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Abstract  This paper presents a position control design for 

quadrotors, aiming to exploit the physical capability and maxim-

ize the full control bandwidth of the quadrotor. A non-cascaded 

dynamic inversion design structure is proposed for the baseline 

controller, augmented by an    adaptive control in the rotational 

dynamics. A new implementation technique is presented in the ref-

erence model and error controller; so that nonlinear states can 

be limited according to their physical constraints without caus-

ing any inconsistency. The    adaptive control is derived to com-

pensate plant uncertainties like inversion error, disturbances, 

and parameter changes. Simulation and flight tests have been per-

formed to verify the effectiveness of the designs and the validi-

ty of the approach. 

Nomenclature 

   Body frame 

   World frame, a leveled frame with user-defined x-axis deduced 

from NED frame 

    Propeller force constant 

    Propeller moment constant 

        Force produced by ith propeller 

        Torque produced by ith propeller 

 ⃑   Position vector of the C.G, resolved in frame W 
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 ⃑⃑  Velocity vector of the C.G, time derivative taken in frame W, re-

solved in frame W 

 ⃑⃑  Acceleration vector of the C.G, time derivative taken in frame 

W, resolved in frame W 

 ⃑⃑ ̇ Acceleration derivative vector of the C.G, time derivative taken 

in frame W, resolved in frame W 

    Rotation matrix, from frame B to frame W 

 ⃑⃑⃑   =[   ] , angular rates around x, y and z axis of frame B 

 ⃑⃑    Force vector in frame W 

   Total thrust, acting on the z axis of Frame B 

 ⃑    =[      ] , specific force vector denoted in frame B 

 ⃑⃑⃑   =[   ] , moments around x, y and z axis of frame B 

   Moment of inertia tensor with respect to the C.G 

 ⃑⃑    =[   ] , gravity vector 

   =[
   
   
   

], identity matrix 

             , normalized rotor rotation speeds 

1. Introduction 

Multirotor platforms have gained increasing interest as a research platform, due to 

its VTOL and hovering capabilities, easy construction and steering principle, as 

well as high maneuverability. The flight performance of conventional position 

controllers is relatively low. This can be observed by the performance difference 

between a quadrotor flown autonomously with the position controller and one 

with an angular rate controller but piloted by an experienced pilot. In the work [1, 

2], with the help of the Vicon system [3], they made highly aggressive maneuvers, 

however switching controllers are used to fulfill one trajectory, i.e., only attitude 

or rate controller is used during the aerobatic segment of the trajectory and after-

wards position control is activated to hover at the desired position. Design of one 

position controller to maximize and fully exploit the control bandwidth is of par-

ticular interest of the author. 

One well-known inherent property of the multi-rotor position dynamics is of 

non-triangular form, or strict-feedback form. For the used quadrotor platform, the 

motor RPM commands are the system inputs, which are derived from the total 

thrust and moment commands in the control allocation. At hovering condition, the 

z-axis position is actuated by the total thrust, which is second order dynamics, 

while x-y-axis position is actuated by the moments and it is four order dynamics. 

Hence the position dynamics has different system orders in different axis and they 

are strongly coupled, esp. at large attitude flight conditions. 
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In the companion paper [4], through comparison of seven structure designs us-

ing backstepping and dynamic inversion, non-cascaded dynamic inversion design 

is concluded to give the maximum control bandwidth, however, it is not applicable 

to system of non-triangular form. Many approaches [5, 6, 7] using cascaded struc-

ture neglect the interconnection of different loop by the time scale separation, 

therefore the overall bandwidth is reduced by the additional time delay. Previous 

efforts on non-cascaded design include the quasi-steady height assumption ap-

proach [8] and dynamic extension assumption in [9]. In [8], the height control and 

x-y-axis position control were separated, and quasi-steady height control was as-

sumed in order to decouple the x-y-position dynamics. However, for high angle 

high speed flight, height is often compromised to gain more force in the leveled 

plane. In [8], though only linearly approximated inversion was derived, there is an 

elegant modification: the thrust dynamics is artificially extended by two more sys-

tem order so that the position dynamics is turned into a triangular form (strict 

feedback form). This slows down the thrust dynamics but as no nested loops in the 

control system, the overall control bandwidth is increased. A chain is no stronger 

than its weakest link. For the quadrotor, the moment dynamics are relatively slow-

er than thrust dynamics, thus the weak link of the position control. 

