
Gyro bias estimation using a dual instrument
configuration

Marcel Ruizenaar, Elwin van der Hall, and Martin Weiss

Abstract An innovative method is proposed for the estimation of inertial mea-
surement biases. This method, that we call DriftLessTM , is based on fusing the data
from two sets of inertial measurement sensors that are displaced with respect to each
other by a known angle. By varying the relative position of the sensors according to
a predefined pattern, it is possible to acquire sufficient measurement data in order
to estimate the biases of both sensors. The method was validated and tested in a
laboratory installation and a numerical sensitivity studywas conducted in order to
evaluate the feasibility of the method for more realistic settings.

1 Introduction

The interest in robust autonomous navigation systems has grown steadily in the last
years and has been driven both from the increasing number of applications and from
the awareness of the inherent limits of the satellite-basednavigation systems such
as GPS. Autonomous inertial navigation remains the only navigation solution that
cannot be intentionally or unintentionally disturbed by external factors. It is how-
ever limited by the presence of measurement errors from the inertial measurement
instruments: gyros and accelerometers. The measurement errors we are interested
in are the systematic errors and not the random errors. The latter is transformed
in random walk after integration. There are three main typesof systematic errors
that affect inertial measurements: bias errors, scale factor errors and cross-coupling
(or misalignment) errors. Bias errors have essentially four components: fixed errors
that are characteristic to the instrument and are constant,temperature-dependent er-

Marcel Ruizenaar, Elwin van der Hall
TNO Organization, The Hague, Netherlands, e-mail: marcel.ruizenaar@tno.nl, el-
win.vanderhall@tno.nl

Martin Weiss
TNO Organization, Rijswijk, Netherlands, e-mail: martin.weiss@tno.nl

1

Proceedings of the EuroGNC 2013, 2nd CEAS Specialist Conference
on Guidance, Navigation & Control, Delft University of Technology,
Delft, The Netherlands, April 10-12, 2013

ThCT3.4

1110



2 Marcel Ruizenaar, Elwin van der Hall, and Martin Weiss

rors, run-to-run errors that are constant during each single run, and in-run errors that
may vary during the run. The fixed and temperature-dependenterrors are typically
compensated partially by calibration. Run-to-run errors are compensated through
alignment, but this is not always possible. In-run errors may only be mitigated by
integrating different measurement instruments in a sensorfusing scheme. Bias er-
rors are in most practical cases the dominant errors. Therefore, we will concentrate
here on the compensation of bias errors of inertial instruments.

Commonly, the bias error is decomposed in two components: static bias and dy-
namic bias. Static bias errors are constant during a run and consist mainly of the
run-to-run bias errors and residuals of fixed bias errors after the calibration process.
Dynamic bias errors may vary during a run over periods in the order of minutes
or more and consist mainly of in-run bias errors and residuals of temperature de-
pendent errors after the calibration process. An effectiveprocedure to compensate
bias errors needs to take into consideration both static anddynamic bias errors and
therefore has to be performed repeatedly during the traversed trajectory.

As the navigation solution is obtained by integrating the sensor measurements,
bias errors lead to growing position and orientation errors. This is especially true for
low cost equipment. Here, measures to reduce bias errors have a relative large impact
on the cost. Because the growth of these errors can indeed make the navigation
solution unacceptable in a very short time, it is essential to correct them. Therefore
much research is being done on this topic. As explained before, the bias errors that
cannot be corrected by calibration are addressed by alignment or by sensor fusion.
In either case, the results of different measurements are used to estimate and correct
bias errors. A large variety of methods are used in practice and many variations and
improvements can be found in the literature. One of the most popular methods is the
integration of an inertial navigation system (INS) with satellite navigation, leading
to integrated INS/GPS systems of various types. However, many other sensors can
be used to correct inertial measurements, such as magnetometers and altimeters.
A special category of sensors used for correcting or improving inertial navigation
are imaging sensors, typically used in conjunction with terrain matching, or other
localization techniques. For an overview of these techniques we refer to [4].

