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Abstract   Theoretical derivation of the optimal control gain in the detumbling 

process using B-dot control law is presented.  It is shown that the optimal gain is a 

function both of magnitude of magnetic field B and the rate of change of its direc-

tion.  As both factors change along the orbit, the control gain applied should be 

variable.   

Introduction 

During last decade an increased interest in small satellite missions has been ob-

served. These inexpensive, cost-effective spacecrafts tends to perform increasingly 

complex missions, which in turn require attitude stabilization. Volume and mass 

constraints limit the range of attitude control methods and mechanisms which can 

be successfully deployed.  Magnetic actuation and acquisition is often the way to 

go in such applications - some deployment examples include NPSAT1[7], 

REIMEI [8] and Oersted satellite[12]. There is broad literature covering the area 

of magnetic actuation. Wiśniewski and Blanke proposed attitude controller de-

rived using sliding mode approach in [6], Lovera and Astolfi present low-gain PD-

like control law in [9], Zanchettin and Lovera derive H∞  control law in [4], where 

they model process as linear periodic system.  Some authors use magnetic actua-

tion in pair with more conventional, momentum exchange devices. Authors of pa-

pers [10,11] combine it with momentum wheel (flywheel) which increases the sys-

tem’s stability. Despite many advantages, pure magnetic control introduces some 
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problems. Due to small magnitude of Earth magnetic field control torques are se-

verely restricted. What is more, coils are capable of generating torques lying in the 

plane perpendicular to local Earth magnetic field vector, what effectively makes 

the system underactuated. Small satellites often suffer from quick rotation gained 

in the process of deployment from the launcher rocket.   This rotational movement 

prevents the attitude observer from synchronization with satellite dynamics using 

magnetometer readouts. Therefore simple and reliable control laws, which do not 

require attitude information, are often used to dissipate spacecraft’s angular mo-

mentum and are commonly referenced as detumbling mechanisms. 

A de facto standard for detumbling of  very small satellites is called B-dot con-

trol, which uses only magnetorquers as actuators, and only magnetometer as sen-

sor.  The control law is build on time derivative of the measured magnetic field 

vector B, thus the name B-dot.   

BKm     (1) 

The magnetic dipole m generated with use of a magnetorquer (usually three 

mutually perpendicular coils) is proportional to the time derivative of B, per-

formed in non-inertial satellite frame and gain K.  This control law is described in 

numerous publications, where it is often proven [1] that the time derivative of ki-

netic energy of the satellite under B-dot control is given by (2), where ψ is vector 

of rotation rate of the satellite with respect to the frame defined by the magnetic 

field direction.   

22

BKBKEk    (2) 

Due to the underactuated nature of system control gain tuning is not a straight-

forward task. Too much gain extends the detumbling time, therefore careful simu-

lations are usually performed to find adequate gain value [2,3,4]. In the following 

chapter we would like to propose an analytical approach for determining the opti-

mal control gain value. 

 

Analytical solution 

There are three sources of time derivative of measured field B: 1) the dominat-

ing one is rotation of the satellite with rate ω, 2) change of direction of B in the in-

ertial frame as the satellite moves along the orbit, and 3) change of magnitude of 

B.  The third effect can be neglected as the component parallel to B does not gen-

erate any torque. The second – change of direction of B, can not be ignored, as in 

fact thanks to this change the detumbling with magnetic control is at all possible.   

With constant B the parallel to B component of angular momentum could not be 

damped.   

Let ΩB be a vector representing rotation rate of B.  It is perpendicular to B.  

Then time derivative of measured B can be expressed as (3).   
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  BB B

S     (3) 

 

Notation remark:  xS    means that the time derivative of vector x is determined 

in the frame S (satellite) and next the vector of derivative is transformed to the 

frame specific for the equation.   Shorter form  x   means that the derivative is de-

termined in the same frame as of equation.  If the frame S rotates with rate ω with 

respect to another frame, for example I (inertial), then holds:   

xxx SI      (4) 

where all components must of course be expressed in the same, thaw arbitrary 

frame.   

 

Equation of dynamics of rigid body takes form (5), where ω is vector of rota-

tion rate of the satellite with respect to the inertial frame.  T is vector torque acting 

on the body, and I is inertia tensor matrix.  This equation however is valid only in 

the body reference frame.   

  ITII  1   (5) 

For our purposes a simplification is made – we assume spherical symmetry of 

mass distribution and then inertia tensor  I  becomes scalar.  Authors realize that 

this assumption limits usage of analytical results.  So far we can not find solution 

for the more general case.   

Equation of dynamics takes more friendly form (6).  It is important that this 

equation is valid in an arbitrary reference frame.   

TII 1    (6) 

Torque T is result of B-dot control.  Magnetic dipole m (1) in field B is source 

of torque (7).   

BmT      (7) 

Taking it altogether we get (8).   

