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Abstract This paper addresses robust fault diagnosis of the chaser’s thrusters used

for the rendezvous phase of the Mars Sample Return (MSR) mission. The MSR

mission is a future exploration mission undertaken jointly by the National Aero-

nautics and Space Administration (NASA) and the European Space Agency (ESA).

The goal is to return tangible samples from Mars atmosphere and ground to Earth

for analysis. A residual-based scheme is proposed that is robust against the pres-

ence of unknown time-varying delays induced by the thruster modulator unit. The

proposed fault diagnosis design is based on Eigenstructure Assignment (EA) and

first-order Padé approximation. The resulted method is able to detect quickly any

kind of thruster faults and to isolate them using a cross-correlation based test. Simu-

lation results from the MSR ”high-fidelity” industrial simulator, provided by Thales

Alenia Space, demonstrate that the proposed method is able to detect and isolate

some thruster faults in a reasonable time, despite of delays in the thruster modu-

lator unit, inaccurate navigation unit, and spatial disturbances (i.e. J2 gravitational

perturbation, atmospheric drag, and solar radiation pressure).
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1 Introduction

Many space exploration missions require critical autonomous proximity operation.

Mission safety is usually guaranteed through a hierarchical implementation of the

fault diagnosis and fault tolerance with several levels of faults containments defined

from local component/equipment up to global system, i.e. through various equip-

ments (sensors like IMUs, thrusters, reaction wheels etc..) redundancy paths and

ground intervention.

Classical Fault Detection Isolation and Recovery (FDIR) hierarchical implemen-

tation approach (see for instance [3, 15]) may be not sufficient in dynamics deviation

in critical Space operations. This is specially the case for thruster faults during ren-

dezvous and docking/capture proximity operations, and this could lead to mission

loss. On-board robustness and fault tolerance/recovery shall prevail in the dynamics

trajectory conditions.

The objective of this study is to develop an advanced model-based Fault Detec-

tion and Isolation (FDI) scheme able to diagnose thrusters’ faults of the Mars Sam-

ple Return (MSR) chaser spacecraft, on-board/on-line and in time within the critical

dynamics and operations constraints of the last terminal translation (last 20m) of the

rendezvous/capture phase. As mission scenario undertaken, the chaser stays in the

rendezvous/capture corridor, such that it is possible to anticipate the necessary re-

covery actions to successfully meet the capture phase, see Fig. 1 for an illustration.

.

Fig. 1 Illustration of the rendezvous phase of the MSR mission

Numerous fault diagnosis methods are applicable to this problem [12, 13]. In

fact, most of the model-based diagnostic techniques reported in the literature have

the potential to be applied, see [2, 6, 9, 18] for good surveys. In recent years, some

effective techniques of the fault detection and diagnosis for satellite attitude control
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Robust Thruster Fault Diagnosis 3

systems based on inertial wheels have been developed, see for instance the books

[1, 10] and the references given therein. The problem of thrusters’ faults is less con-

sidered in the literature. Among the contributions, one can refer to [5] where an

Iterative Learning Observer (ILO) is designed to achieve estimation of time-varying

thruster faults. The method proposed in [16, 17] is based on the so-called unknown

input observer technique and is applied to the Mars Express mission. The work [11]

addressed the problem of thrusters’ faults diagnosis in the Microscope satellite and

[7] considered the problem of faults affecting the micro-Newton colloidal thrust

system of the LISA Pathfinder experiment. Both proposed FDI schemes are based

on H∞/H− filters to generate residuals robust against spatial disturbances (i.e. J2

disturbances, atmospheric drag and solar radiation), measurement noises and sen-

sor misalignment phenomena, whilst guaranteeing fault sensitivity performances.

Additionally, a Kalman-based projected observer scheme is considered in [7].

