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Abstract   In recent years L1 adaptive control was suggested as an advancement to 

model reference adaptive control (MRAC) and its benefits have been controver-

sially discussed. This paper discusses the similarities of applying a hedging signal 

to the reference model used in model reference adaptive control to account for dy-

namic constraints in the input channel, and L1 adaptive control. In particular it is 

shown that in the case where the control effectiveness is known, both approaches 

are exactly the same, where the contribution of the L1 theory is the mathematically 

correct framework that provides a stability proof/condition which has not been 

available for the hedging approach. In the case of unknown control effectiveness, 

the two methods are slightly different and the L1 approach additionally adjusts the 

cutoff frequency of the low-pass filter. This difference allows for the elegant sta-

bility proof given by L1 theory. At the end the two approaches are compared based 

on a simple short period model of a large transport aircraft by assessing the robust 

performance w.r.t. model uncertainties. 

1 Introduction 

In the last years model reference adaptive control (MRAC) has attracted large in-

terest in the aerospace community and the theory is part of many standard text-

books on nonlinear and adaptive control [1,2,3,4]. The approach is based on an 

online adjustment of the controller parameters which is driven by the demand to 

follow a specified reference dynamics. Hence the approach seems to be well suit-

ed to increase the robust performance in the presence of parametric uncertainties 
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and failures, and it might reduce the reliance on modeling data necessary for the 

controller design. 

Even so the enhanced interest led to major advances in the theoretical frame-

work and the theory was applied to many practical problems, the application of 

adaptive flight control is still almost exclusively limited to research projects. The 

reason is that the certification of adaptive control still remains an open challenge, 

as classic, linear compliance metrics (e.g. gain and phase margin) cannot be ap-

plied to the inherently nonlinear system. Instead Lyapunov’s direct method must 

be utilized to show stability, but it allows no intuitive and empiric conclusion on 

the robustness. Furthermore, the adaptive system has a time varying character, 

what makes the certification even more critical. In particular it remains a chal-

lenge to assess the transient response by suitable metrics during adaptation. To 

achieve good transient performance, fast adaptation to the correct parameters 

would be desired. However, it is well known in adaptive control that large adap-

tive gains, which are necessary for fast adaptation, reduce the robustness w.r.t. 

time delay [5,6], as they act as integral feedback gains. To solve this drawback the 

theory of L1 adaptive control was developed [5,7,8], with the objective to decou-

ple robustness and adaptation and thus decouple control from estimation. To 

achieve this, a low-pass filter is introduced at a very particular place in the control 

structure with the objective to allow only input signals that are within the band-

width of the input channel and, hence, render the control objective achievable. 

This new architecture and the claims that are made within L1 adaptive control 

theory raised concerns in the adaptive control community because some research-

ers think that the claims cannot be met. However, in the following it is shown that 

L1 adaptive control basically provides a method to account for dynamic con-

straints in the input channel of the plant, legitimatized by sound mathematical 

proofs. 

In general the idea to account for input constraints in adaptive control is not 

new but was already suggested in [9], however the suggested modification was in-

troduced to account for hard nonlinearities in form of input saturation. Actuator 

saturation especially poses difficulties for MRAC-type controllers as it violates 

some of the basic assumptions. If the reference model does not account for actua-

tor saturation this directly means that the real plant cannot follow the reference 

model for every command that is issued, because a linear reference model as-

sumes unlimited control energy, whereas for the plant this is not available. In the 

case of saturation an error, which cannot be compensated, will result from the er-

ror dynamics (difference between plant dynamics and reference dynamics), and as 

the parameters are adjusted based on integration of this error they will increase as 

long as the input saturates. To overcome this problem the use of a hedging signal 

to modify the error dynamics was already suggested in [9]. In the adaptive control 

literature the word hedging is in general used to refer to a modification of certain 

signals with the objective to “hide” certain input characteristics of the plant from 

the error dynamics. As mentioned the approach was originally suggested to ac-
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count for saturations and a stability proof for SISO systems was given in [10] and 

further developed in [11]. However, the method is not only suitable to account for 

input constraints like actuator or rate saturation, but it can also be used to account 

for dynamic input constraints in the input channel of the plant [12]. And as shown 

in the following this is in some cases equivalent to L1 adaptive control. 

