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Abstract  This paper presents a comparison between different control 

designs using Nonlinear Dynamic Inversion (NDI) and Backstepping meth-

odologies. Most of control design variations of the two mentioned methods, if 

not all, are concluded here. Similarities and differences are compared not on-

ly between NDI and Backstepping, but also between different designs of the 

same method, where the output tracking error dynamics are used as an im-

portant criterion for the comparison. Due to the high maneuverability and 

agility of the quadrotor, the control bandwidth of the designs is of particular 

interest, which is related to the requirement on the Time Scale Separation 

(TSS) in the control system. Through the comparison, the related issues are 

clarified, e.g. if the additional Backstepping term reduces the TSS compared 

with the NDI designs; which control designs have the highest control band-

width.  The attitude control of a quadrotor is used as an example system to 

explain and verify the comparison. 

Nomenclature 

[     ] Euler angles, bank, pitch and azimuth angle respectively 

 ⃗⃗⃗   =[   ] , angular rates around x, y and z axis of frame B 

 ⃗⃗⃗   =[   ] , total moments around x, y and z axis of frame B 

   Total thrust of the quadrotor 

   Moment of inertia of the C.G: point 

    Diagonal gain matrices used in dynamic inversion designs 

    Diagonal gain matrices used in Backstepping designs 

    Reference command 
        Desired state,           

 ̂       Estimated desired state by low pass filter 

         , Output tracking error 

             , Backstepping error 
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1. Introduction 

Quadrotor helicopters have gained increasing interest as research platforms for its 

VTOL and hover capabilities and extremely good robustness. Backstepping [1] 

and Nonlinear Dynamic Inversion [2] are two of the most popular nonlinear con-

trol methods to be applied on quadrotors. As the two methods are very similar and 

in some case result the same control law, a comparison is worthwhile to analyze 

the pros and cons of each design. 

Previous effort on quadrotor control using these two methods includes cascad-

ed NDI designs [3-5], non-cascaded NDI designs [6-7] and cascaded Backstep-

ping design [8-10] and Backstepping designs using command filters [11]. Farrell 

[12] introduced an additional compensation term to the Backstepping design using 

command filters, named ‘Command Filtered Backstepping (CFB)’. There are also 

studies on the comparison of some particular applications of these two methods. 

For instance in [13], the block Backstepping and cascaded NDI are compared. 

However, this paper aims to make a complete comparison of different types of 

control design structures and generalize the disadvantages and advantages. The 

control bandwidth is of particular interest, which is limited by the actuator dynam-

ics, sensor availability and quality, and possibly reduction of bandwidth  induced 

by the control design (e.g. TSS needed with cascaded control design). The objec-

tive is to reduce or eliminate the reduction of bandwidth due to the control design 

as much as possible, and to design a controller for the quadrotor with high control 

bandwidth as well as adequate robustness. 

In total there are two types of NDI designs and five types of Backstepping de-

signs. They are listed as follows, 

a) Non-cascaded NDI design 

b) Analytical Backstepping with linear state feedback 

c) Analytical Backstepping with nonlinear state feedback 

d) Cascaded NDI design 

e) Cascaded Backstepping design 

f) Backstepping using command filter 

g) Command filtered Backstepping 

In this work, the attitude control of a quadrotor is used to apply all the seven 

designs because first, all the seven designs can be realized on it; second, it is the 

most common and well-known system, clear comparison can be made. From the 

other direction, it is also make sense to use nonlinear control strategies on the atti-

tude control of a quadrotor. Linear PID control only works well in the near hover-

ing condition, but as soon as large attitude angle flight is demanded, nonlinear 

control would outperform the linear control in the nonlinear region. 

