison between each of the methods. Numerical convergence
of the 4 methods is adressed on different mesh resolutions (Nc from 4090 to 9769) with the quadratic
mean errors of the pressure field:

L2(p) = ∥εp∥2 =
[
1

A

Nc∑
I=1

AIε
2
p,I

]1/2
(13)

and the maximum error,

L∞(p) = ∥εp∥∞ = max[|εp,I |] (14)
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where, εp,I is the difference between pexI (the centroid value of the analytical pressure field) and pnumI

(the numerical value).

MLS-based sliding mesh interfaces order of accuracy: Looking at the below Fig. 9, first appear-
ance is that any of the methods used have a very similar order of accuracy. Real orders are lower than
the theoretical order. In average, the orders of the maximum error (≃ 3) are lower than the orders of
the quadratic mean errors (≃ 3.6). Moreover, the order of the maximum error is very fluctuant. This
is due to the use of an unstructured grid. Indeed, the grid distortion tends to reduce the effective order
of the method. It’s also important to notice that the differences between the full stencil and the half
stencil reconstruction is very tiny.
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E
rr
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∞
 

Number of cells Nc

HSI
FSI

HSH
FSH

4th

Method HSI FSI HSH FSH
Error L2(p) L∞(p) L2(p) L∞(p) L2(p) L∞(p) L2(p) L∞(p)

4090 2.98E-03 9.86E-03 3.08E-03 1.06E-02 2.95E-03 9.35E-03 2.96E-03 9.36E-03
4993 2.18E-03 8.21E-03 2.27E-03 9.04E-03 2.15E-03 7.86E-03 2.15E-03 8.25E-03
5832 1.60E-03 5.57E-03 1.64E-03 5.85E-03 1.57E-03 5.05E-03 1.19E-03 5.05E-03

Grid 6872 1.20E-03 5.06E-03 1.25E-03 5.04E-03 1.18E-03 5.05E-03 1.19E-03 5.05E-03
7457 1.03E-03 3.95E-03 1.06E-03 4.15E-03 1.01E-03 3.96E-03 1.02E-03 3.95E-03
9022 7.06E-04 2.87E-03 7.37E-04 3.55E-03 6.99E-04 2.80E-03 7.03E-04 2.78E-03
9769 6.03E-04 2.43E-03 6.32E-04 2.79E-03 5.93E-04 2.41E-03 6.05E-04 2.42E-03

Slope 3.58 3.05 3.60 2.93 3.57 3.05 3.58 2.95

Fig. 9: MLS-based Sliding Mesh convergence rate for the pressure solution at t = 40 with ω = 0, 01

Method Time (s) Ratio
HSI 253 1
FSI 417 1, 6

HSH 234 0, 9
FSH 359 1, 4

Tab. 1: Time to solve acoustic pulse
propagation from t=0 to t=40

(Nc = 9769, ω = 0, 01)

The comparison across computational time of the 4 methods is
crucial. Please find the values on the opposite Table (Tab. 1).
These results were obtained with a non-optimized sequential
solver. An improvement of algorithms should be done. Finally,
we see the half stencil halo-cell method as an attractive solu-
tion to transfers information from one grid to another. However,
please note that using the half stencil with the halo cell approach
is not recommended when shock waves are presented in the so-
lution, for example in Euler or Navier Stokes equations, since
the conservation errors are not admissible. This is not the case for the full stencil approach. These
results will be presented in another work that will be published elsewhere.
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Rotational velocity impact As it is shown in Fig. 8 the Halo-cell formulation gives better results
than intersection with implicit solver at high rotational velocity. Mention should be made of the
speed range of 0 to c∞ investigated includes most turbomachinery problems. These results are most
encouraging but must be analysed more closely. The authors hope provide a significant study of non
dimensional rotational velocity impact.
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Fig. 8: Section of the pressure solution along (S,−→x ) at t = 40, Nc = 9769, 4th space order.
Comparison between the Intersection approach (left) and the Halo-cell (right) approach
for different rotational velocity. The pink area corresponds to the moving grid zone.

2.3 Numerical exemple: Monopole’s radiation in a shear mean flow

The vector HHH represents complex refraction effects in the propagation field which is crucial in
turbomachinery noise problem. With a mean flow non-uniformly convected, the inhomogeneous term
HHH from the LEE is not equal to zero. It is important to notice that, as it has been shown by C. Prax
and Nadal [2007], this term can lead to numerical instabilities. To illustrate the refraction effect and
the stability of the method qualitatively, a symmetric horizontally sheared flow, similar to those used
by C. Bogey and Juvé [2002] and Cand [2005] is given as input U0 = [1, us, 0, 1/γ] with:

us = Mstanh(y/2) (15)

where the maximum Mach number Ms is 0.125. A monopole source is implemented by using the
vector S in Eqn. 1), which yields:

SSS(x, y, t) = ϵ · e−αrsin(ωmt)× [1 0 0 1]T (16)

where r = [(x− xs)
2 + (y − ys)

2]
1/2 is the radial distance to the domain’s center. The angular

frequency is ωm = 2π/30, the amplitude is taken as ϵ = 0.5 and α = ln2/2. All the variables are
made dimensionless with the same reference scales than the acoustic benchmark. The computation
is performed with two non-conform interfaces as it is described in Fig. 9-A). Please find Fig. B) the
result of the sheared mean flow case.
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Fig. 9: A) Computational Domain : Two interfaces with non-conform cell (Nc = 160138) B) Monopole’s radi-
ation in a shear mean flow (Ms = 0.125) at adimensional time t=190 (4th space order, HSH). Pressure isocontours:
0,±2102,±4102,±6102. Negative isocontours are in dotted lines.

CONCLUSIONS

Two families of high-order MLS-based sliding mesh interfaces were successfully used to solve
a CAA benchmark on unstructured grids. At the moment, only implicit time solver was tested with
the sliding mesh mass-matrix based FV-MLS. A convergence study was performed for each approach.
The study reveals that both the halo cell method and the intersection method can reach high accuracy.
A first evaluation of the impact of rotational velocity on results has been done. The accuracy and
robustness of the new methodology has been shown with a sheared mean flow. No instability has
been observed. Also, it would be interesting to investigate more deeply the impact on results of mesh
anisotropy. Finally, our future objective is to use an explicit solver well fitted for CAA. To achieve
this, we need to inverse the pseudo mass-matrix or use lumping techniques. We hope to succeed in
these points before the conference.
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