2 Adaptive Control with Known Control Effectiveness 

Let the considered system dynamics be given by 

 )()()( tutt PPPP  bxAx  (1) 

where n
P Rx is the state vector of the system, Ru  is the input of the system, 

nn
P R A  is the unknown system matrix, 1 n

P Rb  is the known input matrix.  

The desired behavior for the system that should be achieved by the controller 

is specified by a linear reference model of the form 

 )()()( trtt MMMM  bxAx , (2) 

where n
M Rx  is the desired reference trajectory, Rr  is the reference com-

mand, nn
M R A  is the desired, stable system matrix, and 1 n

M Rb  is the de-

sired input matrix. 

Next the following control law is chosen 

 )()()()( trktttu rP
T
xCMD  xθ . (3) 

nT
x R  1
θ  is a parameter to compensate matched uncertainties which are linear in 

the states (matched uncertainties in PA ), and it is adjusted by adaptation. Because 

the time dependency is usually clear from the context, in the following time de-

pendency is not explicitly denoted to improve readability. The feedforward gain 

rk  is chosen such that rPM kbb  . 

Without robustness modification the stability proof requires all uncertainties to 

be matched, that means they have to be in the span of Pb . This gets obvious by 

inserting the control law Eq.(3) in the plant dynamics Eq.(1) and comparing the 

closed loop system to the reference model Eq.(2). That means, to achieve the de-

sired behavior the following matching condition needs to hold, where the ideal pa-

rameters, marked by superscript asterisk, need to exist so that the equations can be 

satisfied: 
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T

xPPM
*
θbAA   (4) 

The stability properties mentioned in this section only hold under these condi-

tions. Requiring the matching condition to hold is equal to assuming that the plant 

can be denoted by 

 





  P

T

xPPMP u xθbxAx
* . (5) 

The control law Eq.(3) guarantees global stability of the closed loop system if 

the following update law is used [1,2,3] 

 P
T
cPxx PbexΓθ  , (6) 

where MPC xxe   and nnT R  PP  is the symmetric, positive definite solu-

tion of the Lyapunov equation 0QPAPA  M
T
M , with 0Q  being a symmetric, 

positive definite (design) matrix, and nn
x R Γ  is a symmetric, positive definite 

design parameter that determines the adaptation speed. Furthermore, Barbalat’s 

Lemma guarantees that the error converges to zero [1,2,3]. 

In the following the problem is considered that additional dynamics (e.g. actua-

tor or structural filter dynamics) are present in the input channel of the plant, and it 

is assumed that they can be represented by stable, strictly-proper, linear low-pass 

filter )(sC  with DC gain of 1, where s is the Laplace variable, 

 )()()( susCsu CMD  (7) 

and CMDu  is the commanded input. These input constraints are present in any real 

system due to actuator dynamics. Especially in aircraft control it is state of the art 

to further limit the bandwidth of the input channel by introducing structural filters 

to avoid an excitation of the structural modes. 

If we insert the control law Eq.(3) in the plant Eq.(5) with the input dynamics 

of Eq.(7) and build the error dynamics we obtain 

 uPP
T
xPcMc  bxθbeAe

~
 , (8) 

where *~
xxx θθθ   is the parameter error and 

   )(1)()( susCsu CMD  (9) 
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is the control deficiency. Here we can see that the additional dynamics in the input 

channel leads to an unexpected control deficiency u  that causes an additional 

term in the error dynamics. This introduces an excitation of the error dynamics, 

and to guarantee stability it has to be either accounted for by a robustness modifi-

cation of the adaptive law or by hedging as shown in the next section. 

