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Constrained adaptive control with transient and
steady-state performance guarantees

Simon P. Schatz, Tansel Yucelen, and Eric N. Johnson

Abstract Over the last decades research has been performed in order to improve
the transient behavior of adaptive systems. To that end, this paper develops a new
adaptive control architecture for uncertain dynamical systems to achieve guaranteed
transient performance in the presence of state constraints. For this purpose, we ex-
tended a recently developed command governor method. Specifically, the command
governor is a dynamical system adjusting the trajectory of a given command in order
to follow an ideal reference system in transient time, where this system captures a
desired closed-loop dynamical system behavior specified by a control engineer. Our
extension enables this method to handle state constraints in the range space of the
control input matrix. Alternative approaches for enforcing state constraints outside
of the range space are further discussed. Finally, these methods are illustrated for
the lateral and the longitudinal motion of an aircraft.

1 Introduction

In control theory, mathematical models, derived from fundamental physical laws,
are used for the design of controllers in order to achieve certain stability and perfor-
mance objectives. These models, however, are subject to uncertainties due to ide-

Simon P. Schatz
Institute of Flight System Dynamics, Technische Universitit Miinchen, Garching, Germany
e-mail: simon.p.schatz@tum.de

Tansel Yucelen
Georgia Institute of Technology, School of Aerospace Engineering, Atlanta, GA 30332-0150
e-mail: tansel.yucelen@ae.gatech.edu

Eric N. Johnson
Georgia Institute of Technology, School of Aerospace Engineering, Atlanta, GA 30332-0150
e-mail: eric. johnson@ae.gatech.edu

789



2 Simon P. Schatz, Tansel Yucelen, and Eric N. Johnson

alized assumptions, simplifications, nonlinearities, time-varying parameters, mea-
surement noise, and disturbances in order to name a few.

Although fixed-gain robust control design approaches can deal with such uncer-
tainties, they require the knowledge of characterized uncertainty bounds, which may
not be trivial to obtain due to practical constraints (e.g. extensive verification and
validation procedures). Moreover, in the face of high uncertainty levels, they may
fail to satisfy a given system performance requirement. On the other hand, adaptive
controllers require less modeling information than fixed-gain robust controllers for
coping with these high uncertainty levels, and therefore, they are important candi-
dates for such applications.

Adaptive Controllers can be classified either as direct or indirect [14]. Indirect
adaptive controllers employ an estimation algorithm in order to approximate the un-
known system and adapt the controller gains. In contrast, direct controllers adapt the
controller’s feedback gains without requiring any estimation process. In this paper,
direct adaptive controllers, in particular model reference adaptive control (MRAC),
are considered. MRAC schemes use the error between the output (resp. state) of an
ideal reference model, specifically designed in order to achieve a desired closed-
loop system behavior, and the output (resp. state) of the uncertain plant in order to
update uncertain parameters of the controller online. In particular, the objective of
the adaptive controller is to suppress the system’s uncertainty and drive the control
error to zero. Although this objective can be achieved asymptotically, the uncertain
system’s output (resp. state) might be far different from the desired output (resp.
state) of the ideal reference model in transient time.

It is well known that high learning rates in the adaptive update laws improve
the transient performance of the system. However, these high gains might lead to
oscillations in the command or amplify unmodeled dynamics, which can lead to
instability for real-world applications as discussed in [1], [2], [8]. Hence, often a
trade-off between stability and transient performance has to be considered in the
design process. In some adaptive approaches, such as [7] and [16], this trade-off is
not necessary. However, an upper bound of the uncertainty is required a priori, which
might be excessed only in some specific cases. For example, a sudden structural
damage might lead to uncertainties much higher than anticipated.

In [17] and [19], a command governor! structure has been introduced, which en-
sures approximate tracking of the desired reference model in transient time along
with adaption. The command governor is a dynamical system adjusting the trajec-
tories of a given command in order to follow an ideal reference system in transient
time. Since the command governor suppresses the uncertainties rapidly, a smaller
learning rate is necessary than in traditional MRAC schemes.