In section 2, a brief introduction on the attitude dynamics of the quadrotor is 

given. Detailed derivations of all designs and their comparison are illustrated in 

section 3, followed by the simulation and experimental results in section 4. Final-

ly, the conclusion is given in the section 5. 
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2. System Representations 

2.1 Systems of Strict-feedback Form 

System of feedback form [14-15], also called lower triangular form, is a special 

class of system referring to the structure of the system dynamic equations. A sub-

class of system is the strict-feedback form [14-15], which has affine system inputs 

in each dynamic equation. For a second order dynamic system, the following gen-

eral form is used, 

 {
 ̇    (  )    (  )  
 ̇    (     )    (     ) 

 (1) 

The seven control designs can be all applied to system of strict-feedback form, 

but the first three non-cascaded methods might not be able to be applied on system 

of other forms. For the system of strict-feedback form, the derivatives of    and 

   normally exist and can be expressed analytically. Design c) Analytical Back-

stepping with nonlinear state feedback can be directly applied, while the design a) 

and b) need a system transformation in the form (2) to be applicable. This system 

transformation is equivalent with the original system, just another representation. 

The nonlinear state    could be replaced by a linear state    with respect to the 

output state   , 

 {
 ̇    

 ̇   ̈  
 

  
(       )   ̇   ̇       ̇ 

 (2) 

And from Eq. (1), we have, 

 {
     

  ( ̇    )

 ̇        
 (3) 

Substituting the above equation into the Eq. (2), we have the new transformed 

system represented as follows, 

 {
 ̇    

 ̇        
 (4) 

where, 

 {
    ̇   ̇   

  ( ̇    )      
       

 (5) 
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If the system doesn’t preserve the strict-feedback form, e.g. the system function 

   or    is a function of the inner state    or even the input  . Hence, the deriva-

tive of    or    might not be available from measurements or even not exist. For 

this reason, the designs a), b), and c), which need the analytical expression of the 

function derivatives, have to apply on system of strict-feedback form. The latter 

four designs however can be applied to a wider range of systems, as they use low 

pass filters to estimate the intermediate controls instead of analytical expression 

containing the derivatives of    and   . 

It makes sense to use system of strict-feedback as an example so that all the 

seven designs can be applied on the same system. The attitude dynamic system is 

of the strict-feedback form, and it can be expressed in the above two system 

forms. The dynamic equations are derived in the next section. 

2.2 Attitude Dynamics of the Quadrotor 

The system output is the attitude [     ] and the input is the moments. 

The control allocation after the controller maps the moments to the motor RPM 

commands. The mapping details can be found in [8]. Conventional Euler angles 

are used in the attitude dynamic formulation. The attitude propagation equation 

from angular rates to the attitude derivatives is, 

 [
 ̇
 ̇
 ̇

]  [

                 
          

 
    

    

    

    

] [
 
 
 
] (6) 

The inverse equation is easy to calculate, 

 [
 
 
 
]  [

       
             
              

] [
 ̇
 ̇
 ̇

] (7) 

The rotational dynamic equation of motion is well-known, 

  ⃗⃗⃗ ̇       ⃗⃗⃗       ⃗⃗⃗    ⃗⃗⃗  (8) 

Similar with previous section, the attitude dynamic system can be written as 

Eq. (1), 

 {
 ̇         
 ̇        

 (9) 

Where, 
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{
 
 

 
 
   [   ] 

   [   ] 

   ⃗⃗⃗ 

       
     

    ⃗⃗⃗    ⃗⃗⃗ 

 (10) 

 

{
 
 
 
 

 
 
 
 
   [

                 
          

 
    

    

    

    

]

  
   [

       
             
              

]

    
  

  
    

 (11) 

The above system can be also rewritten in the same form as Eq. (2). Further 

differentiating the Eq. (6), the second derivative of the Euler angles can be propa-

gated from the angular accelerations. And the angular rates can be represented by 

the attitude derivative using Eq. (7). We have, 

 [
 ̈
 ̈
 ̈

]  

[
 
 
  ̇ ̇      

 ̇ ̇

    

  ̇ ̇     
 ̇ ̇

    
  ̇ ̇     ]

 
 
 

 [

                 
          

 
    

    

    

    

] [
 ̇
 ̇
 ̇

] (12) 

Summarizing the dynamic equations we have the transformed system, 

 {
 ̇    

 ̇        
 (13) 

Where, 

 

{
 
 

 
 
   [ ̇  ̇  ̇]

 

   

[
 
 
  ̇ ̇      

 ̇ ̇

    

  ̇ ̇     
 ̇ ̇

    
  ̇ ̇     ]

 
 
 

 [

                 
          

 
    

    

    

    

]       ⃗⃗⃗    ⃗⃗⃗ 
 (14) 
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{
 
 

 
 
   [

                 
          

 
    

    

    

    

]    

  
    [

       
             
              

]

 (15) 

3. NDI and Backstepping Control Designs 

3.1 a) Non-cascaded NDI Design  

The non-cascaded NDI design structure requires the system matrix to be in 

companion form [2], i.e., the transformed system in Eq. (13). The relative degree 

is two. 