2.1 MRAC with Hedging 

To hide the effect of the control deficiency on the error dynamics a hedging signal 

can be used. That means either the error signals are augmented directly, as sug-

gested in [9,10], or indirectly, as shown in [9,12], by a modification of the refer-

ence dynamics. That means to remove the effect of the input dynamics we have 

two options, where for the first approach we can define an additional differential 

equation  

 uPcMc  beAe  (10) 

and augment the error signal by CCU eee  . Now in the error dynamics of Ue  

the excitation due to the control deficiency is removed and one obtains 

 P
T
xPUMU xθbeAe 

~
 . (11) 

The second approach, which is for example suggested in [12], is to directly modi-

fy the reference dynamics with the hedging signal of Eq.(9) in the form 

   
tCMDPMMMM susCr )(1)(  bbxAx . (12) 

Here  t  denotes that the term inside the brackets is transformed from the La-

place domain to the time domain and in the following  s  denotes the reverse 

transformation. 

In figure 1 the structure of the closed loop MRAC with hedging is shown. The 

augmentation of the reference model leads to the same error dynamic as shown in 

Eq.(11), and thus the two approaches are equivalent.  

Using Ue  instead of Ce  in the update law Eq.(6) guarantees global asymptotic 

stability of the error dynamics. However, due to the feedback of u to the refer-

ence model it is not a priori guaranteed that the reference model is stable. Here the 

L1 theory provides a stability condition, which is given in the next section. 

WeCT3.3

539



6  

 

 
            

                 
   

  

  

     

 
              

                   

  

  

    

  

 

  

  

  

  

  

  

   

 

Fig. 1 Architecture of MRAC with hedging 

2.2 L1 Adaptive Control 

For L1 adaptive control a predictor based approach is used and the state predictor 

is given by [5,7,8] 

  P
T
xPPMP u xθbxAx 

̂ , (13) 

where u  is the low-pass filtered input. The structure of the L1 adaptive control is 

shown in figure 2 and in the following it is shown that the predictor is equal to the 

reference model with hedging. 

 

 
            

                 
   

  
 

  

     

 
              

                   

  

  

    

  

 

  

  

  

  

  

  

   

 

Fig. 2 Architecture of L1 adaptive control 

 

Inserting Eq.(7) and adding and subtracting rkrPb  we get 

   rkrksusC rrP
T
xtCMDPPMP  xθbxAx )()(ˆ

 . (14) 

With Eq.(3) we obtain from Eq.(14) 
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   
tCMDPrPPMP susCrk )(1)(ˆ  bbxAx

 . (15) 

Clearly this shows that in the presence of input dynamics Eq.(7) the predictor from 

Eq.(13) is mathematically equal to the reference model with hedging of Eq.(12), 

and the only difference can be found in the structural implementation. Thus it is 

clear that both approaches have the same properties and result in the same perfor-

mance. 

However, an important improvement is that the theory of L1 adaptive control 

provides a stability condition for the state predictor that also guarantees stability 

for the reference model modified by hedging. Basically the stability condition re-

sults from showing BIBO stability by application of the Small Gain Theorem. And 

by using the L∞-norm the following L1-norm condition is induced [5]: 

 1)(
1


L

sG  (16) 

With 
11

)(max)(
,...,1 LL

sGs i
ni

G , 
1

)(
L

sGi  being defined as the L1-norm of the 

impulse response 
1

)(
L

tgi , )1)(()()( 1   sCss PM bAIG , and 

 





n

i

i

.1

max 
Θθ

. (17) 

Here it is furthermore assumed that the uncertainty θ is limited to a convex, com-

pact set by means of projection and that *
θ  also lies inside this set. 

3 Adaptive Control with Unknown Control Effectiveness 

In difference to section 2 it is now assumed that there is an additional uncer-

tainty in the control effectiveness  and it is assumed that the sign of the control 

effectiveness is known R . So similar to Eq.(5) the following parameteriza-

tion for the plant is assumed 

 





  P

T

xPPMP u xθbxAx
*  (18) 

and again it is assumed that additional dynamics are present in the input channel 

so that u is given by Eq.(7). 
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3.1 MRAC with Hedging 

To account for the additional uncertainty the following control law is applied 

  rku rP
T
xCMD  

xθ
1̂ , (19) 

where ̂  is an estimation of  . This estimation is obtained by the update law 

 P
T
cu Pbe 

̂
, (20) 

where R  is a positive design parameter. For the control law in Eq.(19) it is 

clear that ̂ must be bounded away from zero by projection. 