! In the context of handling state and control constraints of dynamical systems, several command
governor approaches are studied in the literature (see, e.g., [3], [6] and references therein). Even
though the command governor architecture of this paper alters a given command similar to those
approaches, our objective is to address the poor transient performance phenomenon of adaptive
controllers as applied to nonlinear uncertain dynamical systems, and hence, the proposed architec-
ture signicantly differs from the existing command governor approaches.
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Constrained adaptive control with transient and steady-state performance guarantees 3

In this paper, the idea of the approximate transient tracking of the desired ref-
erence model is extended to enforce state constraints on the uncertain dynamical
system. Our extension enables this command governor methodology to handle state
constraints in the range space of the input matrix. Alternative approaches for enforc-
ing state constraints outside of the range space are further discussed. Finally, these
methods are illustrated for the lateral and the longitudinal motion of an aircraft.

2 Notation

The notation used in this paper is fairly standard. Specifically, R denotes the set of
real numbers, R" denotes the set of n x 1 real column vectors, R**™ denotes the
set of n x m real matrices, (-)” denotes transpose, (-)~! denotes inverse, and “£”
denotes equality by definition. In addition, we write Ayin(A) (resp., Amax(A)) for
the minimum (resp., maximum) eigenvalue of the Hermitian matrix A, det(A) for
the determinant of the Hermitian matrix A, I, € R’*" for the unity matrix, tr(-) for
the trace operator, Proj(-) for the projection operator [15], vec(+) for the column
stacking operator, ||-||, for the Euclidian norm, for the infinity norm, and ||- ||
for the Frobenius matrix norm.

Hoo

3 Problem Formulation

In this section, we present a brief overview of the MRAC scheme augmented with
the command governor methodology. Specifically, consider the following nonlinear
uncertain dynamical system:

x(t) =Ax(t) + Bu(t) + DA(x(¢)), x(0) = xo, (D

where x(¢) € R" is the accessible state vector, u(r) € R, A(x(¢)) : R" — R™ is an

uncertainty, A € R is a known system matrix, B € R"*" is an unknown con-

trol input matrix, and D € R"*™ is a known uncertainty input matrix such that

det(DT D) # 0. We assume that the pair (A, D) is controllable and the required prop-

erties for the existence and uniqueness of solutions are satisfied in (1).
Assumption 3.1. The uncertainty in (1) can be parameterized as

Alx)=WTo(x), xeR", )

where W € R**™ is an unknown weight matrix and o : ®" — R is a known basis
function of the form & (x) = [0 (x), 02(x), ..., 05(x)]T.

Remark 3.1. In Assumption 3.1, we assume that the basis functions o (x(¢)) is
known. For the other case, the parametrization in (2) can be relaxed, for example,
by considering A(x(¢)) = W o™ (VT x(t)) + €™, x(t) € D,, where W € R**™ and
V € R™ are unknown weight matrices, 6™ : D, — R* is a known vector composed
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4 Simon P. Schatz, Tansel Yucelen, and Eric N. Johnson

of neural network function approximators, € : D, — R is an unknown residual
error, and D, is a compact subset of R” [13].
Assumption 3.2. The unknown control input matrix in (1) is parameterized as

B=DA, 3)

where A € R is an unknown control effectiveness matrix.

The system (1) is desired to follow the given uniformly continuous bounded com-
mand ¢(t) € R" through the closed-loop (non-ideal) reference model dynamics pro-
posed in [10], [11]:

Xm(t) = ApXn () + Be(t) + Lec(t),  xu(0) = Xm0, ¢>0. 4

In (4), x,,(r) € R" is the reference model state vector, A, € R"*" represents the
desired Hurwitz system matrix, and B, € R"*™ is the command input matrix.
ec(t) 2 x(t) — x(t) € R" is the control error and L = kI, represents a positive def-
inite observer matrix. Notice that k¥ = O recovers the ideal (undisturbed) reference
model. The observer matrix is applied in order to achieve faster error dynamics in
comparison to the reference model [10], [11].