For the 2
nd

 order attitude control loop, a PD controller for the linear error dy-

namics is used. Hence we have the following control law, 

 {
   ̈      ̇     

    
  (     )

 (16) 

Where, 

 {
        
 ̇   ̇    ̇   ̇     

 (17) 

where     is the reference attitude command and   is the pseudo control 

[ ̈  ̈  ̈ ]
 . The detailed dynamic inversion equations are derived. The non-

linear dynamics are inverted in two steps. First, the commanded angular accelera-

tion is calculated using the pseudo control signal  , 

 ⃗⃗⃗ ̇  [

 ̈   ̈       ̇ ̇     

 ̈       ̈           ̇ ̇           ̇ ̇       ̇ ̇         

  ̈       ̈           ̇ ̇           ̇ ̇       ̇ ̇         

] (18) 

Then the system input, the moments, is calculated from the commanded angu-

lar acceleration, 

  ⃗⃗⃗    ⃗⃗⃗ ̇   ⃗⃗⃗    ⃗⃗⃗  (19) 
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3.2 b) Analytical Backstepping with Linear State Feedback 

In every step of Backstepping derivations, there is a virtual control, whose de-

rivative is required in the next step. Analytical Backstepping means these deriva-

tives are solved analytically, not estimated by low pass filters [1]. Backstepping 

results in slightly different control laws on the original system representation and 

the transformed system in companion form. It uses nonlinear state feedback when 

applying it on the original system and linear state feedback on the transformed 

system. 

We look at the Backstepping case with linear state feedback first. For the trans-

formed system, the following Lyapunov function and control law is derived [1], 

 {
  

 

 
    

 

 
  
   

            
 (20) 

 {

        ̇      

   ̇            
    

  (     )

 (21) 

The Backstepping method has its own defined error dynamics (different from 

the tracking error dynamics), 

 {
 ̇         
 ̇         

 (22) 

The control law of Eq. (21) can be further derived by analytically solving the 

 ̇      and inserting the    expression, 

  ̇       ̈      ̇ (23) 

 {
   ̈   (     ) ̇  (      ) 

    
  (     )

 (24) 

In this case the Backstepping control ends up with exactly the same dynamic 

inversion equation as in design a). Both designs can have the same linear error dy-

namics, given the same PD gains. This is the case when Backstepping end up the 

same with NDI design of full relative degree, giving two conditions: a) the same 

linear controller is used; b) the plant nonlinearities are fully feedback linearized in 

the inner loop, meaning no partial inversion in cascaded loops and no useful non-

linearities are kept by the Backstepping method. 

The tracking error dynamics for both control designs can be derived by assum-

ing perfect plant model and ignoring the actuator dynamics, i.e.,    ̈  
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 {
 ̈      ̇     

 ̈   (     ) ̇  (      ) 
 (25) 

Both control designs can achieve the optimal behavior of the tracking error   

by assigning appropriate gains. For a second order system, the gains can be as-

signed by the natural frequency   and relative damping  : 

 {
            

   (      )   
  (26) 

 [
 ̇
 ̈
]  [

  
      

] [
 
 ̇
] (27) 

3.3 c) Analytical Backstepping with Nonlinear State Feedback  

Applying Backstepping on the original system representation, the nonlinear 

states [    ] will be used as feedback. Following the standard backstepping 

procedure [1], we can obtain the Lyapunov function and the control law, 

 {
  

 

 
    

 

 
  
   

            
 (28) 

 {
         

  (     ̇      )

    
  (     ̇        

       )
 (29) 

The resulting Lyapunov function derivative and the Backstepping defined error 

dynamics are,  

  ̇           
      (30) 

 {
 ̇           
 ̇          

  
 (31) 

It is difficult to compare the control designs if the errors are defined differently, 

so the tracking error dynamics is derived. From Eq. (31), we have, 

      
  ( ̇     ) (32) 