In this paper, an exact dynamic inversion approach with non-cascaded structure 

is derived. All the nonlinearities including the translational and rotational nonline-

ar dynamics, are inverted (feedback linearized) in the inner loop and a thrust dy-

namic extension have to be used to transform the system into triangular form. The 

control design differs from previous works as there is no attitude parameterization 

in the control state. The acceleration is used to replace the attitude state. Not only 

can it include more information in the controller, but also the dynamic inversion 

gets much simplified. The detailed derivations are given in the section 2. 

For the implementation, a new technique is presented to incorporate the nonlin-

ear physical constraints into the linear controller. In addition, the    adaptive con-

trol [11] of piecewise constant type is augmented to compensate the uncertainties. 

Its derivation is given in section 3. Finally, this control design is verified in the 

simulation and flight tests in section 4, followed by the conclusion in the last sec-

tion. 

2. Exact Dynamic Inversion Design with Non-cascaded 

Structure 

Nonlinear dynamic inversion control [12] normally consists of three major blocks:  

1. Reference model: to generate smooth enough trajectory for the vehicle.  

2. Linear error controller: to account for inversion error and disturbance. 

3. Dynamic inversion: to transform the nonlinear plant to an equivalently lin-

ear one.  
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In the following sections, these three parts is designed and illustrated in details. 

The yaw axis has separated control as it is inherently decoupled from the position 

dynamics. Control allocation is presented at the end of the section. The following 

figure can give an overview of the whole control design, where the    augmenta-

tion loop is presented in section 3. 

 

Fig. 1. Overview of the control design 

2.1 Extended Translational Dynamics 

For small UAVs, a local leveled frame is often used as the inertial frame. In this 

case, the World frame is defined, which is the NED frame rotated around the ver-

tical axis by a user defined heading angle. The desired output is the position in the 

W frame. The position dynamic equation is extended to be actuated by the thrust 

2
nd

 derivative and angular accelerations. 

The following linear state vector is used for the translational control design, 

   [ ⃑  ⃑⃑   ⃑⃑  ⃑⃑ ̇]
  (1) 

The newton’s 2
nd

 law is used to derive the translational dynamic equation,  

  ⃑⃑      ⃑⃑ ̇          ⃑         ⃑            ⃑⃑  (2) 

The force  ⃑        is the thrust vector generated by the propeller normalized by 

the mass and can be assumed to be aligned with the z-axis of the Body frame. The 

normalized aerodynamic force  ⃑        mainly includes drag and wind disturb-

ances. 

In conventional control design with attitude as control state, the aerodynamic 

forces are often neglected. That is fine in indoor environment, but they are not 

negligible in outdoor environment or at high speed flight situation. In this design, 

as acceleration  ⃑⃑  is used as control state which can be measured by the accelerom-
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eter, the aerodynamic force is embedded and feedbacked to the error controller. 

The accelerometer measures the specific force  ⃑   in the Body frame, which is the 

sum of propeller force and aerodynamic force in Eq. (2). 

  ⃑   [

  
  
  

]  ([

 
 

 
 

 

]   ⃑       ) (3) 

As we will further extend the translational dynamics to the angular accelera-

tion, Eq. (2) needs to be further differentiated twice. The derivative of the aerody-

namics force has to be dumped as there is neither measurement nor analytical ex-

pression for it. Nevertheless, it is already better than the attitude feedback case. 

And the inversion error due to this will be compensated by the error controller.  