Similar to the previous example the control deficiency due to the input dynam-

ics can be accounted for by hedging and then the reference model is given by 

 ur PMMMM  ̂bbxAx . (21) 

Or equivalently the following predictor can be used (as illustrated in the previous 

section 2.2) 

  PxPPMP u xθbxAx  ̂ˆ̂ . (22) 

When Eq.(7) is inserted in Eq.(22) we obtain  

     
tsrPxPMPMP rksCsr  

xθbbxAx
1ˆ)()(ˆˆˆ  . (23) 

Due to the time varying ̂  the derivation of a stability condition becomes more 

conservative than the one that led to the stability requirement of section 2.2. Fur-

thermore, for L1 adaptive control a slightly different control approach is chosen, 

which is shown in the following section and this results in a less conservative sta-

bility condition and performance bounds [5]. However, in analogy to Eq.(16) and 

by following the derivation in [5], for the current problem the following condition 

can be derived to guarantee stability of the reference model of Eq.(21) 

 1
ˆ

ˆ
1)()(

min

max

11

 



LL

sCsH  (24) 

 PMss bAIH
1)()(  . (25) 
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The condition is more conservative because the transfer functions )(sH  and 

( 1)( sC ) cannot be multiplied in the frequency domain because of the time vary-

ing ̂ . Thus the norm of 
1

)(
L

sH and 
1

1)(
L

sC must be taken separately, lead-

ing to a more conservative stability condition. Here it is assumed that ̂  is limited 

by projection, which means that ̂  is constrained to a convex set such that 

 maxmin
ˆ,ˆˆ  , and the projection algorithm assures that the time course of the 

parameters is 
1 C  [5]. 

3.2 L1 Adaptive Control 

For L1 adaptive control the same predictor Eq.(22) and the same update laws 

Eq.(6) and Eq.(20) are used, however a different control law than in MRAC is 

used and given by 

  
srP

T
x rkuskDsu  xθ

11

ˆ)()( LL  . (26) 

Or equivalently this control law can be denoted by 

  
s

rP
T
x rkuskDsu

















 xθ




ˆ

1ˆ)()(
11 LL , (27) 

where 0k  and )(sD  is a strictly proper transfer function. If ̂  would be con-

stant and equal to the true value   this would result in 

    
s

rP
T
x

s

rP
T
x rksCrk

skD

skD
su





















 xθxθ


 1
)(

1

)(1

)(
)( *

1L , (28) 

where )(* sC  is a stable low-pass filter whose cutoff frequency depends on  . 

That means Eq.(26) basically implements a low-pass filter where the cutoff fre-

quency is adjusted by the estimation of ̂ . This also gets obvious in figure 3 

where the two different implementations of Eq.(26) and Eq.(27) are shown. 

So the main difference between the hedging approach and L1 adaptive control 

is that the cutoff frequency of the low-pass filter in L1 adaptive control is adjusted 

by the estimated control effectiveness. The hedging was motivated by removing 

the excitation of the error dynamics caused by a control deficiency where the L1 
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approach is chosen to derive certain performance bounds [5] in an elegant way. 

However if the input dynamic is already fixed, as for example by an actuator, the 

L1 approach from section 3.2 cannot be applied as the dynamics of the actuator 

cannot be adjusted by ̂ . Of course one can always add an additional filter ac-

cording to Eq.(26) to further restrict the bandwidth in the input channel. 

 

     

  

    
     

    
       

   
      

     

 

Fig. 3 Different implementations of the adaptive filter 

4 Simulation Results 

The following model is based on the linearized short period dynamics of a large 

transport aircraft and includes a nonlinear pitch-break. Pitch-break is a phenome-

non where the pitch stiffness decreases with increasing angle of attack. Hence, the 

system becomes less stable, resulting in degraded handling qualities. 