Differentiating the first error equation in Eq. (31) 

  ̈      ̇   ̇       ̇  (33) 
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Inserting  ̇  into Eq. (33),  

  ̈      ̇   ̇      (        
  ) (34) 

Substituting     from Eq. (32), 

  ̈      ̇   ̇   
  ( ̇     )    (     

  ( ̇     )    
  ) (35) 

Re-organize the above equation, 

  ̈  (        ̇   
  ) ̇  (       ̇   

         
 )  (36) 

 [
 ̇
 ̈
]  [

  
       ̇   

         
         ̇   

  ] [
 
 ̇
] (37) 

Though in Eq. (30) the Lyapunov function derivative is made negative semi-

definite, the control law doesn’t cancel the plant nonlinearities completely. The 

nonlinear function    and its derivative still appear in the tracking error dynamic 

equations. Hence the tracking error convergence behavior does not purely depend 

on the feedback gains, but also on the function   . So overshoot or over damped 

situation may still occur even optimal gains are assigned as in Eq. (26).  

The performance of this backstepping approach can vary dramatically depend-

ing on the magnitude and dynamics of the function   . For the presented attitude 

dynamics, the function    as in Eq. (11) has small contribution in the error dy-

namics: 1. the mean determinate of    is one, which is the strap-down matrix and  

is rather small compared with the feedback gains; 2. It is a function of the Euler 

angle so it has slower dynamics compared with the rate dynamics and thus its de-

rivative is also relative small. There are state space models where    has a signifi-

cant magnitude and could ruin the performance or even destabilize the closed-

loop. For example, in the longitudinal dynamics when the load factor is used as 

outer state and pitch rate as the inner state, the function    is of a magnitude of 

10. In the error dynamic equation, the term     
  is of a magnitude of 100.  

3.4 d) Cascaded NDI Design  

Cascaded structure design is simple and straightforward, but TSS of 3-5 times 

is required between the cascaded loops. The control design is applied on the trans-

formed system. The outer loop control is straightforward, 

         ̇       (38) 
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Then a low pass filter, named inner loop reference model, is used on the outer 

loop output        to generate smooth inner loop command, 

  ̇̂         (        ̂     ) (39) 

Lastly the inner loop control law can be designed, 

 {
   ̇̂        ( ̂        )

    
  (     )

 (40) 

The control law is manipulated to have similar form as the previous control de-

signs, 

      (        ̂     )    ( ̂        )                       (41) 

  (     )(        ̂     )    (         ) (42) 

  (     )(        ̂     )    ( ̇     )      (43) 

Tracking error dynamics can be derived, 

  ̈     ̇         ̈   (     )(        ̂     ) (44) 

So the tracking error dynamics have additional term compared with the first 

two designs a)&b), the differential equation is not homogenous any more. Perfor-

mance degradation is expected. 

The bandwidth of the inner loop reference model and the error dynamics can be 

the same, i.e.      . In that case, we have 

     ( ̇     ) (45) 

  ̈     ̇         ̈   (46) 

The feedback gains can be calculated using the natural frequency and relative 

damping for this second order system, 

            
 

  
 (47) 

The TSS is normally set to 3-5 times. This requirement can be directly seen 

from the inner loop/outer loop gain ratio 
  

  
   , for instance, with critical damp-

ing of 1, the TSS is 4 times. 
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As we have a linear outer loop, the resulting equation is not so complicated. If 

the outer loop is nonlinear the error dynamics will have more residual terms. 

However, the concept of TSS is the same for both cases. 

3.5 e) Backstepping with Cascaded Structure  

Appling the Backstepping with cascaded structure on the same system repre-

sentation, exactly the same control law as the cascaded NDI design can be de-

rived, given the same feedback gains. Hence the derivation is omitted here. 

3.6 f) Backstepping with Command Filter  

The same system representation is also used for this design. 

Backstepping with command filter use the same derivation steps as in design 

b), however, the virtual control derivative        is not calculated analytically but 

estimated as  ̂      by a command filter.  

 

{
 
 

 
 
        ̇      

 ̇̂        (        ̂     )

   ̇̂          ( ̂        )

    
  (     )

 (48) 

Due to the estimation error of the filter, the Lyapunov function is violated. 