Remark 3.2. Even though the formulation given here is based on a closed-loop
reference model, as we see later, the augmentation of the MRAC scheme by the
command governor allows us to follow the ideal (k = 0) reference model in transient
time and steady-state.

Now, a feedback law u(t), subject to (2) and (3), is constructed such that the
states x(¢) asymptotically track the reference model states x,,(¢). For this purpose,

u(t) = un(1) = ttaa(t), (5)

where u,(r) € R™ is the nominal feedback control for the certain system and
Uqq(t) € R represents the adaptive feedback control law in order to asymptotically
cancel uncertainties of the system. The nominal control is given by

un(t) = —Kux(t) + Kec(t), (6)

where K, € R™*" is the nominal feedback matrix and K, € R"™ ™ det(K.) # 0 is
the feedforward matrix chosen such that A — DK, = A,, and DK, = B,,. Application
of (5) and (6) on (1) along with the assumptions (2) and (3), yields

%(t) = Apx(t) 4+ Buc(t) + DA (—ugq (1) + W, (t) + W o (x(1))), 7

where WI = A=1WT € RS and W] = [I— A~!] € R™*™. Furthermore, the adap-
tive feedback law
tad (1) = W (1) + Wg 0 (x(1))) ®)

is proposed, where W € R"*% and WI € R represent estimates of the ideal
weights WI and W], respectively, which are satisfying the weight update laws

u
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Constrained adaptive control with transient and steady-state performance guarantees 5
Wo = I50(x(t)el (1)PD,  Ws(0) = Wo o, 9)
W, = E”fz(t)€Z(t)PDv W(0) = Wu-,07 (10)

with the symmetric positive definite learning rates I; € Ry and I, € R P €
R’ " represents the symmetric positive definite solution of the Lyapunov equation

[An—L" P+P[A, —L] = —R, (11)

where R € R"" is a symmetric positive definite designer matrix. Furthermore,
We (1) & We(t) — W and W, (t) = W, (t) — W, denote the adaptive weight estima-
tion errors. Using (8) in (7), we have

%(t) = Apx(t) + Buc(t) — DA(W,] u, (t) + Wl o (x(1))) (12)
The error dynamics are computed by using (4) and (12):
éc(t) = [Am — L] ec(t) — DA(W u, (1) + WL o(x(1))) (13)

It is well known that Lyapunov stability of the adaptive weight estimation errors
W,(t) and W (t), and the control error e.(t) can be shown by application of the
Lyapunov function candidate V = e (t)Pe.(t) + tr W] I,7'W, ] + tr [WI T 'W;].
Furthermore, it can be proven that lim,_,.. e.(¢) = 0. Due to space limitations (and
similarity to section 5), the proof is omitted.

The MRAC approach with closed-loop reference model, presented above, guar-
antees only asymptotic convergence of the tracking error to zero. Although the tran-
sient performance is improved in comparison to standard MRAC as a consequence
of the closed-loop reference model [10], [11], the transient response of the system is
still subject to the scaling problem arising with adaptive control (e.g., performance
can change with respect to the same commands having different (scaled) ampli-
tudes). That is, in contrast to linear control, the response of adaptive systems is not
scalable due to their nonlinear nature. Therefore, a trade-off between good tracking
performance, achieved by fast suppression of the uncertainties (high learning rates
I'), and acceptable control inputs u(¢) (lower learning rates I") has to be considered
in the design process. In order to achieve this goal, the so-called command gover-
nor (CG, [17], [19]) is used. Basically, the command governor is a parallel linear
dynamical system that influences the characteristics of the command ¢(¢), which is
applied on the reference model (4) and the nominal control (6). Consequently, the
command c¢(r) consists of two parts,

c(t) = cp(t) + K [D'D] ' D g(r), (14)

where cp(r) € R™ is the uniformly continuous bounded desired tracking command
and g(¢) € R" is the output of the linear command governor system, given by