Dividing both sides of Eq. (2) by the mass and replacing the  ⃑        by the 

normalized thrust, we have,  

  ⃑⃑ ̇   ⃑⃑      [

  
  
  

]  [
 
 
 
]      [

 
 

 
 

 

]  [
 
 
 
] (4) 

Further differentiate the above equation, 

  ⃑⃑ ̈   ⃑⃑ ̇   ̇   [

 
 

 
 

 

]      [

 
 

 
 ̇

 

] (5) 

Using Euler differentiation rule, we have 

  ̇          ⃑⃑⃑      [

    
    
    

] (6) 

Inserting Eq. (6) into Eq. (5), 

  ⃑⃑ ̇      [

    
    
    

] [

 
 

 
 

 

]      [

 
 

 
 ̇

 

] (7) 

         ([
   
  
 

]  [
 
 
  ̇

])                          (8) 
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         [
    
   
    

] [

 
 

 ̇
]                         (9) 

Differentiating it one more time, angular accelerations appear explicitly in the 

equation. 

  ⃑⃑ ̈     [

    
    
    

]     [
    
   
    

] [

 
 

 ̇
]                                  

        [
   ̇  
 ̇   
   

] [

 
 

 ̇
]         [

    
   
    

] [

 ̇
 ̇

 ̈

] (10) 

         ([

      
     
     

]  [
   ̇  
 ̇   
   

]) [

 
 

 ̇
]                   

        [
    
   
    

] [

 ̇
 ̇

 ̈

] (11) 

         [

       ̇ 

       ̇ 

       

]         [
    
   
    

] [

 ̇
 ̇

 ̈

]          (12) 

         ([

       ̇ 

       ̇ 

       

]  [
    
   
    

] [

 ̇
 ̇

 ̈

])                         (13) 

As we can see, not only the angular acceleration appears explicitly, but also the 

thrust has been differentiated twice. That’s the analytical reason why we need to 

extend the thrust dynamics to its second derivative. With the derived dynamic 

equations, each block of the design in Figure 1 is explained from left to right in 

the following sections. 

2.2 Reference Model with Nonlinear State Limitations 

The reference model has two main functions: 1. Generate smooth enough signal 

for the plant to follow, or generate the reference dynamics based on given re-

quirement; 2. consider the physical plant constraints and limit the reference com-

mands. 
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To generate smooth enough reference signals, a 4
th

 order reference model is 

used (same dynamic order as the plant excluding actuator dynamics). The limita-

tions of the reference commands are not so simple. Two challenges arise while 

imposing the limits: 1. the easiest way to impose the limits is to limit the integrator 

states, which is fine with slow reference dynamics but will cause inconsistency be-

tween the states as soon as the limits are reached. This happens much more often 

when high bandwidth high system order signals are demanded; 2. The physical 

constraints are normally on the nonlinear states, so it is not accurate to impose 

them on the linear reference states. 

In this section, a novel and simple reference structure is designed to overcome 

both challenges mentioned above. Let’s first look at a conventional 4
th

 order low 

pass filter. The dynamic equations in Laplace domain and time domain are, (the 

footnote   refers to ‘reference signal’ and   refers to ‘commanded signal’) 

 {
 ⃑   

  

      
     

        
 ⃑  

 ⃑ ⃜      ⃑    ⃑       ⃑ ̇     ⃑ ̈     ⃑ ⃛ 

 (14) 

The parameters can be determined by pole placement method. All four poles 

are assigned to the same value ‘  ’, so that the reference error dynamics are crit-

ically damped. And also the gain tuning is reduced to one parameter ( ) tuning. 

For stability consideration, the reference dynamics should not be faster than the 

error dynamics. To have maximum control bandwidth, the parameter is tuned to 

be the same as that in the error dynamics. The gains can be assigned according to 

the characteristic equation in the Laplace domain. 