With the above control law, the Lyapunov function derivative is not negative 

semi-definite any more, 

 {
  

 

 
    

 

 
( ̂        )

 
( ̂        )

 ̇         ( ̂        )
 
  ( ̂        )   

 (        ̂     )
 (49) 

Similar tracking error dynamics can be derived and they are almost the same as 

the design d) and e), 

  ̈     ̇  (      )   ̈   (     )(        ̂     ) (50) 

We can see the error dynamics can be exactly the same as in the cascaded de-

signs d) and f), given the same feedback gains and filter gain 
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 {

     
           
     

 (51) 

To better analysis the effect of filter bandwidth, the error dynamics are written 

in Laplace domain as below.  

         ̂      
 

    
       

 

    
(        ) (52) 

 (             )   
     

     

    
(          ) (53) 

 [   (     )        ]  
    

    
(          ) (54) 

If the filter bandwidth is the same as the intermediate feedback, i.e.     , 

the tracking error dynamics become the same as the cascaded control designs d) 

and e). If the filter bandwidth is extremely large, the error dynamics can be ren-

dered to be the same as in design a) and b). However, the filter bandwidth is lim-

ited by the sensor noise and actuator dynamics. Hence the performance of this 

control design is expected to be similar with designs d) and e). the TSS is needed 

and control bandwidth is compromised.  

3.7 g) Command Filtered Backstepping  

In design f), the Lyapunov function derivative can only be rendered negative 

semi-definite by neglecting the estimation error, i.e.         ̂     . However, de-

pending on the filter bandwidth, there is always an unachieved portion of       . 

Command filtered Backstepping [12] introduces a modification trying to compen-

sate the unachieved portion. 

A new Lyapunov function candidate is defined as 

 {
  

 

 
(   ) (   )  

 

 
( ̂        )

 
( ̂        )

 ̇       (        ̂     )
 (55) 

In the control law, the compensated tracking error provide one additional term 

  in the final control law compared with design f). 
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{
 
 

 
 
        ̇      

 ̇̂        (        ̂     )

   ̇̂            ( ̂        )

    
  (     )

 (56) 

By the above modification, the Lyapunov function derivative can be rendered 

negative semi-definite,  

  ̇   (   )   (   )  ( ̂        )
 
  ( ̂        ) (57) 

The Backstepping defined error dynamics is modified accordingly, 

 {
( ̇   ̇)     (   )  ( ̂        )

( ̇̂       ̇ )     ( ̂        )  (   )
 (58) 

To derive the tracking error dynamics, we can differentiate the first equation,  

  ̈   ̈     ( ̇   ̇)  ( ̇    ̇ ) (59) 

Replacing the ( ̇̂       ̇ ) and ( ̂        ) terms,  

  ̈   ̈     ( ̇   ̇)    ( ̂        )  (   )                                 (60) 

     ( ̇   ̇)    [( ̇   ̇)    (   )]  (   ) (61) 

Reorganize it, 

  ̈  (     ) ̇  (      )   ̈  (     ) ̇  (      )  (62) 

In Laplace domain,  

 [   (     )  (      )](   )    (63) 

The tracking error dynamics is not as good as in design a) and b), but it gives a 

homogenous form. The effect of   is analyzed in the next section  

4. Comparison in Simulation and Experiments 

As all the first three designs use analytical solutions, they can be analytically 

compared together. The first two design a) and b) gives the perfect linear error dy-
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namics, which should result the best performance. Design c) gives state dependent 

error dynamics; the performance of the tracking error   depends on the nonlinear 

function    hence not consistent, esp. when the     
  or  ̇   

   are comparatively 

large. 

 {
 )  )   ̈                  ̇            

 )           ̈  (     ) ̇         ̇   
  ( ̇     )      

  
 (64) 

The last four designs all have low pass filter in the control law design, i.e. addi-

tional dynamics is introduced, so analytically comparisons are not so straightfor-

ward. Nevertheless, there are still a few obvious observations: 1) design d) & e) 

give the same control law; 2) The low pass filter and the output state control are 

the same for all designs; 3) There is only one term difference between the designs, 

as shown in the following equation, 

 {

 )  )     ̇̂        ( ̂        )

 )            ̇̂          ( ̂        )

 )            ̇̂            ( ̂        )

 (65) 

In order to clearly observe the differences of the control designs, the sensor 

noise is turned off and only actuator dynamics is considered in the simulation. The 

same reference signals are used for all designs, i.e. the reference signal demand 

the same control bandwidth. Second order low pass filter is used to generate 

smooth reference command with relative damping of   1 and natural frequency 

of   10. The control designs with larger control bandwidth should have better 

performance in terms of overshoot and rise time. So the performance differences 

can be directly compared.  