§() = —A&(1) +Aec(r), 6(0)=0, (15)
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g(t):Ag(t)_F[Am_L_lln}ec(t)v (16)

with the command governor states £ (1) € R” and the command governor gain A > 0.
Since the command is applied on both, the system and the reference model, the error
dynamics (13) do not change. With the error dynamics, it is possible to express the
uncertainty as

AW uy(t) + W o(x(r)) = [D"D] "D {[A — Llec(t) —éc(t)}. (A7)
Using (17) with the augmented command (14) and (16) in (12), yields
(1) = Apx(1) + Buep(1) + DD D] ' DT{AE (1) — Aec(t) + éc(t)} (18)

Transforming the command governor equation (15) into the Laplace domain, results
in&(s) = A/(s+ A)ec(s). Application of this, gives

A
s+A

N
5
5+1

(s).

19)
Obviously, lim;_,e A (E(7) — e (1)) = —é.. As a consequence, for A — oo the closed-
loop system (18) becomes x(t) = A,x(¢) + Bmep(t). Conclusively, it can be stated
that for a sufficiently large A, the closed-loop system, consisting of the uncertain
system (1), subject to the assumptions (2), (3), the closed-loop reference model (4),
the control laws (5), (6), (8) and the command governor, given by (15) and (16),
approximately tracks the desired reference model even in transient time

LEN - 2ec(0) = AE6) —er) =2 (157 1 ) elo) =

x(t) = Apx(t) + Buep(t). (20)

In contrast to the standard MRAC stability analysis, the command c¢(¢) cannot be
assumed to be bounded. Therefore, the boundedness of the command ¢(¢) has to
be established by Lyapunov stability analysis. This will be executed along with the
stability analysis presented in section 5.

Remark 3.3. In this section, ideal measurements are assumed. The differenti-
ating character of the command governor, displayed in (19), might amplify high-
frequency content in the dynamical system. Consequently, robustness modifications
have to be applied [18], [19]. If the high-frequency content is due to measurement
noise or unmodeled dynamics, the update laws (9) and (10) have to be modified in
order to avoid the phenomena of parameter drift. An example of such a modification
is the o-modification [8].

Remark 3.4. Since A = « is not physically possible, an adaptive control law is
necessary to ensure stability. Consequently, there is a trade-off between the com-
mand governor gain A and the adaptive learning rates I'; and I,. If the upper bound
of the uncertainty is known, however, the command governor alone can be used [5].
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Constrained adaptive control with transient and steady-state performance guarantees 7

4 Constraint Enforcement

In the spirit of the command governor, presented above, an additional command is
added to both, the uncertain dynamical system (1) through the control laws (5) and
(6), and the reference model (4). This additional constraint command c.(¢) € R™ is
designed in order to enforce constraints on the dynamical system by reducing the
overall command. Then, the overall command becomes

c(t) = cp(t) + K. [D'D] ' D g(t) +cc(t). @1)

The overall control structure is displayed in Fig. 1. Obviously, the controller and
the reference model are driven by the overall command assembled in (21).

)
co(t)+ ct) [ Reference X, (t)
A Model
——
. )
; u, )+ u) Uncertain X(t) V-
| Nominal 78 ) Dynamical >
Control : +
System
——
U,q4(t) Adaptive | e.)
Control
 E—
+ cg(t) Command | <X
+ Governor |-
EE——
Co () Constraint |
Enforcement |~
—

Fig. 1 Block diagram of overall control structure

The constraint command c,(¢) is designed based on a gradient-based minimiza-
tion of a cost function,

J= %xT (1)YDOD™ x(1), (22)

where Q € R"™*™ is a weight matrix. This cost function can be minimized by appli-
cation of the negative gradient,