In this paper, the proposed FDI scheme consists of a residual generator that is

robust against unknown time-varying delays induced by the thruster modulator unit

and uncertainties on the thruster rise times. These uncertainties are transformed us-

ing Padé approximation to unknown inputs and decoupled by means of Eigenstruc-

ture Assignment (EA) technique. This detection scheme allows to detect quickly any

kind of thruster faults. The isolation task is solved using a cross-correlation based

test between the residual signal and the associated thruster open rate. For reduced

computational burdens, the isolation test is based on a sliding time window. The key

feature of the proposed method is the use of a judiciously chosen linear model for

the design of the FDI scheme, i.e. a model that consists of a 6-order model taking

into account both the rotational and linear translation of the spacecraft motions.

The paper is organized as follows: section 2 addresses some theoretical base-

ments. The goal is to develop a robust FDI scheme for linear systems with unknown

time-varying delays in the control input. It is shown that this problem can be solved

using the unknown input decoupling approach by means of EA technique. Section

3 is devoted to the application of the proposed method to the problem of fault de-

tection and isolation of the thrusters that equip the chaser spacecraft involved in the

MSR mission.

2 Problem Description and the Theoretical Foundation of the

Selected FDI Technique

Consider a continuous-time system given by

{

ẋ(t) = Ax(t)+Bu
(

t − τ(t)
)

+E f f(t)

y(t) = Cx(t)
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

nu is the non-delayed system input

vector, y(t) ∈ R
ny is the vector of the available measurements and f(t) ∈ R

n f is the

fault vector. A, B, C and E f are known matrices of appropriate dimensions. The
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4 R. Fonod, D. Henry, C. Charbonnel and E. Bornschlegl

pair (A,C) is assumed to be observable. The time-varying delay τ(t), induced by

the electronic devices, is assumed to be unknown but upper bounded τ(t)≤ τ̄ .

Problem 1. Design a residual generator that is robust in the presence of uncertain

time-varying delay τ(t).

In order to solve problem 1, a robust residual generator approach is presented in

this paper. The aim is to model the influence of the uncertain time-varying delay as

an unknown input. This will be done by using a first-order Padé approximation and

introducing a new augmented state space description. Then, the unknown inputs are

decoupled by means of EA technique.

2.1 Padé Approximation

The transfer function of the time delay is H(s) = e−τ(t)s. This transfer is irrational

and it is necessary to substitute e−τ(t)s with an approximation in form of a rational

transfer function. The most common approximation is the Padé approximation

e−τ(t)s .
=

1− k1s+ k2s2 + . . .± knsp

1+ k1s+ k2s2 + . . .+ knsp
(2)

where p is the order of the approximation and the coefficients ki are functions of p.

In this paper, a first-order Padé approximation of the time-varying delay τ(t) is

used, when k1 =
τ(t)

2
and ki = 0, i = 2, . . . , p, that is:

e−τ(t)s .
=

1− τ(t)
2

s

1+ τ(t)
2

s
(3)

Considering all system inputs, the transfer function (3) is equivalent with the fol-

lowing state space representation

{

ẋd(t) = Ad(t)xd(t)+Bdu(t)

u(t − τ(t)) = Cd(t)xd(t)+Ddu(t)
(4)

where xd(t) ∈ R
nu is the delayed state, u(t − τ(t)) ∈ R

nu is the delayed input, and

Ad(t) =− 2
τ(t) I, Bd = I, Cd(t) =

4
τ(t) I, Dd =−I are matrices with appropriate di-

mension. Furthermore, using (1) and (4), and introducing a new augmented state

vector of the form zT (t) =
[

xT (t) xT
d (t)

]

, we obtain:

{

ż(t) = Â(t)z(t)+ B̂u(t)+ Ê f f(t)

y(t) = Ĉz(t)
(5)

where

FrBT2.2

1499



Robust Thruster Fault Diagnosis 5

Â(t) =

[

A BCd(t)
0 Ad(t)

]

, B̂ =

[

BDd

Bd

]

, Ĉ =
[

C 0
]

, Ê f =

[

E f

0

]

It can be seen, that thanks to the chosen state-space representation (4), the uncer-

tainty is present only in Â(t). The task is to decompose this matrix into the constant

and time-varying part and to model the uncertainty as an unknown input.