The technique proposed in this paper is similar to other known techniques in the
sense that it combines the output of two instruments in orderto improve the mea-
surement accuracy of both. The difference is that the two sensors of the same type
are displaced with respect to each other in a controlled manner that allows us to
accurately estimate and compensate for the bias errors. Theestimation can be done
during operation, which is one of the major advantages. If the other systematic errors
are properly calibrated, theoretically only white noise remains after compensation
for the estimated biases. In this paper we explain the methodas applied to gyro bias
correction, but the method is equally applicable to accelerometers and other sensors
that measure a vectorial quantity (such as, magnetometers)[8]. A similar method for
bias estimation using identical sensors is presented in [9], where a static configura-
tion of twelve accelerometers is used to estimate the bias ofgyros. In contrast, our
method uses a dynamic configuration of only two gyros to achieve the same goal.
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The structure of the paper is as follows. In Section 2 we present the theoretical
basis of the DriftLessTM concept. The results of a study based on digital simula-
tion experiments are presented in Section 3. Section 4 givesa description of the
experimental set-up, the calibration of the set-up and presents experimental results.
Finally, conclusions and ideas for future work are relegated to Section 5.

2 Theoretical description of the DriftLessTM concept

The bias is a (largely) constant error that affects the measurements of every inertial
sensor and it is independent of the measured quantity. Biases can be split into static
and dynamic biases. The static component, called the fixed bias, is constant through-
out a run. The dynamic component, also refered to as bias instability, varies slowly
during a run over periods in the order of a minute or more due, for example, to un-
compensated temperature variations and inherent instability of the sensor. Typically,
the dynamic bias is 10% of the static bias. Although there aremany other sources
of errors (see e.g. [4]), the bias error of gyros is dominating the error budget of the
navigation solution. We therefore use gyros as a concrete example for explaining
the DriftLessTM concept.

To illustrate the instability of the bias, the averaged output of 6 low-cost MEMS
gyros has been plotted as a function of time in Figure 1. During measuring, the
sensors were held stationary and at nearly constant temperature (within 0.5◦C).
The measurement time was approx. 14 hours. The plot clearly shows that if the bias
was initially zeroed after some calibration procedure, thebias could have deviated
to almost 1000 deg/hr after several hours of operation.

The general principle of the DriftLessTM method is presented graphically in Fig-
ure 2. We will explain this scheme and the listed parameters by stepwise introducing
our method. The concept involves two sets of sensors. Each set is a triad of, prefer-
ably orthogonal, gyroscopes. The two sets of sensorsS1 and S2 are mounted on
rotatable platforms. They are actuated by the motorsM1 andM2 that rotate the two
sets of sensors back and forth using a periodic scheme aroundtwo different axes.

Let the measured vectorial quantityx represent the angular rate of a common
body frame relative to the inertial frame and lety1andy2 be the two measurement
sets provided by the two sensor sets. If all other systematicerrors are assumed to be
calibrated, thenx, y1 andy2 are related by:

y1 = RT
1 x+b1+ω1+n1 (1)

y2 = RT
2 x+b2+ω2+n2

whereR1 andR2 are the rotation matrices corresponding to the attitude of the two
platforms with respect to the body frame.ω1 andω2 are the angular rates of the
two platforms with respect to the body frame.b1 andb2 are the measurement bi-
ases of the two sensor sets, andn1 andn2 are the random noise components of the
measurement errors.
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Fig. 1 Evolution of six different bias estimates during a 14h experiment.
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Fig. 2 Schematic representation of the DriftLessTM concept.
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Since the error model of the inertial sensors is quite complicated, we assume here
that the biasesbi are constant during the time period of the rotation scheme and that
the random noisesni are white noise signals. According to the diagram in Figure 2,
the two measurement sets are used to compute a residual signal r .

r = R1y1−R2y2

= R1(b1+ω1)−R2(b2+ω2)+(R1n1−R2n2) (2)

The residualr is independent of the input quantityx. This is a very advantageous
characteristic of the method, making it applicable in dynamic situations. The idea is
to use the residual for estimating the bias errors of the sensors. The estimated biases
can then be subtracted from the measurements to yield the corrected measurements
y1c andy2c. Of course, using equation (2) instead of the raw measurement equations
(1) we cannot “solve” both forb1 andb2 givenr . However, the idea is to collect mul-
tiple residual measurements for different relative positions of the sensor sets and use
these to estimate the bias errors. By judiciously choosing the angular displacement
of the sensor sets with respect to the body frame, the biases become observable.