For design d)-g), which use low pass filter in the design, two set of gains has 

been used, I. assume no TSS needed, and II provide 4 times TSS. The control 

gains for all designs are listed as follows, 

 

Actuator Dynamics   ( )  
  

    
  

Design a) & b)         ;     
      

Design c)      ;       

Design d)-g) – I      ;      ;          

Design d)-g) – II       ;      ;          

Table 1, gain design for the simulations 

The simulated tracking performance for a step command is shown in the Fig. 1 

and Fig. 2. It can be seen that design a), b), and c) gives almost the same best per-

formance; while design d)-g) gives worse performance as expected. The design c) 

in this case is only a bit worse than design a), b). The differences are rather small, 

but design c) performance can get worse if     
  and  ̇   

   get bigger.  
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What is also interesting is that the additional terms in design f) and g) didn’t 

contribute much, and their performance is almost the same as the cascaded designs 

d) and e). Their step responses almost coincide in the same curve in Fig. 1&2. The 

common feature of the four designs is the low pass filter used in the control struc-

ture. Its bandwidth is limited by the sensor noise, so it introduce additional phase 

lag in the system, which slow down the control action. Hence performance is de-

graded and TSS is needed between the outer and inner loop.  

Further simulation is performed on design d)-g) to analyze the TSS. In simula-

tion I, the gains are kept the same as in design a), i.e. no TSS between the inter-

mediate state and output state. And in simulation II, the TSS concept is introduced 

by increasing the intermediate state feedback gain and decreasing the output state 

feedback gain. The performance of design d)-g) get improved by considering the 

TSS, though they are still worse than the design a) and b). 

The Asctec ‘Hummingbird’ [16] is used as experiment platform. An AHRS 

Kalman filter is used for the attitude estimation. Both data fusion and control loop 

are running with 1k Hz. The experimental results, shown in Fig. 3, give similar re-

sults as the simulations. Non-cascaded designs a) –c) gives very good tracking 

performance. The last four designs have a bit worse performance but they are ra-

ther similar with each other. 

 

Fig. 1a. Simulation performance for step commands of all seven control designs. Design d)-g) 

assume no TSS needed 
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Fig. 1b. Close in view of the Figure 1a. 

 

Fig. 2. Simulation performance for step commands of all seven control designs. Design d)-g) 
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Fig. 3a. Experimental results of the seven designs 

 

Fig. 3b. Close in view of the Figure 2a. 
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5. Conclusion 

NDI and Backstepping could result in the same control law and give the best 

control performance, like in design a) and b). Both are non-cascaded design, they 

completely cancel the plant nonlinearities and result in perfect linear tracking error 

dynamics. Other non-cascaded Backstepping design as in design c) results a little 

bit worse performance. The tracking error dynamics is nonlinear and depend on 

the state dependent matrix    and its derivative. 

The last four designs can be all categorized as cascaded designs due to the us-

age of the low pass filter. It is worth noting that the Backstepping with command 

filter and the command filter Backstepping designs appears like non-cascaded de-

sign, but they give no observable advantage over the cascaded designs. They result 

very similar control laws and thus similar performance. As expected, their perfor-

mance is worse compared with designs a) and b) as TSS is needed. 

It is clear for system of strict-feedback form, non-cascaded structure design as 

in design a) and b) are the best choices in terms of control bandwidth. For system 

of other forms, if non-cascaded structure design is not possible, design d) is the 

best choices as it is the simplest among the last four designs yet provides the same 

performance. However, with proper relaxations, it is possible to extend them into 

strict-feedback form, then design a) and b) can be applied on the modified system. 

The position control of quadrotor is one of the examples. In the companion paper 

[17], such design is derived. 
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