Xlim(f) = —=—— = —DQOD" x(t). 23
th( ) ax(t) Q x( ) ( )
Here, Xjim(7) is the additional change of the states due to constraint enforcement.
However, (23) would basically try to enforce the constraint x() = 0 and conse-
quently pull back the states x(¢) to the origin. Therefore, the constraint enforcement
term should just be active if the states are actually about to violate the constraint.
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8 Simon P. Schatz, Tansel Yucelen, and Eric N. Johnson
Therefore, (23) is modified:
Kim (1) = —DOD" p(1)x(1), (24)

where pu(t) € R™" is a diagonal, positive semidefinite matrix with scalar entries
W;(t) on the diagonal. In the spirit of constraint enforcement in optimal control
[4], each w;(¢) = 0, if its corresponding state x;(¢) is within the set X; o = {x;(t) €
%,xi7min < x,-(t) < xi7max} and [Ji(t) =, if xi(t) € X,'J} £ {x,-(t) € %,xi(t) =
Ximin UXi(f) = Ximax }, Where ¥ € R is a gain chosen by the designer. As a re-
sult, the gradient based method proposed drives the states x;(#) to its origin in order
to try to enforce the constraint u;(¢)x;(#) = 0. However, the actual objective here
is not to keep the states at zero, but to keep the states within the set defined by
X; 2 XioUXi s = {xi(t) € R, X min < xi(t) <Xjmax}. This point is elucidated below.

It is obvious that the term (24) is just relevant for () # 0 and therefore, for at
least one x;(r) € X; y or x;(f) = X; jim,» Where x; ;im represents either X; min OF X; max
depending on x;(¢). For example, for x; min = —X; max. the state limits can be deter-
mined by x; jim = Xi maxsign(x;(¢)). Then, it is sufficient to use the x; ji instead of
xi(t), and (24) becomes iy (1) = —DQODT 1 (t)x;m, Which can be included into the
overall command c(t) as

ce(t) = =K' OD" () xiim. (25)

(25) is applied on both, reference model and system. Consequently, the error dy-
namics (13) do not change. As a result, the command governor of section 3 remains
unchanged, as well. Furthermore, it should be noted that the constraint command
cc(t) is uniformly, ultimately bounded, since (z) < ©.

Finally, the transition from p;(¢) = 0 to w;(t) = ¥; is desired to be continuous.
Therefore, two definitions for p;(z) are proposed as follows. First, consider

0, |xi(?)| < ¢p,imax + &
wi(t) = . i, [xi(2)] = |Xi tim| (26)
1%7 p,imax + & < |xi(t)| < [ tim]

where cp ;max € R+ represents the norm of either the maximum or minimum com-
mand allowed, depending on x;(¢) and & € R, is a small positive constant that
determines the magnitude of the transition zone. It is obvious that this definition
of p;(t) is just feasible, if the maximum (minimum) command cp ; max is smaller
(larger) than the state limit x;jim, which represents X; 3. However, in real-world
applications, there will be always a margin between the maximum (or, minimum)

command possible and the set X; y and therefore, this is a reasonable assumption.
Smooth, uniformly continuous, transition from p;(¢) = 0 to y;(¢) = ¥ can also

be achieved by
) 7)
’xi,lim‘ — |xi ()] ’

1i(#) = Yitanh (pl-
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Constrained adaptive control with transient and steady-state performance guarantees 9

where p; € R, is a small constant. However, except of at the origin x;(¢) = 0, the
parameter L;(¢) is different from zero and therefore, a steady-state error will occur.

Remark 4.1. If the actual desired reference model %,,(f) = Apxm (t) + Bucp(2)
stays within Xy for all times, the command governor already approximately enforces
the constraint since (20) holds. However, the augmentation of the system by c,(¢)
gives the possibility to increase the command cp max to a magnitude that allows an
overshoot of the desired reference model.

Remark 4.2. Due to the structure of (25), just states can be limited that are within
the input range of the input matrix D. For states that are not in the input range of
D, the tangency condition [4] has to hold. That is, all time derivatives of the state
have to be feasible with the constraint at hand. An example of a possible application
of the tangency condition is given in section 6. Furthermore, another workaround is
presented, that can be used in certain cases.

Remark 4.3. For clarity, note that the reference model is bounded due to the
Hurwitz matrix A, and the boundedness of cp(t), cg(f) and c.(¢). These variables
can be chosen in a feasible way by the designer. Furthermore, note that the ideal
reference model without modifications is approximately tracked if the constraint
enforcement term is not active.