2.2 Expressing the Uncertainty as an Unknown Input

Problem 2. Decompose the matrix Â(t) in two parts:

Â(t) = Â0 +∆ Â(t) (6)

where Â0 is a constant matrix and ∆ Â(t) is the time-varying part of Â(t).

Consider, that τ(t) can be expressed as

τ(t) = τ0 + δ (t) : |δ (t)| ≤ δ̄ (7)

where τ0 is the nominal delay, δ (t) is the variation around τ0, and δ̄ is the upper

bound of the variation part.

Proposition 1. Let a ∈R and b ∈R be two real scalars, where a 6= 0 and a+b 6= 0,

then

(a+ b)−1 = a−1 − a−1 b

a+ b
(8)

Proof. Using some basic arithmetic operations, it can be shown, that (8) holds. ⊓⊔

Therefore, using proposition 1, we can write

1

τ(t)
=
(

τ0 + δ (t)
)−1

=
1

τ0

−
1

τ0

δ ∗(t) (9)

where δ ∗(t) =
δ (t)

τ0+δ (t) . Problem 2 is solved using (9), that is

Â0 =

[

A BC
τ0
d

0 A
τ0

d

]

, ∆ Â(t) =

[

0 −BC
τ0
d

0 −A
τ0

d

]

δ ∗(t) (10)

where A
τ0

d =− 2
τ0

I and C
τ0

d = 4
τ0

I.

The time-varying part ∆ Â(t) can be expressed as an unknown input d(t), entering

the augmented dynamics (5) through Êd , by:

∆ Â(t)z(t) =

[

0 −BC
τ0

d

0 −A
τ0
d

]

δ ∗(t)z(t) = Êdd(t) (11)
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6 R. Fonod, D. Henry, C. Charbonnel and E. Bornschlegl

where

Êd =

[

−BC
τ0

d

−A
τ0
d

]

, d(t) = δ ∗(t)xd(t) (12)

Now, taking the above notation into account, the design model is expressed in terms

of unknown inputs as

{

ż(t) = Â0z(t)+ B̂u(t)+ Ê f f(t)+ Êdd(t)

y(t) = Ĉz(t)
(13)

This model is the augmented representation of the original system (1), which takes

into account uncertainties caused by electronic-induced delays represented as an

additional unknown input d(t).

2.3 Residual Generator Design Using Eigenstructure Assignment

In order to solve problem 1, we define the following structure of the residual gener-

ator based on full-order observer (see e.g. [4, 14])

{

że(t) = (Â0 −LĈ)ze(t)+ B̂u(t)+Ly(t)

r(t) = W
(

y(t)− Ĉze(t)
)

(14)

where r ∈ R
np is the residual vector and ze(t) ∈ R

n+nu is the augmented state esti-

mation. The matrix W ∈ R
np×ny is the residual weighting matrix.

The Laplace transformed residual response to faults and unknown inputs is

r(s) = Gr f (s)f(s)+Grd(s)d(s) (15)

where

Gr f (s) = WĈ(sI− Â0 +LĈ)−1Ê f (16)

Grd(s) = WĈ(sI− Â0 +LĈ)−1Êd (17)

Once Êd is known, the remaining problem is to find the matrices L and W to sat-

isfy Grd(s) = 0. The assignment of the observer’s eigenvectors and eigenvalues is a

direct way to solve this design problem.

2.3.1 Unknown Input Decoupling by Assigning Left Eigenvectors

Lemma 1. The transfer function Grd(s) can be expanded in terms of the eigenstruc-

ture as

Grd(s) = H(sI− Âc)
−1Êd =

n

∑
i=1

Fi

s−λi

=
n

∑
i=1

Hvil
T
i Êd

s−λi

(18)
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Robust Thruster Fault Diagnosis 7

where H = WĈ, Fi = Hvil
T
i Êd , vi and lTi are the right and left eigenvectors of

Âc = Â0 −LĈ associated with eigenvalue λi.

Lemma 2. It is well known that, a given left eigenvector lTi of Âc is always orthogo-

nal to the right eigenvectors v j corresponding to the remaining (n− 1) eigenvalues

λ j of Âc, where λi 6= λ j.