        
     

                              
 (15) 

The reference model can be considered as a problem of controlling a linear 4
th

 

order system (an integrator chain). The control law in Eq. (14) can be rewritten in 

the following form, 

  ⃑ ⃜    

{
 
 
 

 
 
 

  

  

{
 
 

 
 

  

  
[
  

  
  ⃑    ⃑   ⏟      

 ⃑⃑  

  ⃑ ̇ ]

⏟              
 ⃑⃑  

  ⃑ ̈ 

}
 
 

 
 

⏟                    
 ⃑⃑ ̇ 

  ⃑ ⃛ 

}
 
 
 

 
 
 

 (16) 

Break the Eq. (16) down, we have, 
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{
 
 
 

 
 
  ⃑⃑⃑   

  
  

( ⃑⃑⃑    ⃑⃑⃑  )

 ⃑⃑⃑   
  
  

( ⃑⃑⃑    ⃑⃑⃑  )

 ⃑⃑⃑ ̇  
  
  

( ⃑⃑⃑    ⃑⃑⃑  )

 ⃑⃑⃑ ̈    ( ⃑⃑⃑ ̇   ⃑⃑⃑ ̇ )

 (17) 

The control law appears to be four cascaded linear 1
st
 order control loops, but 

the feedback gains are still designed according to the non-cascaded control law as 

in Eq. (15), so the system bandwidth is not sacrificed by the apparent cascaded 

loops. With the above transformation, the state limits can be imposed on the 

commands, meaning only the maximum allowable state is commanded to the next 

loop. In this way, we end up with a pure integrator chain without any forced state 

limits. The implementation structure is,  

 

Fig. 2. 4
th
 order low pass filter with linear state limitation 

This only builds up the structure to impose linear state limits; however, the 

quadrotor have the physical constraints on the nonlinear states: 

1. The maximum speed, in our case, is about 10m/s. 

2. The maximum total thrust, depending on the propellers and motors. In our 

case, it is around 14N. 

3. The maximum angular rate, limited by the gyroscope sensor range. In our 

case, it is 400°/s. 

4. The maximum angular accelerations, limited by the max moments. In our 

case, the pitching and rolling moments are about 0.6 Nm, while the yawing 

moment is 0.1Nm. 

The dynamic inversion idea can be also applied here to impose the nonlinear 

state constraints. The limitation block of each ‘control loop’ have to be modified, 

first the nonlinear state (which has physical constraints) is computed from the lin-

ear one and set the limits, then invert the limited nonlinear state back the linear 

state.  

Regarding the constraint 1, both  ⃑   and  ⃑⃑   can be directly limited without any 

conversions. 

Regarding the constraint 2,  ⃑⃑   is converted to thrust by inverting Eq. (4). Then 

the thrust is limited and converted back to  ⃑⃑   using Eq. (4). 

   
               { ⃑⃑   [   ] } (18) 

Regarding the constraint 3, the  ⃑⃑ ̇  is converted to pitch & roll rate and thrust 

derivative by inverting Eq. (9),  
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    [

 
 

 ̇
]

 

 [
     

      
    

]     ⃑⃑ ̇  (19) 

After the angular rate is limited to the maximum gyro range, they are converted 

back. The thrust derivative doesn’t have any constraint. 

Regarding the constraint 4, the ‘feedforward control’  ⃑⃑ ̈  is converted to pitch & 

roll rate accelerations and thrust 2
nd

 derivative by inverting Eq. (13),  

   
    [

 ̇
 ̇

 ̈

]  [
     

      
    

](     ⃑⃑ ̈  [

       ̇ 

       ̇ 

       

]) (20) 

Then the resulting pitch and roll rate accelerations are limited based on the ac-

tuator constraints. Afterwards the limited states are converted back to  ⃑⃑ ̈  using Eq. 

(13). The thrust 2
nd

 derivative doesn’t have any constraints. The modifications on 

the above structure are illustrated as follows, 

 

Fig. 3. Nonlinear state conversion and limitations in the reference model 

In the inversion equations above, there is some nonlinear state information 

needed. They are not the real state but the reference state so they should be taken 

or computed from ‘the reference plant’, i.e. the integrator chain. The reference az-

imuth angle can’t be determined from the integrator chain. However, due to the 

symmetric geometry of quadrotors, the physical constraints in x-y-axis of the body 

frame are symmetric. So the reference azimuth angle can be regarded as zero 

when performing the inversion equations.  

