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Abstract The problem of designing attitude control laws for a Low Earth Orbit
(LEO) satellite on the basis of static feedback from a triaxial magnetometer and a set
of high precision gyros is considered and an approach based on optimal static output
feedback for linear time-periodic system is presented. Simulation results are used to
demonstrate the feasibility of the proposed strategy and to evaluate its performance
in a realistic setting.

1 Introduction

Angular rate sensors are frequently used in space missions to provide either
an accurate alternative to pseudo-derivatives of attitude measurements in the im-
plementation of derivative feedback or as a source of accurate attitude measure-
ments in rate integration mode, for, e.g., high accuracy attitude manoeuvres (see,
e.g., [13, 17]). Unfortunately it is well known that the main issue associated with
rate gyro feedback is the presence of bias and drift (see, e.g., [4]), which make such
sensors poorly reliable over long time spans and introduce the need for on-line es-
timation of calibration parameters. The availability of new generation angular rate
sensors with significantly improved characteristics in terms of bias and bias stability
(see, e.g., [3, 11]), however, might lead to a very different scenario as far as attitude
control systems (ACS) design is concerned, since they would make it possible to de-
sign and implement control laws with highly accurate derivative action with limited
or no concern for calibration issues. In particular, the availability of accurate angular
rate information might lead to more relaxed requirements as far as attitude sensors
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2 Marco Bergamasco and Marco Lovera

are concerned, so it would be conceivable to operate the ACS loop using only static
feedback from simple and low cost sensors such as magnetometers. Magnetome-
ters have been used as reliable attitude sensors since the 1960s: as is well known
(see, e.g., [17]), attitude information can be extracted from magnetometer measure-
ments by comparing the sensed components of the geomagnetic field vector with
a mathematical model of the field implemented on-board. Clearly, the accuracy of
the obtained information will be affected both by measurement noise and by the
accuracy of both the on-board field model and the knowledge of orbital position it
requires as an input. Furthermore, on the basis of a single vector measurement such
as the magnetic field it is not possible to get complete attitude information at each
time instant, instead attitude observability is only guaranteed in an averaged sense.
A classical approach to the design of a control law for this sensor configuration is
to resort to a Kalman filter to reconstruct the missing attitude information (and pos-
sibly estimate gyro bias online) and close the loop using a conventional feedback
based on the estimated states. While this approach is certainly the most appropriate
one when dealing with the design of a high accuracy attitude controller for nominal
operation, in many practical operating conditions it is desirable to be able to rely on
much simpler controllers (i.e., static output feedback) while retaining a satisfactory
level of pointing and stability performance near the nominal attitude.

In this paper (see also the preliminary results in [14]) the problem of deriving
such a control law, i.e., a static output feedback one, with the aim of combining
simplicity and reliability with an acceptable level of performance, is considered.
More precisely, the above described sensor configuration consisting of a triaxial
magnetometer (for attitude information) and three rate gyros is considered, a suit-
able pre-processing scheme for magnetometer measurements is proposed and the
issues associated with the design of a static output feedback controller on the basis
of such measurements are discussed. Simulation results are eventually used to illus-
trate the achievable performance in a realistic setting. From a design perspective, the
main issue associated with this sensor configuration is that it leads to a linearised
model with a time-periodic output equations, so that the design of the sought after
output feedback controller calls for the adoption of methods and tools from the field
of periodic systems and control (see [2]). More precisely, the method first presented
in [15] has been employed.

The paper is organised as follows. In Section 2 a detailed model for the attitude
dynamics of the considered spacecraft configuration is derived. Section 3 provides
an overview of the adopted methods for control system design and compares an
approach based on an approximate time-invariant model for the system with a more
advanced one which takes into account periodicity of the output equation induced
by the magnetometer model. Finally, in Section 4 some results obtained by applying
the designed controller to a full nonlinear model of a LEO satellite are presented.
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Spacecraft Attitude Control based on Magnetometers and Gyros 3

2 Mathematical model

2.1 Reference frames

In order to represent the attitude motion of an Earth-pointing spacecraft on a
circular orbit the following reference systems are adopted:

• Earth Centered Inertial reference axes (ECI). The Earth’s centre is the origin of
these axes. The positive X-axis points in the vernal equinox direction. The Z-axis
points in the direction of the North Pole. The Y-axis completes the right-handed
orthogonal triad.