Theorem 1 (Chen and Patton, 1999). If WĈÊd = 0 and all rows of the matrix H

are left eigenvectors of Âc corresponding to np eigenvalues of Âc, then Grd(s) = 0.

Proof. If the rows of H are np left eigenvectors (li, i = 1, . . . ,np) of Âc, i.e.

H =
[

l1 l2 . . . lnp

]T
(19)

then Hvi = 0 and Fi = 0 for i = np+1, . . . ,n. If further we have WĈÊd = HÊd = 0,

i.e. lTi Êd = 0 and Fi = 0 for i = 1,2, . . . ,np, thus Grd(s) = 0. ⊓⊔

The first step for the design of an unknown input decoupled residual generator

(14) is to compute the weighting matrix W which must satisfy the following neces-

sary condition [4]

WĈÊd = HÊd = 0 (20)

The necessary and sufficient condition for solution (20) to exist is rank(ĈÊd)< ny.

If ĈÊd = 0, any weighting matrix can satisfy this necessary condition. A general

solution is

W = W1(I− ĈÊd(ĈÊd)
+) (21)

where W1 ∈ R
np×ny is an arbitrary matrix and (ĈÊd)

+ is the pseudo-inverse of

(ĈÊd), defined as (ĈÊd)
+ = ((ĈÊd)

T (ĈÊd))
−1(ĈÊd)

T .

The second step is to determine the eigenstructure of the observer. The rows of

H must be the np left eigenvectors of Âc. The remaining n−np left eigenvectors can

be chosen without restraint. For the given (stable) eigenvalue spectrum Λ(Âc) =
{λi, i = 1, . . . ,n}, the following relation holds

lTi (λiI− Â0) =−lTi LĈ =−mT
i Ĉ, i = 1, . . . ,n (22)

where mT
i = lTi L. The assignability condition says, that for each λi, the cor-

responding left eigenvector lTi should lie in the column subspace spanned by

{Ĉ(λiI− Â0)
−1}, i.e. a vector mi exists such that

lTi = mT
i Ki, i = 1, . . . ,np (23)

where Ki = −Ĉ(λiI − Â0)
−1, i = 1, . . . ,np. The projection of li in the subspace

span{Ki} is denoted by:

l◦T
i = m◦T

i Ki, i = 1, . . . ,np (24)
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8 R. Fonod, D. Henry, C. Charbonnel and E. Bornschlegl

where m◦T
i = lTi KT

i (KiK
T
i )

−1, i = 1, . . . ,np. If lTi = l◦T
i , lTi is in span{Ki} and is

assignable. Otherwise, an approximative procedure must be considered in order to

replace lTi by it’s projection l◦T
i .

The remaining n−np eigenvalues and corresponding eigenvectors can be chosen

freely from the assignable subspace and assigned using some EA technique, e.g.

using singular value decomposition (SVD). Then, the observer matrix L can be

computed as follows

L = P−1M (25)

where

M =
[

m◦
1 . . . m◦

np
mnp+1

. . . mn

]T

P =
[

l◦1 . . . l◦np
lnp+1

. . . ln
]T

It is obvious, that the first np eigenvalues corresponding to the required eigenvectors

lTi , i = 1, . . . ,np must be real because all these eigenvectors are real-valued.

Remark 1. The remaining design freedom, after unknown input de-coupling, can be

used to optimize other performance indices such as fault sensitivity.

3 Application to the MSR Mission

The robust fault detection scheme presented in the above section is now considered

for the detection and isolation of the faults affecting the chaser’s thrusters unit.

3.1 Modeling the Chaser Dynamics During the Rendezvous Phase

In the interest of brevity, from [8, 19, 20, 21] we only consider the modeling of the

relative position of two spacecrafts on a circular orbit around the planet.

