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Gyro bias estimation using a dual instrument
configuration
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Abstract An innovative method is proposed for the estimation of iaémnea-
surement biases. This method, that we call Drift'&sss based on fusing the data
from two sets of inertial measurement sensors that areatieglwith respect to each
other by a known angle. By varying the relative position & #ensors according to
a predefined pattern, it is possible to acquire sufficientsmeament data in order
to estimate the biases of both sensors. The method was teglidad tested in a
laboratory installation and a numerical sensitivity stweBs conducted in order to
evaluate the feasibility of the method for more realistitings.

1 Introduction

The interest in robust autonomous navigation systems lmagngsteadily in the last
years and has been driven both from the increasing numbepti€ations and from
the awareness of the inherent limits of the satellite-bamsedgation systems such
as GPS. Autonomous inertial navigation remains the onlygadion solution that
cannot be intentionally or unintentionally disturbed byegral factors. It is how-
ever limited by the presence of measurement errors fronmirial measurement
instruments: gyros and accelerometers. The measurenrens are are interested
in are the systematic errors and not the random errors. Titer la transformed
in random walk after integration. There are three main tygfesystematic errors
that affect inertial measurements: bias errors, scalef&ectors and cross-coupling
(or misalignment) errors. Bias errors have essentially émmponents: fixed errors
that are characteristic to the instrument and are conseanperature-dependent er-
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2 Marcel Ruizenaar, Elwin van der Hall, and Martin Weiss

rors, run-to-run errors that are constant during eachsingl, and in-run errors that
may vary during the run. The fixed and temperature-deperatentts are typically
compensated partially by calibration. Run-to-run erraes @mpensated through
alignment, but this is not always possible. In-run errory moaly be mitigated by
integrating different measurement instruments in a sefusing scheme. Bias er-
rors are in most practical cases the dominant errors. Towexefve will concentrate
here on the compensation of bias errors of inertial instntme

Commonly, the bias error is decomposed in two componeratc $tias and dy-
namic bias. Static bias errors are constant during a run ansist mainly of the
run-to-run bias errors and residuals of fixed bias erroes #fie calibration process.
Dynamic bias errors may vary during a run over periods in tfieeioof minutes
or more and consist mainly of in-run bias errors and res&loatemperature de-
pendent errors after the calibration process. An effegifeeedure to compensate
bias errors needs to take into consideration both staticgndmic bias errors and
therefore has to be performed repeatedly during the traddrajectory.

As the navigation solution is obtained by integrating thesse measurements,
bias errors lead to growing position and orientation errohss is especially true for
low cost equipment. Here, measures to reduce bias erroeshalative large impact
on the cost. Because the growth of these errors can indeed thaknavigation
solution unacceptable in a very short time, it is essentiabtrect them. Therefore
much research is being done on this topic. As explained bgfbe bias errors that
cannot be corrected by calibration are addressed by alighanéy sensor fusion.
In either case, the results of different measurements @&ektosestimate and correct
bias errors. A large variety of methods are used in practidenaany variations and
improvements can be found in the literature. One of the mostijar methods is the
integration of an inertial navigation system (INS) withedhite navigation, leading
to integrated INS/GPS systems of various types. Howevemyrother sensors can
be used to correct inertial measurements, such as magretsnamd altimeters.
A special category of sensors used for correcting or impgwmertial navigation
are imaging sensors, typically used in conjunction withatier matching, or other
localization techniques. For an overview of these techesque refer to [4].

The technique proposed in this paper is similar to other kn@ehniques in the
sense that it combines the output of two instruments in a@énprove the mea-
surement accuracy of both. The difference is that the twsasrof the same type
are displaced with respect to each other in a controlled erativat allows us to
accurately estimate and compensate for the bias errorseStmeation can be done
during operation, which is one of the major advantageselbtiher systematic errors
are properly calibrated, theoretically only white noiseaéns after compensation
for the estimated biases. In this paper we explain the meth@gpplied to gyro bias
correction, but the method is equally applicable to acoataters and other sensors
that measure a vectorial quantity (such as, magnetomgdé¢rg)similar method for
bias estimation using identical sensors is presented jm®re a static configura-
tion of twelve accelerometers is used to estimate the bigymifs. In contrast, our
method uses a dynamic configuration of only two gyros to aehilee same goal.
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The structure of the paper is as follows. In Section 2 we prietbe theoretical
basis of the DriftLes$ concept. The results of a study based on digital simula-
tion experiments are presented in Section 3. Section 4 givésscription of the
experimental set-up, the calibration of the set-up andgmtssexperimental results.
Finally, conclusions and ideas for future work are relegaéteSection 5.