Among the nonlinear reference state, the reference rotation matrix       needs 

a bit more effort to compute. With the azimuth angle set to be zero, it can be ex-

pressed by the pitch and bank angles, 

       [
                    

         
                     

] (21) 

The translational dynamic equation in Eq. (4) can be rewritten as, 

 [

  

  

  

]

   

       [
 
 
  

]  [
 
 
 
] (22) 
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 [

  

  

    
]

   

 [
        

    
        

]     (23) 

Solving the pitch and bank angles, the reference rotation matrix can be ex-

pressed by the reference acceleration, 

       

[
 
 
 
 
    

   

    

     

  

  

 
   

  

  

  

 
  

   

    

     

    

  ]
 
 
 
 

 (24) 

Where, 

 {
    √  

    
         

     √  
         

 (25) 

In the implementation, singularities at      and       can be easily avoid-

ed by bounding    away from [           ]. This boundary won’t affect the 

stability, as at      the vehicle is inverted and in real flight it seldom reach its 

vicinity and even in extreme case it will fly bypass this region quickly (e.g. flip-

ping). 

2.3 Error Controller 

The linear error controller mainly accounts for inversion errors and external dis-

turbances. In addition, the state limits should also be applied to the state com-

mands, similar with that of the reference model.  

The linear control law is designed as, 

    ⃑⃑ ̈   ⃑⃑ ̈    ( ⃑⃑ ̇   ⃑⃑ ̇)      ⃑⃑    ⃑⃑       ⃑⃑    ⃑⃑       ⃑    ⃑   (26) 

Where  ⃑⃑ ̇ can be computed using Eq. (7). We can calculate the transform func-

tion from the reference signal to the state output, assuming perfect plant model 

and ignoring actuator dynamics,  

  ⃑  
      

     
        

      
     

        
 ⃑   (27) 
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Similar with the reference model modification, we can rewrite the control law 

into the following form. One thing differs from the reference model is the feed-

forward reference commands. 

  ⃑⃑ ̈   ⃑⃑ ̈    

{
 
 
 

 
 
 

  

  

{
 
 

 
 

  

  
[
  

  
  ⃑    ⃑    ⃑⃑  ⏟          

 ⃑⃑  

  ⃑⃑ ]   ⃑⃑  

⏟                    
 ⃑⃑  

  ⃑⃑ 

}
 
 

 
 

  ⃑⃑ ̇ 

⏟                              
 ⃑⃑ ̇ 

  ⃑⃑ ̇

}
 
 
 

 
 
 

 (28) 

 

{
 
 
 

 
 
  ⃑⃑⃑   

  
  

( ⃑⃑⃑    ⃑⃑⃑ )  ⃑⃑⃑  

 ⃑⃑⃑   
  
  

( ⃑⃑⃑    ⃑⃑⃑ )  ⃑⃑⃑  

 ⃑⃑⃑ ̇  
  
  

( ⃑⃑⃑    ⃑⃑⃑ )  ⃑⃑⃑ ̇ 

 ⃑⃑⃑ ̈    ( ⃑⃑⃑ ̇   ⃑⃑⃑ ̇)  ⃑⃑⃑ ̈ 

 (29) 

In the above equation, the reference signals are within the state limitations, but 

not the error feedback signals. So in order to avoid giving out-of-bound com-

mands due to the error dynamics, intermediate state constraints should be applied 

here again, specifically on  ⃑⃑  ,  ⃑⃑   and  ⃑⃑ ̇ . The velocity command can be directly 

limited while the  ⃑⃑   and  ⃑⃑ ̇  are converted to the commanded thrust and angular 

rate using Eqs. (18) and (19). Then limits are applied according to their physical 

constraints, and afterwards they are converted back to the linear state commands. 