The motion of the chaser is derived from the 2nd Newton law. To proceed, let a,

m, G and mM denote the orbit of the target, the mass of the chaser, the gravitational

constant and the mass of the planet Mars. Then, the orbit of the rendezvous being

circular, the velocity of any object (e.g. the chaser and the target) is given by the

relation

√

µ
a

where µ = G .mM . Let Rl : (Otgt ,
−→
Xl ,

−→
Yl ,

−→
Zl ) be the frame attached to

the target and oriented as shown in Fig. 2. Because the linear velocity of the target

is given by the relation aθ̇ in the inertial frame Ri : (OM,
−→
Xi ,

−→
Yi ,

−→
Yi ) (see Fig. 2), it

follows:

a.θ̇ =

√

µ

a
⇒ n =

√

µ

a3
(26)

During the rendezvous phase, it is assumed that the chaser motion is due to the four

forces: Mars attraction force, centripetal force, Coriolis force and forces due to the

thrusters (Fx,Fy,Fz). Then, from the 2nd Newton law, it follows

FrBT2.2
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Robust Thruster Fault Diagnosis 9

ẍ = n2x+ 2nẏ−
µ

(

(a+ x)2 + y2 + z2
)3/2

(a+ x)+
Fx

m

ÿ = n2y− 2nẋ−
µ

(

(a+ x)2 + y2 + z2
)3/2

y+
Fy

m
(27)

z̈ =−
µ

(

(a+ x)2 + y2 + z2
)3/2

z+
Fz

m

where x ,y, z denote the three dimensional position of the chaser (assumed to be a

punctual mass) in Rl.

chaser

target
(sample container)

the rendezvous 

orbit

a

−→
Xi

−→
Yi

−→
Xl

−→
Yl

−→
Zi =

−→
Zl

θ

x

y

Fig. 2 The Mars rendezvous orbit and the associated frames

Because the distance between the target and the chaser is smaller than the orbit a,

it is possible to derive the so called Hill-Clohessy-Wiltshire (HCW) equations from

(27) by means of a first order approximation. This boils down to a linear six order

state space model with the input vector u(t) = (Fx Fy Fz)
T , output vector y(t) =

(x y z) and state vector x(t) = (x y z ẋ ẏ ż)T , i.e. from (27) it follows











ẋ(t) = Ax(t)+BR
(

Q̂tgt(t), Q̂chs(t)
)

Muthr(t)+Eww(t)

y(t) = Cx(t)

ym(t) =−y(t)+ v(t)

(28)

where

A =

















0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2n

0 −n2 0 0 0 0

0 0 3n2 −2n 0 0

















,B = Ew =
1

m

















0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

















, C =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0





(29)
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10 R. Fonod, D. Henry, C. Charbonnel and E. Bornschlegl

Further, Q̂tgt(t) ∈ R
4 and Q̂chs(t) ∈ R

4 denote the attitude’s quaternion of the target

and the chaser, respectively. These quaternions are estimates from the navigation

module (NAV). M ∈ R
3×8 refers to the thrusters’ configuration (direction) matrix,

uthr(t) = (uthr1
(t), ...,uthr8

(t))T , 0 ≤ uthri
(t) ≤ 1 , i = 1, ...,8 are the thruster in-

puts, ym(t) ∈ R
3 is the three-dimensional position measured by a LIDAR unit that

is corrupted by the measurement noise v(t) ∈ R
3 and w(t) ∈ R

3 refers to spatial

disturbances. The quaternions dependent rotation matrix R(.) performs the projec-

tion of the three-dimensional thrust forces (due to the eight thrusters that equip the

chaser) from the chaser’s frame on to the target frame Rl . The numerical values of

the parameters are not shown for reasons of confidentiality.

The considered thruster faults can be modeled in a multiplicative manner accord-

ing to (the index ” f ” is used to outline the faulty case)

u
f
thr(t) =

(

I8 −Ψ(t)
)

uthr(t), Ψ(t) = diag
(

ψ1(t), . . . ,ψ8(t)
)

(30)

where 0 ≤ ψi(t) ≤ 1, i = 1, ...,8 are unknown. Ψ (t) models thruster faults, e.g. a

locked-in-placed fault can be modeled by Ψi(t) = 1− c
uthri

(t)
where c denotes a con-

stant value (the particular values c = {0,1} allows to consider closed/open faults)

whereas a fix value of Ψi(t) models a loss of efficiency of the ith thruster.