2 Theoretical description of the DriftLess™ concept

The bias is a (largely) constant error that affects the nreasents of every inertial
sensor and it is independent of the measured quantity. 8tzsebe split into static
and dynamic biases. The static component, called the fixey isiconstant through-
out a run. The dynamic component, also refered to as biaahitisg, varies slowly
during a run over periods in the order of a minute or more duegxample, to un-
compensated temperature variations and inherent ingyatfithe sensor. Typically,
the dynamic bias is 10% of the static bias. Although therensaiay other sources
of errors (see e.g. [4]), the bias error of gyros is domirgatire error budget of the
navigation solution. We therefore use gyros as a concreimpbe for explaining
the DriftLes$™ concept.

To illustrate the instability of the bias, the averaged attyf 6 low-cost MEMS
gyros has been plotted as a function of time in Figure 1. Rurireasuring, the
sensors were held stationary and at nearly constant temper@vithin 0.5°C).
The measurement time was approx. 14 hours. The plot cldaolysthat if the bias
was initially zeroed after some calibration procedure,litzs could have deviated
to almost 1000 deg/hr after several hours of operation.

The general principle of the DriftLe8% method is presented graphically in Fig-
ure 2. We will explain this scheme and the listed parametestdpwise introducing
our method. The concept involves two sets of sensors. Eadéh ad¢riad of, prefer-
ably orthogonal, gyroscopes. The two sets of senSprand S, are mounted on
rotatable platforms. They are actuated by the matbr&ndM; that rotate the two
sets of sensors back and forth using a periodic scheme ataordifferent axes.

Let the measured vectorial quantityrepresent the angular rate of a common
body frame relative to the inertial frame and yeandy, be the two measurement
sets provided by the two sensor sets. If all other systematics are assumed to be
calibrated, the, y; andy, are related by:

y1 = RIx+bi+wi+n; (1)
Y2 = R;X—I—bz—sz-l-ng

whereR; andR; are the rotation matrices corresponding to the attituddetwo
platforms with respect to the body fram®; and w, are the angular rates of the
two platforms with respect to the body frant®. andb, are the measurement bi-
ases of the two sensor sets, andandn, are the random noise components of the
measurement errors.

1112



Marcel Ruizenaar, Elwin van der Hall, and Martin Weiss

4
Bias gyroscopes; Sl+S2
2000 T T T T T T
— S
ly
1000 - — S, ]
)
2x
B 500 I\ 782), W“' W\
£ WA b al | s | i
5 ol L e
8 a4 " L R
k=) ‘\M L AT T g ' P
g -s00r i “J‘,‘M, o~ ;
[ iy |w il
-1000 - 1
-1500 b
-2000 N
—2500 . . . . . .
0 2 4 6 8 10 12
Time [hr]

14

Fig. 1 Evolution of six different bias estimates during a 14h experimen

y1
S
1
M1 Ry
Bias
r estimator
M, R,
I
|
S
y2

Fig. 2 Schematic representation of the DriftLE¥sconcept.
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Since the error model of the inertial sensors is quite coraf#d, we assume here
that the biaseb; are constant during the time period of the rotation scherdetfzat
the random noises; are white noise signals. According to the diagram in Figyre 2
the two measurement sets are used to compute a residudl signa

r = Riy1—Ray2
= Rl(b1+w1) —Rz(b2+a)2)+ (Rll’ll— Rzl’lz) (2)

The residual is independent of the input quantity This is a very advantageous
characteristic of the method, making it applicable in dyitasituations. The idea is
to use the residual for estimating the bias errors of themsn$he estimated biases
can then be subtracted from the measurements to yield thected measurements
yi1c andyyc. Of course, using equation (2) instead of the raw measureegertions
(1) we cannot “solve” both fdp; andb, givenr. However, the idea is to collect mul-
tiple residual measurements for different relative poatiof the sensor sets and use
these to estimate the bias errors. By judiciously choosiegahgular displacement
of the sensor sets with respect to the body frame, the bizsmsite observable.