• Orbital Axes (XO, YO, ZO). The origin of these axes is at the satellite centre of
mass. The X-axis points to the Earth’s centre; the Y-axis points in the direction
of the orbital velocity vector. The Z-axis is normal to the satellite orbit plane.

• Satellite Body Axes. The origin of these axes is at the satellite centre of mass;
in nominal Earth- pointing conditions the XB (yaw), YB (roll) and ZB (pitch) axes
are aligned with the corresponding orbital axes.

2.2 Attitude dynamics

For the purpose of the present study we consider as state variables the quaternion
vector qBO =

[
qT

r ,q4
]T ∈ R4 representing the relative attitude of the satellite with

respect to the orbital axes and the components ωBI ∈ R3 of the inertial angular rate
vector of the satellite with respect to the body axes, so that

x =
[

qBO
ωBI

]
. (1)

The state equations associated with the attitude dynamics are therefore given by
(see, e.g., [13, 17])

ẋ =
[ 1

2W (ωBO)qBO
I−1(S(ωBI)IωBI +Tg +Tc)

]
, (2)

where Tg ∈ R3, Tc ∈ R3 are, respectively, the gravity-gradient and control torque
vectors, the relative angular rate ωBO is defined as

ωBO = ωBI −CBOωOI =

ωx
ωy
ωz

−CBO

 0
0

Ωorb

 , (3)

CBO ∈ R3×3 being the attitude matrix corresponding to the quaternion qBO, and
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W (ωBO) =


0 ωBOz −ωBOy ωBOx

−ωBOz 0 ωBOx ωBOy
ωBOy −ωBOx 0 ωBOz
−ωBOx −ωBOy −ωBOz 0

 , (4)

and

S(ωBI) =

 0 ωBIz −ωBIy
−ωBIz 0 ωBIx
ωBIy −ωBIx 0

 . (5)

With this choice of state variables we have that the quaternion, when the body sys-
tem is coincident with the orbital system, is equal to the unit quaternion defined as
1q = [0 0 0 1]T . The considered nominal state is therefore given by

xnom =
[
1T

q 0 0 Ωorb
]T

, (6)

where Ωorb is the orbital angular frequency.

2.3 Measurement models

As already discussed in the Introduction, the goal of this study is to demonstrate
the feasibility of an attitude control design approach based solely on static feedback
of magnetometer and gyro measurements. To this purpose, in this Section suitable
models for such measurements will be defined.

2.3.1 Magnetometer measurement

The measurement provided by an (ideal) triaxial magnetometer can be simply de-
fined as the vector of body-frame components of the geomagnetic field of the Earth.
Therefore, letting b the onboard measured components of the Earth’s magnetic field
and bO the Earth’s magnetic field vector in orbital frame it holds that

b =CBObO, (7)

where CBR is the attitude matrix from orbital frame to body frame. For the purpose
of deriving an analytical expression of the linearised measurement model, the pe-
riodic dipole model for the geomagnetic field in orbital frame (see [9, 17]) can be
considered, i.e.,

bO(t) =
µF

(RE +a)3

2sin(Ωorbt)sin(im)
cos(Ωorbt)sin(im)

cos(im)

 , (8)
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Spacecraft Attitude Control based on Magnetometers and Gyros 5

where µF is the strength of the dipole of the Earth’s magnetic field, im is the or-
bit’s inclination with respect to the geomagnetic equator and RE , a and Ωorb are,
respectively, the Earth radius, the orbit altitude and the orbit angular frequency. The
simplified model of the magnetic field is considered reliable enough for control pur-
poses, though the impact on stability and performance of the control system of the
approximations implied by the use of such a simplified model have to be investi-
gated a posteriori.