The system equations of the short-period dynamics with pitch-break nonlineari-

ty are given by 

 
































 










)(

01














fM

Z

qMM

ZZ

q q

q




,  (29) 

where the states of the system are the angle of attack   in radians, which is a var-

iation w.r.t. the trim value and the pitch rate q  in radians/second, that means the 

state vector is  qP x .   is the elevator deflection in radians, and the output 

available for feedback are the load factor Zn  and pitch rate q  in radians, and thus 

  





















































010

0 Z
g

V

q

Z
g

V

q

nZ . (30) 

The coefficients of the system matrix PA  and the input vector Pb  are given in 

table 1, m/s  7.253V , and 81.9g . 
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Table 1 Coefficients of PA  and Pb  

Z  qZ  
M  qM  

Z  M  

-0.704 0 -0.484 -0.654 -1.423 -77.38 

 

The pitch up nonlinearity )(f  is determined by 

 
deg5.1/180for 

deg5.1/180for 

deg)5.1/180(2

0
)(



















M
f . (31) 

The aircraft model furthermore contains an actuator model, a model for the 

computer delay, and a structural filter as shown in figure 4 and the transfer func-

tions of the respective dynamics are given in table 2. 

 

Short Period Dynamics

Delay Actuator
Structural

Filter

     
  

                

           
 

Fig. 4 Plant dynamics 

Table 2 Transfer functions of the dynamics in the input channel 

Actuator Structural Filter Delay 

19800356481

198005
23 



sss

s
 

1113.0006.0

1
2  ss

 

1013.01021.5

1013.01021.5
25

25








ss

ss
 

 

For the nominal plant dynamics a baseline PI controller is provided and given 

by 

 rku r
T
yBL  *yk , (32) 

where r  is the load factor reference command and  IZ

T
eqn*

y , with the 

integrated error dtnre ZI   )( . T
yk  is the feedback gain matrix and rk  is the 

feed forward gain. 

In the following, the approaches from section 3.1 and 3.2 are applied and com-

pared. The adaptive controllers are chosen to employ the same structure as the 

baseline control law and thus only a linear regressor vector is used, and the adap-

tive feedback is provided by 
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    TIZeqn
T
yfbAD eqnu

IZ
 *

, yθ . (33) 

Here instead of the states Px  the outputs y  are used, and thus the objective is 

that *
y tracks the reference trajectory *

My , which is obtained by implementing the 

nominal closed loop given by Eq.(29) without the pitch-break nonlinearity, 

Eq.(30), and Eq.(32). This is no problem, if the output matrix has full rank and the 

direct feedthrough from the input to the output is zero. Although the feedthrough 

is small, the second condition is not satisfied for the current example as can be 

seen in Eq.(30). Clearly, effects like these limit the speed of adaptation, however, 

as the effect is very small it is treated as a disturbance here. 

It should be noted that from the problem formulation it is clear that using a 

linear regressor violates the basic theory, because there can be no constant 

parameters that satisfy the matching condition and thus the parameters must be 

time varying. 

The baseline control law is augmented with an adaptive controller that utilizes 

the same structure 

  fbADBLCMD uuu ,ˆ

1



. (34) 

For the MRAC approach with hedging the adaptive controller is composed of 

Eq.(34), Eq.(33) and the adaptation given by Eq.(6), and Eq.(20). An additional 

 -modification term [13] was added to improve the robustness, where 

01.0 was chosen: 

   0θθθPbeyΓθ  0,0,
* ,)( yyyP

T
cyy    

   1ˆ,)ˆˆ(ˆ
00    P

T
cu Pbe


,  

where **
MC yye  . So the parameter that have to be chosen are yΓ  and  . To 

obtain P  form the solution of the Lyapunov equation, 0Q was chosen to be the 

identity matrix. For the L1 adaptive controller an additional low-pass filter accord-

ing to Eq.(27) is inserted in the input channel with ssD /1)(  and the additional 

parameter k  that has to be chosen to determine the cutoff frequency. Note that 

)(sD  is only the open loop transfer function of the filter, and since the filter loop 

is closed (see figure3) the filter pole is stable. The adaptive parameters are limited 

by projection to  935.6min, T
yθ ,  935.6max, T

yθ , and  5,3.0ˆ . 