For simplicity, we choose to perform the measurements with the two platforms
at rest with respect to the body frame, that isω1=ω2=0. Furthermore, each of the
sensor sets is alternating between two predefined positions. According to the sim-
ulation results [10], it is preferable that the rotation axes are orthogonal and the
angular positions are±90deg. Essentially, the rotation matrixR1 at the time of the
measurement may take two values that we denoteR+90

1 andR−90
1 , and similarlyR2

takes the valuesR+90
2 andR−90

2 . The motion of both sensor sets follows the typical
scheme illustrated in Figure 3 and the measurements of the residuals is taken only
when both sets are at rest with respect to the body frame.

The residual measurements can be modelled by the following discrete time sys-
tem

xk+1 = Axk+wk

rk = Hkxk+vk (3)

where

xk =

[

b1

b2

]

, A=

[

I
I

]

(4)

and

Hk =















[

R+90
1 −R+90

2

]

, k= 4n
[

R+90
1 −R−90

2

]

, k= 4n+1
[

R−90
1 −R−90

2

]

, k= 4n+2
[

R−90
1 −R+90

2

]

, k= 4n+3

(5)

Herewk represents the process noise that models the bias instability, whereasvk

represents the measurement noise terms in equation (2). As usual they are assumed
to be delta-correlated, discrete signals.
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Using a Kalman filter based on this model, it is possible to estimate the two bi-
asesb1 andb2 based on the residualsrk and use them to correct the inertial measure-
ments. The basics of Kalman filtering are well described in literature and falls out
of the scope of this paper. For further reading, we refer to [7],[5],[4]. The Kalman
filter recursion formulas we used for our particular case are:

Sk+1 = Rk+1+Hk+1(Pk+Qk)H
T
k+1

Wk+1 = (Pk+Qk)H
T
k+1S−1

k+1

Pk+1 = (I −Wk+1Hk+1)(Pk+Qk)

x̂k+1 = x̂k+Wk+1(rk+1−Hk+1x̂k)

System matrixA is the identity matrix and has been left out of the equations.Initial
valuesx̂0 andP0 have been chosen, andQk = E[wT

k wk] andRk = E[vT
k vk] are the

variance matrices of the process, and the measurement noiseterms respectively.
Further,Pk is the state covariance matrix andWk is the Kalman gain.

Fig. 3 Angular displacement for the two sensor sets.

Commonly the performance of inertial sensors is analysed with the Allan vari-
ance (AV). This time domain characteristic of the accuracy of a sensor was first
introduced to analyse the precision of oscillators for timemeasurements [1], but has
been widely applied to characterize the accuracy of inertial sensors [3][11]. We will
use this characteristic to illustrate the improvement realized using the DriftLessTM

concept with respect to the raw sensor measurements.
For completeness, we recall here the definition of the AV as weuse it here. As-

sume we haveN measurement samples of the angular velocityω i , measured with a
sampling timeτo and we divide the samples into clusters of sizeM. The time period
corresponding to a single cluster isτ = Mτo and is called the correlation time or
integration time. The average for each cluster is denoted by

ω̄k(τ) =
1
M

M

∑
i=1

ωkM+i , k= 0,1, . . . ,K−1, K =

⌊

N
M

⌋

Then the Allan variance is computed as
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σ2
ω(τ) =

1
2K

K−1

∑
k=0

(ω̄k+1(τ)− ω̄k(τ))2

The AV can be seen as a measure of the stability of the bias for agiven integration
time. It tells us how good a measured average cluster value predicts the average
value of the succeeding cluster. A typical plot of the Allan variance as a function
of the integration time is shown in Figure 5. The red lines areAllan variances of
actual MEMS gyro measurements. In general, for MEMS gyros, the plot has some
typical features. Going from low integration times (left side of the plot) to larger
integration times, the plot decreases almost linearly. This is due to the white noise
on the output of the sensor. After some point the plot increases, typically at large
integration times. This is due to the low frequent, non-white noise on the output
of the sensor (the fluctuating bias). The minimum in the plot corresponds to the
integration time at which the best bias stability can be expected. For MEMS sensors
this integration time is typically in the order of 100 s.