To provide good accuracy and robustness, pole placement method is used here 

for simple gain tuning, same as in Eq. (15), 

 

{
 
 
 

 
 
 

  
  

  
 

  
  

   
 

  
  

   
 

     

 (30) 

2.4 4th
 Order Translational Dynamic Inversion 

Eq. (13) gives the fourth derivative of the position. By inverting it, we have the 

following commands, 
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 [

 ̇
 ̇

 ̈

]

 

 [
     

      
    

](     ⃑⃑ ̈  [

       ̇ 

       ̇ 

       

]) (31) 

In the implementation, the acceleration 2
nd

 derivative  ⃑⃑ ̈ is the pseudo control   

resulting from the error controller. The thrust   can be approximated by      

from the accelerometer. Thrust derivative  ̇ is the only signal in the equation that 

doesn’t have any measurement, but it can be taken from the thrust dynamic exten-

sion. In this way, the thrust command is stabilized by the feedback. 

 [

 ̇
 ̇

 ̈

]

 

 [
    

   

  
    
    

]

(

 
 
      

[
 
 
 
      

  ̇ 

 

     
  ̇ 

 

    
     

 ]
 
 
 
 

)

 
 

 (32) 

After the translational dynamic inversion, the command pitch and bank rate ac-

celerations then go to the rotational dynamic inversion and the thrust command is 

generated by integrating  ̈ twice, as shown in Fig. 1. 

       
 

  
 ̈     (33) 

2.5 Heading Controller and Rotational Dynamic Inversion 

Dynamic inversion control can be also applied to heading angle control, but singu-

larity will be introduced [7]. Considering the yaw dynamics are relatively slow 

and inherently decoupled from position dynamics for quadrotors, cascaded linear 

controller is enough for the control purpose. 

  ̇    [          ] (34) 

The well-know rotational dynamic equation is, 

  ⃑⃑⃑ ̇       ⃑⃑⃑       ⃑⃑⃑     ⃑⃑⃑  (35) 

Together with the pitch and roll angular accelerations commands from Eq. (32), 

the desired moments can be computed by inverting the rotational dynamic equa-

tion, 

  ⃑⃑⃑      ⃑⃑⃑ ̇   ⃑⃑⃑     ⃑⃑⃑  (36) 
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2.6 Control Allocation 

The control allocation allocates the commanded total thrust and moments to the 

individual thrust of each motor, and then the RPM of each motor. Quadratic rela-

tionship is often assumed between the motor thrust and motor RPM. The mapping 

equations are, 

 [

 
 
 
 

]  [

     
     

          

    

]

[
 
 
 
       

       

       

       ]
 
 
 

 (37) 

 {
             

 

                  
 (38) 

The normal control allocation equation is obtained by inverting the mapping 

equation using the thrust and moment commands, 

 

[
 
 
 
       

       

       

       ]
 
 
 

 

 
 

 

[
 
 
 
 

        
   

        
   

         
   

       
   ]

 
 
 
 

[

 
 
 
 

]

 

 (39) 

      √
         

  
 (40) 

The above allocation works well in the nominal range. However, when there is 

not enough control power to provide enough thrust and moments simultaneously, 

priorities should be defined. Optimization is not necessary for quadcopter, as there 

is no redundancy in the system. 

In general, the pitching and rolling moments have the top priorities as they 

control the direction of the thrust vector. After that the magnitude of the thrust 

vector has second priority, and last is the yawing moment.  

Step 1, for the pitching and rolling moments only the hardware limit is im-

posed,  

 {
               
               

 (41) 

Step 2, for the total thrust, not only the hardware limit is imposed, but also the 

pitching and rolling moments limits are considered. By imposing the limits, the to-

tal thrust is dynamically limited by the pitching and rolling moments. 
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 {
         

   (|
   

 
|  |

   

 
|)           (|

   

 
|  |

   

 
|)

 (42)  

Step 3, for the yawing moments, the limits comes from the physical limits and 

the other three control inputs  

 {
               

   (|
   

 
|        |

   

 
|    )  

  

  
    (   |

   

 
|        |

   

 
|)

 (43) 

3.    Adaptive Augmentation 

The    adaptive scheme is chosen here because for an agile platform like the 

quadrotor quick adaptation with good transient performance is essential for its ro-

bustness; and    Adaptive control [11] has guaranteed fast adaptation as well as 

transient response without persistence excitation. 