The parameters of the adaptive controller are tuned with the genetic algorithm 

provided by Matlab©, based on a certain command signal. The cost function J  for 
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the tuning is based on a combination of weighted performance metrics, which are 

the L∞ norm of the tracking error, L2 norm of the tracking error and the L2 norm 

of difference between ideal control signal and the adaptive control signal. As an 

additional constraint for the tuning the controllers have to provide a time delay 

margin of at least 0.3 seconds. The time delay margin is the amount of time delay 

in the input channel that brings the system to the edge of stability, and it is an of-

ten suggested robustness metric for adaptive controllers in order to replace the 

phase margin used in linear control theory. Due to space limitations the parameter 

tuning cannot be explained in more detail. 

From the tuning the parameters shown in table 3 were obtained, where for L1 a 

slightly smaller value of the cost function could be obtained, but in general very 

similar parameters where obtained. It can be seen that in both cases quite large 

adaptive gains are obtained. 

Table 3 Adaptive controller parameter 

 
yΓ      k  J  

MRAC 

















26500

02850

00225

 4.1  01.0  - 245.0  

L1 

















25400

02740

00270

 1.5 01.0  22.6 230.0  

 

For the considered case the time delay margins are given in table 4 and it is ob-

vious that both controllers significantly reduce the time delay margin. However, 

this tradeoff is well known for adaptive control. 

Table 4 Time delay margin 

Baseline controller MRAC controller L1 controller 

1.19s 0.31s 0.31s 

 

The response for the command signal used for the gain design is shown in fig-

ure 5 and in figure 6 the error w.r.t. the reference trajectories is shown. Here it is 

obvious that in comparison to the baseline controller the overshoot caused by the 

pitch break is largely reduced and both approaches achieve almost perfect follow-

ing of the reference response, and cannot be distinguished. In figure 7 the elevator 
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deflection and rate is shown and in figure 8 and 9 the time histories for the adap-

tive parameters of MRAC and L1 are displayed. 

As a manned aircraft is considered the handling qualities are of utmost im-

portance. That means, the control laws must not only provide robust stability, but 

robust performance is the key property of the control law to make the aircraft con-

trollable for the pilot. This also means it is not enough to evaluate the performance 

only for the considered pitch break problem, but the control law has to provide ro-

bust performance w.r.t. all kinds of uncertainties that must be expected. Therefore 

the performance of the adaptive controllers w.r.t. a more general set of uncertain-

ties is assessed in the following. 
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Fig. 5 Load factor and pitch rate response 
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Fig. 6 Error in load factor and pitch rate response 
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Fig. 7 Elevator deflection and rate 
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Fig. 8 MRAC adaptive controller parameters 
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Fig. 9 L1 Adaptive controller parameters 
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To provide a measure of how a pilot perceives the adaptive and the baseline 

control law in presence of the nonlinearity, the frequency response function (FRF) 

from the input command CMDZn ,
 to the actually achieved Zn  are computed and 

compared for different control setups. 

The FRFs were obtained from spectral estimates that were computed using the 

modified periodogram algorithm, as implemented in the identification software 

CIFER© [14]. The systems were excited in the significant frequency range by a 

chirp signal with an amplitude of two g’s, which is shown in figure 10. This ap-

proach is based on linearity assumptions of the underlying system. Applied to 

nonlinear systems, the frequency response functions can be interpreted as describ-

ing functions relating the input spectrum to the output spectrum. To measure the 

degree of linearity, the coherence is computed. 
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Fig. 10 Chirp signal for identification of FRFs 

 