5 Stability Proof

Theorem 1. Consider the uncertain dynamical system (1) subject to the assump-
tions (2) and (3), the reference model (4), the control law given by (5), (6) and (8),
as well as the adaptive weight update laws (9) and (10), where the command is
defined by (21). Furthermore, consider the command governor, consisting of (15)
and (16), and the constraint enforcement command, given by (25). Then, the con-
trol error e(t), the command governor states £ (t) and the weight estimation errors
W (t) and W, (t) of the dynamical closed-loop system are Lyapunov stable for all
(€c,0s Wi 0, We0,0) € R x R x REM x R and t > 0. Moreover; limy_,o0 €. (1) =
0, limy e & (1) =0, limy_,e g(7) = 0, and lim;_,e(c(t) — cp(t)) = c.(t). Besides, the
closed-loop uncertain dynamical system approximates

x(t) = Apx(t) + Bmep (1) + Bpe(t), (28)

in transient time. Furthermore, if |x(t)| < ¢p max + € then u(t) =0 and c.(t) = 0.
Consequently, lim,_,o.c.(t) = 0 and the desired reference model (20) is approxi-
mately tracked in transient time.

Proof. Consider the Lyapunov function candidate V (e.(¢), W, (t), Ws (t),&(2))

V() = el (1)Pec(t) +tr [W) ()1, Wa(0)] + te Wy ()T Wo (1)] + a8 (1)& (1)
(29)
This term is positive definite outside the equilibrium and radially unbounded. Dif-
ferentiating along its trajectories (13), (9), (10), and (15), and application of the
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Lyapunov Equation (11), results in
V() = el ()Rec(t) —20AET (HE(1) + 20AET (1)ec(r): (30)

Now, by choosing the matrix R, the command governor gain A and & > 0 in an
appropriate way, R = Ry + oA, with Ry € R’*" being a positive definite matrix, it
is shown that

V() = —el (t)Roec(t) — ad (28" (1)& (1) = 28" (t)ec(r) + el ()ec(t)) . (BD)
With &7 (1)& (1) —2E7 (1)ec (1) + € (t)ec(t) = || € (t) — ec(1) 3. it can be followed that
V() < —el (1)Roec(t) — ad&T (1)E (7). (32)

Thus, the system is Lyapunov stable for all (eqo,Wu,o,WG,o,O) € R x RMxm x
R x R* and ¢ > 0. Stability implies that the control error e () and the com-
mand governor states &(¢) are bounded and, as a consequence of the stable and
bounded reference model, the states x(¢) are also bounded. Therefore, o (x(¢)) and
u,(t) are bounded and it follows from (9), (10), and (13) that é.(¢) is bounded, too.
Furthermore, from (15), we know that & (¢) is bounded as well. Consequently, V()
is bounded and therefore, V(-) is uniformly continuous and V() is lower bounded
by 0 and strictly non-increasing for all # > 0. Hence, by application of Barbalat’s
Lemma [9], it follows that lim, e V (e.(¢), W, (t),Ws(t),E(¢)) = 0, and as a re-
sult, lim; e e.(2) = 0, lim;_, & (¢) = 0. With (16), it can be directly followed that
lim;_,e g(#) = 0, and, based on (21), lim;.(c(t) — cp(t)) = c.(t). Furthermore,
similar to (20), it can be followed that x(f) ~ A;x(¢) + Bmcp(t) + Bueo (). From
(25) and (26), we furthermore know that c.(t) = 0 for |x(¢)| < ¢p max + € and in this
case, the closed-loop uncertain dynamical system approximates the desired refer-
ence model (20) in transient time. This completes the proof. U

Remark 5.1. If the definition (27) is used, w(z) will usually not become zero
due to the definition of the hyperbolic tangent. Consequently, there will be always a
small steady-state error as c¢.(¢) # 0.