For simplicity, we choose to perform the measurements \hightdvo platforms
at rest with respect to the body frame, thatis=w,=0. Furthermore, each of the
sensor sets is alternating between two predefined positkmtording to the sim-
ulation results [10], it is preferable that the rotation svege orthogonal and the
angular positions ar&90deg. Essentially, the rotation matfx at the time of the
measurement may take two values that we deRgt€ andR; %, and similarlyR,
takes the valueR; °° andR,*°. The motion of both sensor sets follows the typical
scheme illustrated in Figure 3 and the measurements of siduads is taken only
when both sets are at rest with respect to the body frame.

The residual measurements can be modelled by the followsuyete time sys-
tem

Xkr1 = AXk + Wk

Nk = HiXk + Vi 3)
where
[
and
mn ) ko
H= [R%907R290]:k;4n+2 ®)

R —Rj%| k=4n+3

Here wy represents the process noise that models the bias instabifiereasvy
represents the measurement noise terms in equation (2suss ey are assumed
to be delta-correlated, discrete signals.
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Using a Kalman filter based on this model, it is possible tonese the two bi-
ased; andb, based on the residualgand use them to correct the inertial measure-
ments. The basics of Kalman filtering are well describedterditure and falls out
of the scope of this paper. For further reading, we refer 1¢9J{[4]. The Kalman
filter recursion formulas we used for our particular case are

Scr1 = Repa + Hipa (B + Qk)Hl;rH
W1 = (Aot QHE 1S
R = (I =W 1Hig 1) (Rc+ Qx)
K1 = K +Whp 1 (Fkrn — HeraXk)
System matriA is the identity matrix and has been left out of the equatitrisal
valuesXo and Py have been chosen, a@k = E[w}wy] andR = E[v] vi] are the

variance matrices of the process, and the measurement teoiee respectively.
Further,R is the state covariance matrix avg is the Kalman gain.

R _\ ___________ /N N Pattern
eV T A \ [ \ ) sensor 1

490 |- m o
\ / \ Pattern
\ / \ sensor 2
T Tl S

Fig. 3 Angular displacement for the two sensor sets.

Commonly the performance of inertial sensors is analyseld thie Allan vari-
ance (AV). This time domain characteristic of the accuraty sensor was first
introduced to analyse the precision of oscillators for tmeasurements [1], but has
been widely applied to characterize the accuracy of inestiasors [3][11]. We will
use this characteristic to illustrate the improvementizedl using the DriftLes$
concept with respect to the raw sensor measurements.

For completeness, we recall here the definition of the AV asiseeit here. As-
sume we hav®l measurement samples of the angular velogitymeasured with a
sampling timer, and we divide the samples into clusters of $¥zeThe time period
corresponding to a single clusteris= M1, and is called the correlation time or
integration time. The average for each cluster is denoted by

_ 1M N
wK(T):M_Zakmnkzo,l,...,K—l,K: "
i=

Then the Allan variance is computed as
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G0 = 2T (@ea(r) — @)
w 2K &

The AV can be seen as a measure of the stability of the biagfioea integration
time. It tells us how good a measured average cluster valediqis the average
value of the succeeding cluster. A typical plot of the Allariance as a function
of the integration time is shown in Figure 5. The red lines Altan variances of
actual MEMS gyro measurements. In general, for MEMS gyt piot has some
typical features. Going from low integration times (leftlsiof the plot) to larger
integration times, the plot decreases almost linearlys T$due to the white noise
on the output of the sensor. After some point the plot in@satypically at large
integration times. This is due to the low frequent, non-@hibise on the output
of the sensor (the fluctuating bias). The minimum in the plmresponds to the
integration time at which the best bias stability can be etgme For MEMS sensors
this integration time is typically in the order of 100 s.