2.3.2 Gyro measurement

As far as gyros are concerned, in modelling the measurements available for con-
trol design it will be assumed that ideal access to the true components of the abso-
lute angular rate is available. Again, the effect of measurement inaccuracies (see,
again, [17]) will be taken into account in Section 4.

Remark 1. It is well known that the use of quaternion feedback for attitude control
poses a number of conceptual and practical problems (see for example [1]). In the
present work, however, no quaternion feedback is used in the control law; attitude
information is fed back only via measurements of the geomagnetic field.

2.4 Linearised model

Since we are focusing on control law design for nominal operation, in the follow-
ing, the linearised model describing the attitude motion near the nominal attitude is
developed. As expected, the output equations associated with the selected measured
variables turn out to be time periodic.

2.4.1 State equation

For the purpose of deriving a linearised version of the state equation (2), it will
be assumed that q4 ≃ 1, so that the state vector of the linearized model reduces to

δx =
[

qr
ω

]
=

[
05×1
Ωorb

]
+

[
δqr
δω

]
. (9)

In view of these definitions, the linearized model is given by

δ ẋ =
∂F(x,u)

∂x

∣∣∣∣
Nom

δx+
∂F(x,u)

∂u

∣∣∣∣
Nom

δu (10)

=

[
∂ q̇
∂q

∂ q̇
∂ω

∂ω̇
∂q

∂ω̇
∂ω

]
δx+

[
0

I−1

]
δu,
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where

∂ q̇
∂q

=
1
2

∂
∂q

W (ωBO)qBO

∣∣∣∣∣
Nom

=

 0 Ωorb 0
−Ωorb 0 0

0 0 0

 , (11)

∂ q̇
∂ω

=
1
2

∂
∂ω

(W (ωBO))

∣∣∣∣∣
Nom

=
1
2

I3, (12)

∂ω̇
∂q

=
∂

∂q
I−1Tg

∣∣∣∣∣
Nom

= (13)

= 6Ω 2
orbI−1

0 0 0
0 (Ixx − Izz) 0
0 0 (Ixx − Iyy)

 , (14)

∂ω̇
∂ω

=
∂

∂ω
I−1S(ω)Iω

∣∣∣∣∣
Nom

= Ωorb

 0 Iyy−Izz
Ixx

0
Izz−Ixx

Iyy
0 0

0 0 0

 . (15)

The expression ∂ω̇
∂ω shown in (15) is valid only if the inertia matrix is diagonal,

otherwise it assumes a more complex form. It is important to notice that subscripts
are dropped in the following equations, but q and ω are the variables declared in
the state vector (1). Substituting (11)-(15) in (10) the state equation of the linearized
model is obtained.

2.4.2 Output equation

Linearising (7) one gets

b ≃ bO +2ST (bO)δq, (16)

where

S(bO) =

 0 bOz −bOy
−bOz 0 bOx
bOy −bOx 0

 . (17)

In view of the problem of designing a static output feedback controller, it is useful to
modify the output equation so as to get a (time-varying) gain between the linearised
vector part of the quaternion and the output which is: i) positive semidefinite and
ii) as close as possible to an identity matrix. This can be achieved by defining the
output associated with magnetometer measurements as
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Spacecraft Attitude Control based on Magnetometers and Gyros 7

y1 =
1

2∥bO∥2 S(bO)b ≃ 1
∥bO∥2 S(bO)ST (bO)δq. (18)

For the angular rate measurements one can simply define the output as y2 = ω , so
the overall output equation for the linearised model reads

δy =
[

δy1
δy2

]
=C(t)δx =

[
1

∥bO∥2 S(bO)ST (bO)

I3

][
δq
δω

]
. (19)

As is well known from the literature (see, e.g., [16]), if full attitude and angular
rate feedback were available (i.e., if we were to replace the periodic matrix gain