During the rendezvous phase, the thruster management algorithm operates in

the 6DOF mode. It means, that both commanded torque and force are achieved by

thrusters only and thus the thruster faults affect the attitude of the chaser spacecraft.

Taking into account some unknown but bounded delays induced by the electronic

devices, and uncertainties on the thruster rise times due to the thruster modulator

unit that is modeled here as an unknown time-varying delay τ(t) = τ0 + δ (t) with

a (constant) nominal delay τ0 and upper bounded variation part |δ (t)| ≤ δ̄ . The

motion of the chaser during the rendezvous can be modeled in both fault free (i.e.

Ψ(t) = 0) and faulty (i.e. Ψ(t) 6= 0) situations according to

{

ẋ(t) = Ax(t)+BR
(

Q̂tgt (t), Q̂chs(t)
)

M
(

I−Ψ(t)
)

uthr

(

t − τ(t)
)

+Eww(t)

y(t) = Cx(t) =−ym(t)+ v(t)
(31)

Now considering R(Q̂tgt(t), Q̂chs(t))Muthr(t) as the input vector u(t), and ap-

proximating the fault model −R(Q̂tgt(t), Q̂chs(t))MΨ (t)uthr(t) in terms of addi-

tive faults f(t) ∈ R
3 acting on the state via a constant distribution matrix E f (then

E f = B), it follows that the overall model of the relative dynamics that takes into

account both, the attitude Qchs(t), and the relative position (x y z) of the chaser and

the target can be written in the form (1).

FrBT2.2
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Robust Thruster Fault Diagnosis 11

3.2 Design of the FDI Scheme

3.2.1 Design of the Residual Generator

To design a residual generator r(t), the above derived model (31) is used. It is con-

sidered that y(t) = −ym(t). The sampling period Ts of the NAV is 0.1s and a rea-

sonable value of the nominal time delay was determined to be exactly one sampling

period for the input vector u(t). By using Padé approximation of the time delay

τ(t), the uncertainty caused by the unknown time-varying parameter δ (t), intro-

duced in (7), has been modeled as an unknown input d(t) entering the augmented

state space dynamic (13) through the matrix Êd computed as in (12), with τ0 = 0.1.

Following the discussion in section 2.3.1, the residual weighting matrix was deter-

mined to be W = I3, thus the dimension of the resulting residual is np = 3, i.e.

r(t) = (r1(t),r2(t),r3(t))
T . All the assigned eigenvalues were chosen to be close to

−0.5. Finally, the residual generator (14) is converted to discrete-time (t = kTs) us-

ing a Tustin approximation and implemented within the nonlinear simulator of the

MSR mission.

Remark 2. Since the spatial disturbances w(t) have the same directional properties

as the faults, i.e. Ew = E f , the residual signal r(t) cannot be decoupled from w(t).

3.2.2 Decision Test and the Isolation Strategy

To make a decision about the fault presence, a simple threshold-based decision test

is applied to the residual norm ||r(k)||2 as follows:

||r(k)||2 < JT ; fault-free

||r(k)||2 ≥ JT ; fault declared
(32)

where JT is a fixed threshold and || · || denote the Euclidean vector norm.

The proposed isolation strategy is based on the following cross-correlation crite-

rion between the jth residual signal r j and the associated controlled thrusters open

rate uthri
, i.e.:

σ j(k) = arg
i

min
∣

∣

1

N

k

∑
l=k−N

r j(k)uthri
(l)

∣

∣, i = 1...8, j ∈ {1,2,3}, ∀k ∈ Z
+ (33)

This cross-correlation function is a statistical quantity that tries to find the associ-

ated thruster index that has the smallest impact on the resulting residual signal. For

real-time reason, this criterion is computed on a N-length sliding-window. The re-

sulting index σ j(k)∈{1,2, . . . ,8} refers to the identified faulty thruster, using the jth

residual signal. The decision about the identified faulty thruster can be considered

in three different ways, i.e. σ(k) is computed:

1. as the smallest cross-correlation among all the residuals;

FrBT2.2

1506



12 R. Fonod, D. Henry, C. Charbonnel and E. Bornschlegl

2. using only one residual signal r j(k), j ∈ {1,2,3}, e.g. the first σ(k) = σ1(k);
3. using a voting scheme where, for all residuals r j(k), j = 1,2,3 a σ j(k) is com-

puted separately, and a majority voting rule is implemented, i.e. the resulting

index by the most σ j(k) is the identified faulty thruster.