One distinct advantage of combined design of baseline controller plus adaptive 

augmentation is that the adaptive controller doesn’t need to care about desired dy-

namics or the system matrix, because it has been assigned properly by the baseline 

controller, which can make good use of the known plant knowledge. The    adap-

tive controller only needs to compensate for plant uncertainties including inver-

sion error, disturbances and parameter changes. However, if very little plant 

knowledge is known, full adaptive controller maybe be more appropriate, such as 

in the work [13] where a    adaptive attitude controller was developed. One major 

difference between the full adaptive controller and the combined approach is the 

control bandwidth. The control bandwidth of the baseline controller is only limited 

by the actuator dynamics, while the adaptive controller has to take the transient 

dynamics of the adaptation into account. In the combined approach, only the aug-

mented adaptive control has to be filtered by the    filter      but not the baseline 

control output. The bandwidth of      has to satisfy the    condition [11]. 

In this design, the    adaptive controller is implemented on the rotational dy-

namics, based on the following two reasons, 

1. Most of the quadrotor uncertainties appear in the rotational dynamics and 

control allocation, e.g., the moment of inertia, the motor and propeller pa-

rameters. 

2. The best available sensor on the quad is often the gyroscope. Other con-

ventional sensors include accelerometer, pressure sensor, magnetometer 

and GPS, which are either very noisy or with bad accuracy. 

First let’s recall the dynamic equations from the angular accelerations  ⃑⃑ ̇ to the 

system RPM inputs, 

  ⃑⃑ ̇      ⃑⃑⃑      ⃑⃑     ⃑⃑   
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 [
 
 
 
]  [

     
     

          

]

[
 
 
 
 
     

 

     
 

     
 

     
 ]
 
 
 
 

 (44) 

We can rewrite them in the following form, 

 [
 
 
 
]  [

      
      
    

]

⏟              
   

[

  
    

 

  
    

 

  
    

    
    

 

]

⏟            
  

        (45) 

  ⃑⃑ ̇                  ⃑⃑     ⃑⃑  (46) 

In the above dynamic equation, the parameters (like   and    ) are the true pa-

rameters. While in the implemented control allocation and rotational dynamic in-

version, the estimated parameters with nominal values (denoted as  ̂ and  ̂  ) are 

used to compute the system inputs from the commanded angular acceleration  ⃑⃑ ̇  

given by the dynamic inversion controller. 

     ̂  
  ( ̂   ⃑⃑ ̇   ⃑⃑   ̂   ⃑⃑ ) (47) 

  ̂  
   [

 ̂ 
        

  ̂ 
       

   ̂ 
  

] (48) 

Substitute the above equation in the dynamic equation in Eq. (46), 

  ⃑⃑ ̇         ̂  
  ( ̂   ⃑⃑ ̇   ⃑⃑   ̂   ⃑⃑ )       ⃑⃑     ⃑⃑  (49) 

  ⃑⃑ ̇         ̂  
   ̂   ⃑⃑ ̇     (    ̂  

    ⃑⃑   ̂   ⃑⃑   ⃑⃑     ⃑⃑ ) (50) 

We can summarize the uncertainties together, 

  ⃑⃑ ̇   ⃑⃑ ̇    ⃑   (51) 

   ⃑   (       ̂  
   ̂   ) ⃑⃑ ̇     (    ̂  

    ⃑⃑   ̂   ⃑⃑   ) ⃑⃑  (52) 

The    adaptive element should estimate the uncertainties   ⃑   and augment 

the baseline control  ⃑⃑ ̇  by an adaptive control  ⃑⃑ ̇  for the commanded angular ac-

celeration. The baseline control gives the desired dynamics and the adaptive con-

trol compensates the uncertainties. 