  BBIK B

I    1  (8) 

We would like to solve this equation for ω(t).  To make the task easier let’s re-

write (8) in such reference frame in which both B and ΩB are constant, let’s call 

this frame M (magnetic).  Let B be aligned with axis X and ΩB with axis Z.  Vec-

tor ΩB is almost constant, so we can say that frame M rotates with rate ΩB with re-

spect to inertial frame, and the rule (4) can be used.  New variable  B  

is next used rather than ω.  It is rotation rate vector of the satellite with respect to 

the frame M.   

  

B

M BBIK 1  (9) 

The index M at the derivative can be dropped, as the equation is considered in 

the same frame M.  So, (9) is a linear differential equation for ψ(t), which has ex-

act analytical solution    0  Atet  where matrix 
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     BBIKA
21

.   Symbol   v   denotes a skew symmetric matrix 

3x3 build from elements of vector v.   

























0

0

0

][

xy

xz

yz

vv

vv

vv

v  

With the assumptions made so far the matrix A is equal to (10) 
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21

2

1
BIKC  

    (11) 

Value ΩC  is an alternative to K measure of strength of control.  It can be seen 

in matrix A that evolution of vector ψ in plane XY runs independently from the 

evolution of its component Z.  This fact simplifies farther analysis, as there are 

two uncoupled solutions: one for ψxy and the other for ψz.   Calculation of the ma-

trix 
Ate  can be performed with use of Laplace transform method, where one 

should calculate reverse transform:   11   AsILeAt
.  Solutions are pre-

sented in (12a,b).   

   0
2

z

t

z
Cet  


   (12a) 

     0,, xyCB

t

xy tCet C  


 (12b) 

Component ψz quickly converges to zero with time constant   Cz  2/1  .  

This means that vector ψ quickly falls onto the plane XY of the frame M, which is 

the plane in which the vector B rotates, and next the process is played in this 

plane.  Character of changes of ψxy(t), defined by the form of matrix C[2x2], de-

pends on value of ΩC with respect to ΩB.   
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where  
22

0 BC  .   

It is of course only a problem of mathematics that without using of complex 

numbers no single formula exists for the whole range of parameter ΩC.  Solutions 

are continuous with respect to this parameter, so the character of changes for ΩC 

close to ΩB, not necessarily exactly equal, can be deduced on base of the third 

form.  The character of damping in this case is of type  
tCet


 , which is only a 

little slower than purely exponential.   

It can be shown that the solution for (ΩC > ΩB) with time converges to (13).   

 
 

 0
2 0
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xy

CB

BC
t

xy

Ce
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 (13) 

Please note that the bigger ΩC (bigger gain K) the smaller factor (ΩC – Ω0) in 

exponent, thus the slower decay of satellite rotation.  Physical explanation is the 

following:  the stronger gain K the smaller the angle between angular momentum 

and vector B.  As only the perpendicular to B component of angular momentum is 

damped the small angle makes the damping non effective.   In the extreme case of 

infinite K the two vectors are parallel and then no damping takes place.   

Solution (13) has another interesting feature, which justifies calling it pseudo-

stationary: the ratio ψy / ψx, which is equal to tangent of an angle between ψ and B, 

is constant and does not depend on the initial ψ(0).  

B

C
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
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0

tan



   

This means that the vector ψ follows the escaping vector B, keeping constant 

angular distance α.  The same conclusion holds for the critical solution (ΩC = ΩB) 

in which case α = 45˚, and this is the largest possible angle for pseudo stationary 

state.   

When control is weaker than the critical one (ΩC < ΩB) the behavior of ψxy(t) 

looks a bit chaotic – it is a mixture of oscillations and exponential decay with time 

constant  
1 Cxy  .   

Optimization 

Considerations set out in the previous section lead to believe that there is an op-

timal ΩC assuming a criterion that evaluates convergence of ψ(t).  Character of 

convergence of ψ(t) is close to exponential, so time constant of decay seems to be 

an adequate measure of speed of convergence.  Please consider the equation  

FrAT1.3

1162



6  

 
2

0

2/  


 dte t
 which gives a clue as how to calculate this time constant.  Ex-

pression (14) can be understood as half of the time constant of decay of |ψ(t)|, 

which next can be subject of optimization. 
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    (14) 

The criterion  J occurs to be dependent on a direction of the initial state vector 

ψ0 in space XYZ, so before optimization some farther work must be done. The 

most common way to remove this drawback is to choose a maximum (15) or inte-

gral (16) over all initial conditions of unit norm [13]. 
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The integral in (15) and (16) can easily be calculated taking into account the 

fact that 
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where 





0

d teeX AttAT

   (18) 

is a symmetric matrix which solves a Lyapunov equation [14] 

IXAXAT     (19) 

 

Relationships (17) and (18) allow to present criteria (15) and (16) in a simple form 

[13, 15] 

200
1

1
0

max XXJ T 

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  (20) 

where 
2

X is a spectral norm of matrix X, i.e. for a symmetric matrix the spectral 

norm is equal to the largest eigenvalue, and 

XXJ T trd
1
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0
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  (21) 

where  tr X  is a trace of matrix X. 
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We have conducted an analysis and optimization of the control system in two 

cases: (a) for reduced system described with a part of the matrix A (10), 















CB

B

rA
2

0
 having regard to the mutual independence of (ψx, ψy) 

and ψz, and (b) for the full matrix A.  Case (a) has been studied due to consistency 

with the previous considerations.  