3 Simulation results

For further design improvements a humerical model of theegrpental set-up has
been built. With this model a sensitivity analysis has beerigpmed to determine
the influence of certain design parameters on the accurabedfias estimation.

Firstly, we tested the influence of the rotation angle appbg the motors on
the sensors. By varying the angle between 0 &#9@ deg, we determined that the
bias estimation was most accurate if the motors tush@@deg. In theory any angle
greater than 0 renders all biases observable but due to aeiseumerical inaccu-
racies the accuracy degrades as the rotation angle is smalle

Secondly, we checked the influence of angle misalignmerits. tivo sensors
are mounted orthogonally and their relative attitude wétkpect to the body frame
needs to be accurately known. Any misalignment results iadalitional term, that
depends on the angular velocity, entering the Kalman filtlis results in an error
in some of the estimated biases, which depends on the ingutarrate in a non-
linear way. Beside constant misalignments, dynamic «ffsey also occur due to,
for example, motor overshoots. The effects are the sametag icase of constant
misalignments but the effects are mitigated for the two bi&tgnations on the rota-
tional axis due to carouselling.

Thirdly the Kalman filter bandwidth was varied. In this resp&e note that the
Kalman filter has the characteristics of a low-pass filterdfar application and that
the sensors rotate between two positions periodically aitkrtain frequency. It is
essential that this frequency is filtered away sufficierttiierwise the bias estima-
tion accuracy deteriorates. The rotational frequencyngdid by the required stand-
still time of both sensors during the actual measuremerit 3tandstill time may
not be too long, because three different positions are sapgsvithin the Kalman
filter bandwidth to obtain full observability of the bias@so short a standstill time
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8 Marcel Ruizenaar, Elwin van der Hall, and Martin Weiss

is not possible, because the bias changes slowly but cantifyi During standstill
sufficient convergence has to be achieved to keep up witle itteanges.

The noise power and sample frequency were also varied. Asceeg the ac-
curacy of the bias estimate is linearly dependent on the pofvihe noise of the
measurements. Because the bias instability is a very layuéecy phenomenon, a
low measurement frequency can be used without adversasffec

Lastly some errors that may occur with the AD-converter hagen modelled
such as missing bins and non-linearities. These erroredusnt to have little effect
on the bias estimation accuracy.

The simulation results for a 14 hour simulation are given iguFe 4. In this
figure, simulated and estimated bias are plotted.

An interesting property of the concept is that if the setsuptirest (i.e., no input
angular rate), it does not matter if the rotation matricesduim the calculations
correspond to the actual sensor positions.xAs 0, any erroneously usel& in
equation (1) does not introduce an error in the residumput to the Kalman filter
(equation (2)). We used this property to measure the outptwwmsets of MEMS
gyros that were at rest with respect to our laboratory sdf-ap no rotation of the
common body and no rotation of the sensors). The total measant time was 14
hr. We calculated the Allan variance of these measuremeictsheey are plotted in
Figure 5 (for clarity, only the plots of three gyros are shafisix available). Also

we ran our DriftLes8§" algorithm using these measured gyro signals as input and

calculated the biases. After compensating for the biasesalculated the AV again
and plotted the results (of the three gyros) in the same figtren these plots we
observe that the concept performs as expected.

Bias and Bias Estimation
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Fig. 4 14 hour run bias estimation. The red line is the bias, the bleetlia estimate of this bias.
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Fig. 5 Allan variance of a 14 hour experiment. The red lines are tHarAVariances of the un-
corrected biases of a single gyro triad and the black linesteré\lian variances of the sensors
corrected with our DriftLes$ concept

4 Experimental set-up

The experimental set-up used to validate and test the RSEM concept is repre-
sented in Figure 6. Figure 7 is a photo of the actual impleatant. For the two sets
of sensorss; andS, we used the MPUG050 3-axis MEMS gyro of Invensense [6].
The sensors are sampled with a frequency of 100 Hz. The gyse floor of the
sensors is typically 0.005 deg/rt(Hz), yielding a resich@ike covariance equivalent
to approximately 20.052 deg/s?. The two sensor chips are each placed on their
own rotatable printed circuit board (PCB) together with santerfacing electron-
ics. The PCBs are rotated with a driving mechanism based afl pirazo-elements,
desifned by the Danish company PCBmotor [2]. On the righa sithe box in Fig-
ure 7, a third PCB is mounted containing all the necessawndriand interfacing
electronics, and a USB interface to connect to a computet.dfops are used on
the sensor PCBs to limit the rotation between two fixed anqudaitions (approxi-
mately+90 degrees).