WeBT2.4

305



16  

  ⃑⃑ ̇   ⃑⃑ ̇   ⃑⃑ ̇  (53) 

To estimate the   ⃑  , the following state predictor is considered, 

  ⃑⃑ ̇̂   ⃑⃑ ̇    ⃑ ̂      ⃑⃑ ̃ (54) 

Where the prediction error and parameter error are defined as 

 {
 ⃑⃑⃑ ̃   ⃑⃑⃑ ̂   ⃑⃑⃑ 

  ⃑ ̃    ⃑ ̂    ⃑  
 (55) 

The error dynamics can be derived by subtracting Eq. (55) by Eq. (51), 

  ⃑⃑⃑ ̇̃    ⃑ ̃      ⃑⃑⃑ ̃ (56) 

Following a similar argument as in Section 3.3 of [14], one can derive the up-

date law of piecewise constant type, 

   ⃑ ̂  (        )
  

    
      ⃑⃑⃑ ̃ (57) 

Where    is the adaptation update rate, which is limited by the hardware con-

straints [10]. In our quadrotor case, it is 1 millisecond. The adaptive control law is, 

  ⃑⃑⃑ ̇         ⃑ ̂  (58) 

where      is a low pass transfer function. Its bandwidth is limited by the dy-

namic bandwidth of the quadrotor and thus designed accordingly. In the imple-

mentation, a first order low pass filter is used, with time constant of 0.1s at the x-

y-axis and 0.5s at the z-axis. 

4. Experimental Results 

The control design is verified in an indoor stereo web-camera tracking system [5], 

which can provide 25 Hz position signal with accuracy about 10 cm and latency 

about 100 ms. The quadrotor used is the ‘Hummingbird’ from Ascending technol-

ogy [15]. The flight test results are given in the following figure. However, there 

are motion blur problems at high speed flight due to the low update rate of the 

webcams. Hence, GPS flight test is planned to break the speed limit. GPS flight 

test data will be presented in the final version. 
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The position tracking results of the baseline dynamic inversion control is 

shown in Fig. 4(a-b). A figure 8 trajectory was commanded and the reference po-

sition signals can be precisely tracked at high bandwidth. One interesting aspect in 

the implementation is that the accelerometer measurements in the x-y-axis of 

Body frame need to be filtered and bounded, because the quadrotor compensates 

the disturbing force in x-y-axis of Body frame by pitching down. For instance, 

when the quadrotor hits the wall or being pushed, the controller will try to over-

come that by pitching down, and if the feedback is not bounded it will pitch over 

90 degree. The feedback of x-y-axis accelerometer measurement is especially 

beneficial to account for aerodynamic drag and steady wind disturbance. In this 

case, they are filtered and bounded to      , considering the aerodynamic drag at 

maximum cruise speed is        . 

The    adaptive control is demonstrated by hanging a 180g mass under one tip 

of the quadrotor arm and then cutting if off. both actions are during the flight. 

Considering the desired payload is only 200g, the mass add quite large moment to 

the quadrotor, almost 50% of the maximum actuated moment. Given the arm 

length of the quadrotor   and the disturbance mass   , the true adaptive parame-

ter, the angular acceleration due to the mass disturbance, can be approximately 

computed,  

  ⃑⃑⃑ ̇   
  

 

   
 

    

   
 

              

     
        (59) 

The augmented adaptive control signals are shown in Fig 4(d). We can clearly 

see the quick adaptation of the signals, especially when the hanging mass was cut 

off at 393s, the adaptive parameter  ⃑⃑⃑ ̇    is adapted instantaneously to the true val-

ue and almost no transient behavior can be observed. 

 
(a) Position Tracking in x axis 
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(b) Position Tracking in y axis 

 

(c)    Augmented adaptive control  ⃑⃑⃑ ̇  

Fig. 4. Experimental Results 
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5. Conclusion 

The designed position controller can give the good performance in the state track-

ing accuracy, uncertainty adaptation and control bandwidth. The dynamic inver-

sion is extremely efficient with the thrust dynamic extension. The technique to in-

corporate the nonlinear state limitations in the reference model and error controller 

can prevent out-of-bound commands to the plant and sensors and thus increase the 

robustness of the control system. The augmented    adaptive control is able to 

quickly compensate the system uncertainties, like inversion error, parameter 

changes and external disturbances. 

To further increase the control bandwidth, instead of the linear feedback con-

trol, time optimal control may be an option. 
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