1
∥bO∥2 S(bO)ST (bO) with an identity matrix) then local closed loop stability would be
guaranteed for any positive value of the proportional and derivative controller gains.
In the case of attitude feedback provided by a magnetometer, however, closed loop
stability may be significantly affected by the choice of such parameters. This is due
to the fact that feedback from the magnetometers renders the closed loop dynamics
time-periodic, so that stability of the closed loop system depends on the controller
parameters in a fundamentally different way. In particular, this implies that analysis
and design have to be carried out using tools from periodic systems theory, as will
be discussed in detail in the following Section.

3 Controller design

3.1 Design approach

In this Section, an overview of the approach to the design of LQ-optimal constant
gain controllers for continuous-time LTP systems, first presented in [15], will be
provided. Consider the LTP system

ẋ(t) = A(t)x(t)+B(t)u(t)

y(t) =C(t)x(t)
(20)

where A(t) ∈ Rn×n,B(t) ∈ Rn×m,C(t) ∈ Rp×n are T -periodic matrices, and the
quadratic performance index

J = E
{∫ ∞

t0

[
xT (t)Q(t)x(t)+uT (t)R(t)u(t)

]
dt
}

(21)

with Q(t) = QT (t) ≥ 0,R(t) = RT (t) > 0 T -periodic matrices and where the ex-
pectation is taken over the initial condition x0, modelled as a random variable with
zero mean and known covariance X0 = E

{
x0xT

0
}

. The optimal output feedback con-
trol problem can be formulated as follows: find the constant feedback matrix F of
optimal control action
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8 Marco Bergamasco and Marco Lovera

u∗(t) = Fy(t) (22)

which minimizes the performance index J of (21). Holding (22), the closed loop
dynamics can be written as

ẋ = [A(t)+B(t)FC(t)]x = Ā(t)x (23)

where Ā(t) = A(t)+B(t)FC(t) represents the closed loop dynamic matrix, which
is obviously periodic. Therefore matrix Ā(t) is associated with the transition matrix
ΦĀ(t, t0) satisfying

Φ̇Ā(t, t0) = Ā(t)ΦĀ(t, t0), ΦĀ(t0, t0) = In. (24)

The minimization of the performance index given by (21) can be carried out us-
ing either gradient-free or gradient-based methods, provided that an analytical ex-
pression for the gradient of the performance index with respect to the F matrix is
available. In both cases, an initial stabilizing matrix F0 must be employed. In the fol-
lowing Proposition (see [15] for details), necessary conditions for optimality (and
therefore the required gradient expression) will be presented.

Proposition 1 Let F be a constant stabilizing output feedback gain and assume
that the matrices Ā(t), Q̄(t) and X(t) are given respectively by Ā = A+BFC, Q̄ =
Q+CT FT RFC and X(t) = ΦĀ(t, t0)X0ΦT

Ā (t, t0); hence, the expressions for the per-
formance index (21) and its gradient are given by

J(F,X0) = trace(P0X0)

∇F J(F,X0) = 2
∫ t0+T

t0

[
BT (t)P(t)+

+R(t)FC(t)]ΦĀ(t, t0)V ΦT
Ā (t, t0)C

T (t)dt

where the symmetric periodic matrices P(t) and V satisfy, respectively, the periodic
Lyapunov differential equation (PLDE)

−Ṗ(t) = ĀT (t)P(t)+P(t)Ā(t)+ Q̄(t)

and the discrete Lyapunov equation (DLE)

V =ΨVΨ T +X0.

The optimization of (21) requires that the LTP system (20) is output stabilizable
and, at each iteration i, the matrix Fi belongs to the set SF ⊂ Rm×p of the stabilizing
feedback gain matrices. Formally, the optimization problem can be stated as

min
F∈SF

J(F,X0). (25)
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Spacecraft Attitude Control based on Magnetometers and Gyros 9

The stopping criterion, indicating convergence to a global or, at least, a local solution
of (25) will be simply ∥∇F J∥< tol.