In figure 11 the deviations of the FRFs between the desired linear reference 

system are shown, on the one hand for the baseline controller applied to the non-

linear system (red line), and on the other hand for the adaptive controller applied 

to the nonlinear system (green line). The deviations are compared to the MUAD 

(maximum unnoticeable added dynamics) boundary curves, taken from [15]. The 

MUAD bounds are a measure of the influence of FRF deviations on the handling 

quality assessment of test pilots: if the FRFs of two aircraft systems differ only 

within the MUAD bounds, pilots will give them the same handling quality rating 

[16]. It can be seen that the adaptive controller significantly reduces the deviations 

from the reference dynamics, both in magnitude and phase. From the MUAD plot 

it can be followed that the adaptive controller improves the response for the con-

sidered problem as the deviation w.r.t. the reference system is almost zero over the 

complete frequency domain of interest. The deviation of the baseline controller al-

so remains within the boundaries and according to this the response is still ac-

ceptable for the pilot. However, in the frequency range of the short period dynam-

ics a clear deviation, and hence a deterioration, can be seen. In the coherence plot, 

we can see that with the adaptive controller the closed loop behaves almost as lin-

ear as the reference system. This can be attributed to the fast adaptation and under-

lines the similar dynamics of the adaptive controller and the baseline system. 

According to the pitch-break problem stated above the objective of the adaptive 

augmentation will be to improve the response to load factor commands in the 
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presence of the nonlinearity. Therefore boundaries for the load factor step re-

sponse are defined based on the parameters: maximum overshoot, 80% rise time, 

5% settling time, and 1% settling time. Based on these parameters three different 

boundaries are defined associated with three different levels of handling qualities 

(HQ) and the associated parameters given in table 5. 
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Fig. 11 L1 Adaptive controller parameters 

 

The robust performance of the augmenting control laws is evaluated based on a 

step input together with the mentioned requirements for different kinds of uncer-

tainties in the linear plant model and the results are compared to the performance 

of the baseline control law. At first the performance is evaluated over a grid of un-

certainties in the coefficients determining the pitch stiffness M  and the pitch 

damping qM , which can be considered as matched or affine uncertainties, as the 

elevator predominantly produces a pitching moment and almost negligible lift 

force. The results for these kinds of uncertainties are shown in figure 12. It is ob-

vious that in comparison to the baseline controller (figure 12.a)) the performance 

w.r.t. matched uncertainties can be improved by MRAC (figure 12.b)) and L1 

(figure 12.c)) where the contour lines in figure 12.b) and c) refer to the baseline 

performance. Furthermore, the performance is assessed for uncertainties in the 

control effectiveness  , which is equivalent to an uncertain gain in the input 

channel of the plant. The results are shown in figure 13.a)-c) and here it can be 

seen that over a large range the adaptive controllers improve the performance in 
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comparison to the baseline controller. So in general it can be summarized that both 

controllers provide the possibility to improve the robust performance w.r.t. 

matched uncertainties and uncertainties in the input channel. Of course one could 

further reduce the bandwidth in the input channel in both approaches, but this 

would only lead to reduced performance. 

 

Table 5 Parameter for load factor response boundaries 

HQ Level 1 HQ Level 2 HQ Level 3 

Overshoot < 0.10 

80% Rise time < 4s 

5% Settling time < 6s 

1% Settling time < 10s 

Overshoot < 0.20 

80% Rise time < 6s 

5% Settling time < 8s 

1% Settling time < 12s 

Overshoot < 0.30 

80% Rise time < 8s 

5% Settling time < 10s 

1% Settling time < 14s 
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 b) MRAC controller c) L1 controller 

Fig. 12 Robust performance w.r.t. M  and qM  
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Fig. 13 Robust performance w.r.t.   

5 Conclusion 

As it was shown for the case where the control effectiveness is known, hedging 

and L1 adaptive control are exactly the same and the theory of L1 adaptive control 

can be used to provide a stability proof for the modified reference model. This al-

so means that the same performance guarantees as provided by L1 adaptive control 

hold. However for the case were the control effectiveness is unknown the L1 ap-

proach differs from MRAC with hedging because it is driven by the stability and 

performance proof and therefore applies a filter where the bandwidth is adjusted 

by the estimated control effectiveness. Although analytic performance bounds 

might not be available for MRAC this does not mean that the approach provides 

worse performance. This could also be verified by the simulation example where 

both methods provide approximately the same robust performance. 
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