In general, a calibration procedure has to be performed tbtfie coefficients
of a calibration matri>xC for each sensor, containing all information about scaling
factors (including the analog to digital converter gainjsatignment, and cross-
coupling coefficients. Specifically for our DriftLe®4 concept, another calibration
procedure is required to find a rotation maffiXor all individual angular positions.
These two matriceS andT can be combined into a single mathkwhich replaces
the rotation matrice® in equation (1). However, sindé is no longer a rotation
matrix, MT has to be replaced withl 1. Instead of using two separate calibration
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Sensor interface

Motor interface

i Fig. 7 Photo of the actual experimental instal-
Fig. 6 Scheme of the laboratory set-up used|fdion used to test Driftled¥ .
testing the DriftLes8" concept.

procedures, our calibration procedure finds all coeffisi@fithe matrixv for each
of the individual angular positions. For the calibratiorg used an accurate pan/tilt
unit providing a known angular rate of 50 deg/s to the gyros.

The box was assembled in such a way that all sides of the baxr#éregonal to
within 0.05 deg. First both sensors were placed in theirp8§ition. The box was
rotated back and forth to known angular positions with theesangular rate. Dur-
ing this 1 minute lasting process, gyro measurements wearded. This process
was repeated with the box placed in its XY-orientation, MZeptation and XZ-
orientation. As an example, Figure 8 shows the actual oupthe S; gyro. The
top of the large square wave outputted by the z-axis gyr$, @orresponds to the
positive angular rate of 50 deg/s and the bottom to -50 dé&dys.smaller square
waves outputted by the x- and y-axes are due to the misalighofi¢these axes with
respect to the z-axis. Measuring the average top-top valfube square waves pro-
vides us with all necessary information to obtain the coeeffits of the matriceM
for both sensors in their -90-position. Then the sensorgww&aced in their +90-
positions and the process was repeated to find the matrices thief sensors in their
+90-position.

The outputs of the gyrosy§r andyc, in Figure 2), after bias correction by
DriftLess™ and after compensation for Earth rotation, were used toirmomtsly
update a rotation matriR,e representing the attitude of the “DriftLé86 box” with
respect to the local Earth navigation frame. The experiaieet-up was placed on
the same pan-tilt unit that was used for the calibration @dace. With this unit
we were able to test the DriftLe¥% concept in a dynamical situation. Random but
known angular patterns were used to drive the pan/tilt ésithe actual pan/tilt an-
gles are known, we could compare them to the attitude infoomaerived from the
Rye rotation matrix. Figure 9 shows the difference in attitudang our DriftLes$M
system and without using DriftLe8¥. As can be seen, the attitude drift without
using DriftLes$M is in the order of 250 deg/hr. After correction with Driftls2¥
the remaining drift is in the order of 20 deg/hr.
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Fig. 8 The gyroscope signals during a calibration process.

Angular error with (blue) and without (red) using DriftLess™
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Fig. 9 The angular errors of a gyroscope. The red lines are withqulyimg Driftless™ and the
blue lines are with Driftles$" applied.
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5 Conclusions and further work

We have presented in this paper an innovative method foresi@ation of inertial
sensors. The principle of the method is to combine measursnirom two sets of
INS instruments that are displaced with respect to eaclr @iteording to a con-
trolled pattern. The method was tested on gyro sensors ixgerinental setting
and also in a few digital simulation studies. The results@néed here indicate that
the method promises to be very effective and may allow higfopmance naviga-
tion results using cheaper sensor instrumentation.

Further work will concentrate on fault detection and isolatalgorithms to al-
low this approach to work under difficult terrain conditicarsd under considerable
stress. In parallel, work is going on in order to miniaturilze installation in order
to allow application in a large variety of situations suchuasnanned ground or air
vehicles, guided weapons, and personal (indoor) navigatio
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