3 Simulation results

For further design improvements a numerical model of the experimental set-up has
been built. With this model a sensitivity analysis has been performed to determine
the influence of certain design parameters on the accuracy ofthe bias estimation.

Firstly, we tested the influence of the rotation angle applied by the motors on
the sensors. By varying the angle between 0 and±90deg, we determined that the
bias estimation was most accurate if the motors turned±90deg. In theory any angle
greater than 0 renders all biases observable but due to noiseand numerical inaccu-
racies the accuracy degrades as the rotation angle is smaller.

Secondly, we checked the influence of angle misalignments. The two sensors
are mounted orthogonally and their relative attitude with respect to the body frame
needs to be accurately known. Any misalignment results in anadditional term, that
depends on the angular velocity, entering the Kalman filter.This results in an error
in some of the estimated biases, which depends on the input angular rate in a non-
linear way. Beside constant misalignments, dynamic offsets may also occur due to,
for example, motor overshoots. The effects are the same as inthe case of constant
misalignments but the effects are mitigated for the two biasestimations on the rota-
tional axis due to carouselling.

Thirdly the Kalman filter bandwidth was varied. In this respect we note that the
Kalman filter has the characteristics of a low-pass filter forour application and that
the sensors rotate between two positions periodically witha certain frequency. It is
essential that this frequency is filtered away sufficiently,otherwise the bias estima-
tion accuracy deteriorates. The rotational frequency is limited by the required stand-
still time of both sensors during the actual measurement. This standstill time may
not be too long, because three different positions are necessary within the Kalman
filter bandwidth to obtain full observability of the biases.Too short a standstill time
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8 Marcel Ruizenaar, Elwin van der Hall, and Martin Weiss

is not possible, because the bias changes slowly but continuously. During standstill
sufficient convergence has to be achieved to keep up with these changes.

The noise power and sample frequency were also varied. As expected the ac-
curacy of the bias estimate is linearly dependent on the power of the noise of the
measurements. Because the bias instability is a very low frequency phenomenon, a
low measurement frequency can be used without adverse effects.

Lastly some errors that may occur with the AD-converter havebeen modelled
such as missing bins and non-linearities. These errors turned out to have little effect
on the bias estimation accuracy.

The simulation results for a 14 hour simulation are given in Figure 4. In this
figure, simulated and estimated bias are plotted.

An interesting property of the concept is that if the set-up is at rest (i.e., no input
angular rate), it does not matter if the rotation matrices used in the calculations
correspond to the actual sensor positions. Asx = 0, any erroneously usedRi in
equation (1) does not introduce an error in the residualr , input to the Kalman filter
(equation (2)). We used this property to measure the output of two sets of MEMS
gyros that were at rest with respect to our laboratory set-up(i.e., no rotation of the
common body and no rotation of the sensors). The total measurement time was 14
hr. We calculated the Allan variance of these measurements and they are plotted in
Figure 5 (for clarity, only the plots of three gyros are shownof six available). Also
we ran our DriftLessTM algorithm using these measured gyro signals as input and
calculated the biases. After compensating for the biases, we calculated the AV again
and plotted the results (of the three gyros) in the same figure. From these plots we
observe that the concept performs as expected.

Fig. 4 14 hour run bias estimation. The red line is the bias, the blue line the estimate of this bias.
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Fig. 5 Allan variance of a 14 hour experiment. The red lines are the Allan variances of the un-
corrected biases of a single gyro triad and the black lines are the Allan variances of the sensors
corrected with our DriftLessTM concept

4 Experimental set-up

The experimental set-up used to validate and test the DriftLessTM concept is repre-
sented in Figure 6. Figure 7 is a photo of the actual implementation. For the two sets
of sensorsS1 andS2 we used the MPU6050 3-axis MEMS gyro of Invensense [6].
The sensors are sampled with a frequency of 100 Hz. The gyro noise floor of the
sensors is typically 0.005 deg/rt(Hz), yielding a residualnoise covariance equivalent
to approximately 2×0.052 deg2/s2. The two sensor chips are each placed on their
own rotatable printed circuit board (PCB) together with some interfacing electron-
ics. The PCBs are rotated with a driving mechanism based on small piezo-elements,
desifned by the Danish company PCBmotor [2]. On the right side of the box in Fig-
ure 7, a third PCB is mounted containing all the necessary driving and interfacing
electronics, and a USB interface to connect to a computer. End stops are used on
the sensor PCBs to limit the rotation between two fixed angular positions (approxi-
mately±90 degrees).