Remark 2. Feasibility is a critical issue in the design of static output feedback. For
the problem at hand, however, it can be easily shown that the average of matrix
C(t) in (19) over one orbit period is nonsingular, so that the considered static output
feedback problem is equivalent (in the sense of averaging theory, see [7]) to a state
feedback one and is, therefore, feasible.

3.2 Controller design

The above described design approach has been applied to the linearised model
derived in Section 2, with specific reference to the case study described in the fol-
lowing Section 4.2. More precisely, as far as the LQP design approach is concerned,
the weighting matrices in (21) have been chosen as Q = I6 and R = 103I3; the com-
puted output-feedback gain leads to a stable closed-loop system, with the following
values for the characteristic multipliers (see [2])

λLQP =
[
0.0339 0.0000 0.0000 0 0 0

]
. (26)

In order to be able to quantify the benefits of taking the periodicity of the linearised
model into account in the design of the control law, a second controller has been
designed using a time-invariant approximation of the linearised model obtained by
computing the average over one orbit period T = 2π/Ωorb of matrix C(t) in (19)

C̄ =
1
T

∫ T

0
C(t)dt. (27)

As C̄ turns out to be nonsingular, for the averaged linearised model it is possible to
design a constant gain controller by solving a state feedback rather than an output
feedback problem. The control law is given by

δu = Fδy, (28)

with F =−KC̄−1, where K is the LQ state-feedback gain computed using the same
Q and R weighting matrices as in the periodic design case. In order to check the
closed-loop stability of the original linearised periodic system under the feedback
(28), the characteristic multipliers of the closed-loop system have been computed:

λLQ =
[
0.5369 0.0673 0.0003 0 0 0

]
. (29)

The linearized model and the gains computed with the two design approaches have
been implemented and the performance of these control laws have been assessed. In
the simulations, the initial state
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x0 =
[
0.05 0.05 0.05 0.001 0.001 0.001

]T
, (30)

has been considered, which corresponds to an error of about 5.7◦ between the body
frame and the orbital frame for each axis and to an error close to ΩOrb on the body
components of the angular rate, i.e., a representative initial condition for a nominal
attitude controller.

The results of the simulations are shown in Figures 1-3. As can be seen, both
control laws bring the satellite back to its nominal attitude, removing the initial at-
titude and angular rate error by applying control torques of acceptable values. A

0 1 2 3 4 5 6 7
−0.05

0

0.05

0.1

LQ and LQP

δq
1

0 1 2 3 4 5 6 7
−0.05

0

0.05

0.1

δq
2

0 1 2 3 4 5 6 7
−0.05

0

0.05

0.1

[Orbits]

δq
3

Fig. 1: Closed-loop time histories of δqr using the LQ (dashed lines) and LQP (solid
lines) controllers.

comparison of the closed-loop dynamics obtained using the two controllers, how-
ever, show clearly that using the design approach capable of taking the periodicity of
the output equation into account a better result can be obtained, namely a faster and
smoother transient for the attitude parameters. Indeed, with similar control torques
the LQ controller brings the satellite in nominal attitude in about 5 orbits (≈ 30000
s), while the LQP controller achieves the same results much more effectively, i.e., in
less than one orbit. The above comparison, however, has been performed in a rather
ideal setting, i.e., by simulating the linearised model for the attitude dynamics and
neglecting all the sources of uncertainty which have been mentioned in Section 2.
A more realistic simulation study is presented in the following Section.
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Fig. 2: Closed-loop time histories of δω using the LQ (dashed lines) and LQP (solid
lines) controllers.

4 Simulation study

In order to assess the achievable performance using the magnetometer+gyros
configuration and the proposed design approach, a more realistic simulation study
has been performed. In this Section, the simulation environment, the considered
case study and the obtained results are presented and discussed.