The Table 1 shows results of optimization for both cases: derived functions de-

scribing the criteria J1(ΩC), J2(ΩC) and optimal values of ΩC for each of the cases. 

Table 1.  Optimization criteria and results.  

 

 Criterion Optimal C  

(a) 
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
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
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


2
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





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(b) 
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


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


4

5
22  18.1

2

5






B
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The resulting optimal values occur between 0.79-1.18 which is in line with the 

earlier findings. It is interesting that the criterion J1(ΩC) is described with the same 

function in the reduced and full model, and hence leads to identical results of op-

timization.  
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Fig. 1. Optimization criteria J1 and J2 in cases (a) and (b). 

Not only speed of decay of the rotation rate of the satellite is interesting, but al-

so energy of control spent in the detumbling process.   This control energy is pro-

portional to the integral of square of magnetic dipole generated over time (22).  














0

2

2

2 )0(d)( CC
B

I
ttmE    (22) 

Final choice of ΩC should take into account both criteria:  J and EC.  Solution 

can’t be given here of course, because it depends on some weights being functions 

of the importance given by the user to effectiveness from one hand, and energy 

spent from the other hand.   

Simulations 

Results of simulations are given here to illustrate behavior of detumbling pro-

cess for three values of the gain: optimal, three times weaker, and three times 

stronger.  Simulated satellite has spherical symmetrical inertia with moment I = 

0.008 kg m2, and initially rotates with rate 10 deg/sec.  Figures show one hour of 

simulation – magnitude of rotation rate and angle between vectors  ω  and  B.   
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Fig. 2.  One hour of simulation – magnitude of angular rate. 
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Fig. 3. One hour of simulation – angle between vectors ω and B. 
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Some of the features, pointed out before, are clearly visible:  

1. The fastest decay of rotation rate takes place when the angle  ω|B  is close to 90 

degrees.  This state however is not stable.   

2. For the stronger gain the process, after initial fast decay of rotation rate stabi-

lize with small angle ω|B and then the damping is not effective.  

3. For the optimal gain the angle ω|B stabilize at about 40 degrees (180–140=40) 

and this option is most effective at the end of the simulation period.   

4. When the gain is weak, the vector ω can not follow escaping vector B, and it 

practically does not change direction.  From one hand this is good, because the 

angle  periodically passes the effective region close to 90 degrees, but with 

weak gain those lucky moments are not exploited enough.   

 

Conclusions 

From the point of view of effectiveness of detumbling the optimal control is 

achieved when ΩC is close to ΩB.  From the other hand this gives the most chaotic 

evolution of the satellite rotation rate vector, as the mode wanders between pseu-

do-stationary and oscilatory.  Please note that the true ΩB is rarely known, and de-

signer assumes an average value which is specific for a given orbit.  For polar-like 

orbits this average is close to the orbital angular rate multiplied by two.   

It is rather a matter of opinion if one accepts the chaos or seeks for a solution 

which gives more predictable behavior.  Control, which is stronger than the criti-

cal one, ensures pseudo stationary behavior.  From the other hand weaker control, 

below the critical one, brings another advantage – savings in control energy.   

At the end we need a value of gain K.  It is function (11) of ΩB and B.  Even for 

circular orbits the magnitude of magnetic field B can vary with the factor of three.  

Moreover it enters with square into the equation for K, so in real implementations 

it is desirable to make K dependent on the current (measured) B.     

 

A number of simplifications was made to make the analytical solution easier or 

at all possible.  Spherical symmetry of inertia was assumed.  This of course limits 

usage of analytical results.  So far we can not find solution for the more general 

case.  The effectiveness of detumbling in case of non spherical inertia will be in-

vestigated with simulations in a future work.    

We were considering the continuous time control model, while real implemen-

tations work in discrete time.  The detumbling by its nature has to do with rather 

high angular rates, therefore during one time quantum the satellite rotates by a 

significant angle.  This aspect must always be taken into account in a project – the 

sampling time must be small enough to ensure stability.   

FrAT1.3

1167



11 

Real magnetorquers can generate only a limited magnetic dipole.  This limit 

should be compared with the value  

min

max
max

2

B

I
m B

 , which estimates mag-

nitude of the dipole required by the B-dot control.  For example CubeSat 1U on a 

sun-synchronous orbit rotating 10 deg/sec would require  mmax = 1 Am2.  This 

number exceeds real possibilities several times, so one should expect under-

actuation, at least for higher angular rates.   
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