In general, a calibration procedure has to be performed to find the coefficients
of a calibration matrixC for each sensor, containing all information about scaling
factors (including the analog to digital converter gain), misalignment, and cross-
coupling coefficients. Specifically for our DriftLessTM concept, another calibration
procedure is required to find a rotation matrixT for all individual angular positions.
These two matricesC andT can be combined into a single matrixM which replaces
the rotation matricesR in equation (1). However, sinceM is no longer a rotation
matrix, MT has to be replaced withM−1. Instead of using two separate calibration
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Fig. 6 Scheme of the laboratory set-up used for
testing the DriftLessTM concept.

Fig. 7 Photo of the actual experimental instal-
lation used to test DriftlessTM .

procedures, our calibration procedure finds all coefficients of the matrixM for each
of the individual angular positions. For the calibration, we used an accurate pan/tilt
unit providing a known angular rate of 50 deg/s to the gyros.

The box was assembled in such a way that all sides of the box areorthogonal to
within 0.05 deg. First both sensors were placed in their -90-position. The box was
rotated back and forth to known angular positions with the same angular rate. Dur-
ing this 1 minute lasting process, gyro measurements were recorded. This process
was repeated with the box placed in its XY-orientation, YZ-orientation and XZ-
orientation. As an example, Figure 8 shows the actual outputof the S1 gyro. The
top of the large square wave outputted by the z-axis gyro ofS1 corresponds to the
positive angular rate of 50 deg/s and the bottom to -50 deg/s.The smaller square
waves outputted by the x- and y-axes are due to the misalignment of these axes with
respect to the z-axis. Measuring the average top-top valuesof the square waves pro-
vides us with all necessary information to obtain the coefficients of the matricesM
for both sensors in their -90-position. Then the sensors were placed in their +90-
positions and the process was repeated to find the matrices M for the sensors in their
+90-position.

The outputs of the gyros (yc1 and yc2 in Figure 2), after bias correction by
DriftLessTM and after compensation for Earth rotation, were used to continuously
update a rotation matrixRbe representing the attitude of the “DriftLessTM box” with
respect to the local Earth navigation frame. The experimental set-up was placed on
the same pan-tilt unit that was used for the calibration procedure. With this unit
we were able to test the DriftLessTM concept in a dynamical situation. Random but
known angular patterns were used to drive the pan/tilt unit.As the actual pan/tilt an-
gles are known, we could compare them to the attitude information derived from the
Rbe rotation matrix. Figure 9 shows the difference in attitude using our DriftLessTM

system and without using DriftLessTM . As can be seen, the attitude drift without
using DriftLessTM is in the order of 250 deg/hr. After correction with DriftLessTM ,
the remaining drift is in the order of 20 deg/hr.
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Fig. 8 The gyroscope signals during a calibration process.
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5 Conclusions and further work

We have presented in this paper an innovative method for biasestimation of inertial
sensors. The principle of the method is to combine measurements from two sets of
INS instruments that are displaced with respect to each other according to a con-
trolled pattern. The method was tested on gyro sensors in an experimental setting
and also in a few digital simulation studies. The results presented here indicate that
the method promises to be very effective and may allow high performance naviga-
tion results using cheaper sensor instrumentation.

Further work will concentrate on fault detection and isolation algorithms to al-
low this approach to work under difficult terrain conditionsand under considerable
stress. In parallel, work is going on in order to miniaturizethe installation in order
to allow application in a large variety of situations such asunmanned ground or air
vehicles, guided weapons, and personal (indoor) navigation.
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