A key feature of these isolation methods is that they are static and then, have a low

computational burdens.

To make a final decision about the identified thruster index a confirmation win-

dow Nc > 1 is considered, i.e. the identified index is confirmed at time instant k,

if:

σ(k) = σ(k− 1) = . . .= σ(k−Ns + 1) (34)

The whole FDI strategy works as follows: as soon as the fault is declared by the

decision test (32), the above described isolation strategy is executed.

Remark 3. It is obvious, that if the ith thruster is not used by the thruster management

unit, i.e. uthri
= 0, the minimum cross-correlation will result in σ(k) = i. This fact

must be taken into account, and the associated thruster rates below some predefined

(small) threshold shall not be taken into account by the isolation strategy.

Remark 4. With the case of a number of thrusters greater than the DOF, some

thruster faults evolve in the same residual sub-space, therefore using sub-space iso-

lation approach, a full coverage of the isolation problematic cannot be guaranteed.

3.3 Simulation Results

As mentioned, the navigation unit is not considered to deliver “perfect” measure-

ments. Due to this fact, the quaternion estimates and the LIDAR signal are addi-

tionally corrupted by noise that we modeled (according to the industrial specifica-

tions) as an uniform distributed noise. We consider delays between the navigation

module and the control block, delays induced by the thruster modulator unit and

spatial disturbances. The considered disturbances w(t) are solar radiations, J2 grav-

itational perturbation and atmospheric drag. The simulated faults correspond to a

single thruster opening at 100% during the last 20m of the rendezvous. Analysis of

different fault scenarios are subject of the future research. The isolation strategy is

computed according to (33) using the majority voting rule. The window length Nc

for fault confirmation is taken as 10 sampling instants. Note that the remark 3, stated

in section 3.2.2, was not considered in this simulation study.

Fig.3 illustrate the behavior of ‖r(t)‖2, the decision test, confirmation window

(green area) and the isolation criteria σ(k), for some faulty situations. For each

simulation, the fault occurs at t = 1200s and is maintained one minute.

As it can be seen from the figures, all thruster faults are successfully detected and

isolated by the FDI unit with a reasonable detection and isolation time (see Table 1).

Note that such a strategy succeeds since both the rotational
(

Qchs(t)
)

and linear
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Fig. 3 Behaviour of the residual norm ‖r(k)‖2 , isolation criteria σ (k), decision signal and confir-

mation window for some faulty situations
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translation
(

x(t)
)

of the chaser motions have been considered. Thus, the effects that

faults have on both the chaser attitude and translation motion, are taken into account.

Table 1 Detection and isolation times in seconds

Thruster No. 1 2 3 4 5 6 7 8

Detection time 1.1s 0.7s 0.5s 0.4s 0.4s 0.5s 0.7s 1.1s

Isolation time 2.8s 1.8s 2.1s 2.1s 1.3s 4.0s 2.1s 2.1s

4 Concluding Remarks

This paper has proposed an EA-based fault diagnosis approach to detect and isolate

thruster faults subject to time-varying delays induced by the thruster modulator unit.

The resulted residual generator is robust against the uncertain time variations (ap-

proximated in terms of unknown inputs) around the nominal delay. The key feature

of the proposed method is the use of a judiciously chosen linear model for the design

of the residual generator, i.e. a model that takes into account both the rotational and

translation dynamics of the spacecraft. This allows to propose a fault diagnosis solu-

tion with reduced computational burdens, which is a prior condition for an on-board

implementation. Nonlinear simulations from the ”high-fidelity” industrial simulator

show that despite the presence of measurement noises, delays in the thruster modu-

lator unit and spatial disturbances, the faults are successfully detected and isolated

in a reasonable time.
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