4.1 Simulation environment

The simulations presented in the following have been carried out using an object-
oriented environment for satellite dynamics (see [8,12] for details) developed using
the Modelica language ( [5]). More precisely, a full nonlinear simulation of the cou-
pled rigid body orbital and attitude dynamics has been performed and the following
models of the space environment have been implemented: the JGM-3 spherical ex-
pansion for the geopotential as a gravitational model, the Harris-Priester model for
the atmospheric density distribution (see [10] for details) and the International Ge-
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Fig. 3: Control torques, using the LQ (dashed lines) and LQP (solid lines) con-
trollers.

omagnetic Reference Field (IGRF, see [17]) for the Earth’s magnetic field (up to
order 10). Disturbance torques due to gravity gradient (including J2 effects), mag-
netic residual dipole (assuming a residual dipole of 1 Am2 along each spacecraft
body axis) and solar radiation pressure (computed using the solar coordinates for-
mulas given in [10]) have been taken into account in the simulation. Finally, the
controller has been implemented in digital form, using a conventional sample and
hold scheme and a sampling interval of one second.

4.2 Case study

The considered case study is loosely based on the spacecraft for the ESA Swarm
mission (see [6]), the goal of which is to provide the best ever survey of the geomag-
netic field and the first global representation of its variation on time scales from an
hour to several days. The Swarm concept consists of a constellation of three satel-
lites in three different polar orbits between 400 and 550 km altitude. For the purpose
of this study the following assumptions have been made:
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1. The satellite is operating on a circular, near polar orbit (i= 86.9◦ inclination) with
an altitude of 450 km (and a corresponding orbital period of 5614.8 seconds).

2. The satellite inertial properties are:

• Satellite mass m = 496 [kg]
• Satellite inertia matrix:

I =

465.8 −15 −1
−15 48.5 −2.8
−1 −2.8 439.9

 [kg m2]. (31)

3. For aerodynamic modelling purposes, a default cubic geometry was assumed for
the satellite, comprising six surfaces, each with 1 m2 surface area, reflectivity co-
efficient ε = 0.02 and center of pressure located at the surface geometric center.
As far as the interaction with the environment is concerned, aerodynamic drag,
solar radiation pressure and a residual magnetic dipole of 1 A m2 upon each
spacecraft body axis were considered as sources of disturbance torques.

4. Representative values for the errors affecting sensor measurements (magnetome-
ter, gyros, GPS data) have been taken into account.

Finally, as mentioned in Section 2 an important factor which influences the reli-
ability of geomagnetic field measurements as sources of attitude information is the
accuracy of the on-board geomagnetic field model to which the measurements are
compared. In order to evaluate the sensitivity of the closed-loop performance in this
respect, the controller designed in the previous Section has been implemented and
used in closed-loop simulations both by assuming the on-board availability of a very
accurate geomagnetic field model (10th order IGRF model, i.e., same order as the
”truth” model) and by considering a less precise one (5th order IGRF only).

4.3 Simulation results

The results obtained in the simulations are presented in Figures 4-6. As can be
seen, the controller designed using the proposed approach can provide excellent
performance in terms of transient response even in this more realistic scenario, i.e.,
taking into account disturbance torques, measurement and modelling errors and the
digital implementation. Furthermore, while the performance degradation associated
with geomagnetic field modelling errors is clearly visible in Figures 4-5, the overall
pointing accuracy is satisfactory.

5 Conclusions

In this paper, the problem of attitude control system design for a Low Earth
Orbit (LEO) satellite equipped with a triaxial magnetometer and a set of high preci-
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Fig. 4: Closed-loop time histories of δqr using the 5th order (dashed lines) and the
10th order (solid lines) IGRF magnetic field model on-board.

sion gyros has been considered. This sensor configuration leads to a time-periodic
linearised model, for the control of which an approach based on optimal static out-
put feedback for linear time-periodic system has been presented. Simulation results
have been used to demonstrate the practical feasibility of the proposed strategy and
to quantify the achievable performance in a realistic setting for a LEO satellite mis-
sion.
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