6 Examples

Consider the nonlinear uncertain system

Xl(t) 101 xl(t) 0
(R =1o0] Cai) + (1) At +acon. @)
which represents the wing rock dynamics of an aircraft. x;(¢) is the bank angle
of an aircraft in radians and x,(¢) is the roll rate in radians per second. The un-

certainty is given by A(x(r)) = 0.1414x;(¢) + 0.5504x,(¢) — 0.0624|x; ()| x2 (1) +
0.0095x2(#)[x2(#) +0.0215x3 (¢) [17] and is derived from the aerodynamic coeffi-
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cients of an aircraft. In order to show the performance of the overall system, the input
uncertainty is arbitrarily chosen to be A = 0.2, which is equivalent to a 80% loss of
control effectiveness. Furthermore, the nominal control consists of K, = (a)2 208 )
and K, = ®*, where @ = 0.4rad /s is the natural frequency of the desired reference
model and { = 0.707 is the corresponding damping ratio. The designer parameters
are R=05L, A =25,I5=0.1,I;, =0.1 and k¥ = 1. For demonstration purposes dou-
blets of the bank angle are commanded and the limits of the roll rate are reduced. In
order to enforce these constraints, definition (27) with p, = 1073 is used for i (¢)
in c.(t) = =K 'qia(t)x2 1im, Where g = 25.

P I I 1

Fig. 2 Wing Rock Dynamics: Performance of constraint enforcement term

In Fig. 3 the limits of the roll rate are continuously reduced from 5°/s to 0.3°/s.
These limits are arbitrarily set in order to show the performance of the limiting term.
The cyan solid lines represents the desired reference model (denoted as "mD”),
which is the model we want to track. The actual plant without constraint enforce-
ment is represented by the blue dotted lines and the behavior of the plant subject to
the constraint enforcement is shown by the red dash-dot lines. Obviously, the con-
strained plant reacts much slower due to the limits, but it is important to note that
the constraints on the roll rate are enforced for the whole time.

As mentioned before, due to the structure of the constraint enforcement com-
mand (25) just states within the input range of the input matrix D can be limited.
However, in a problem-dependent way, workarounds are possible. Two examples
are given in this section. First, in spirit of the tangency condition [4], the bank angle
is limited by changing the limits of the roll rate.
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12 Simon P. Schatz, Tansel Yucelen, and Eric N. Johnson

. X2 max,max, X1 (t) < (1 - 5)X1,max
Frm = H (31 31 (1), (1= 8) 0t max S0(1) STimax | (34)
' 0, xl(t) le,max

where 6 = 0.15 determines the transition zone and x2 max,max = 5° /s is the maximum
roll rate allowed. For the lower limit, (34) can be chosen similar, where x2 min,min =
—5°/s is the minimum roll rate allowed and x| max = 25° and x| i, = —25° are the
limits for the bank angle.

The constraint command is still given by c.(t) = — K. !qu (t)x2 im With the same
parameters as above and X7 jim = X2,max for x2(#) > 0 0r X2 jim = X2, min for x2(7) <O,
respectively.

Fig. 3 Wing Rock Dynamics: Comparison of performance with and without constraint enforcment

Fig. 4 Wing Rock Dynamics: o 7
Detailed view of Fig. 3. Ob- 8.
viously, the constraint on the "
roll rate is met by the system,
whereas the system without g,
constraint enforcement ap- S
proximately tracks the desired S
reference model 1

1.6

=
:}15

Fig. 3 shows the comparison of the system with and without constraint enforce-
ment. Obviously, the desired reference model is approximately tracked in transient
time by application of the command governor. Adding the constraint enforcement
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term, meets arbitrarily chosen constraints on the bank angle. Fig. 4 shows the influ-
ence of the constraint enforcement term in more detail.
Furthermore, consider the system

@8) - {Z; alzz] (28) * <(1)> A(u(t) +A(x(1))), (35)

which represents the short-period longitudinal mode of an aircraft. x; (¢) is the angle
of attack of an aircraft in radians and x;(¢) is the pitch rate in radians per sec-
ond. In this example, taken from [12], the uncertainty is given by A = 0.5 and
A(x(t)) = 0.4111x, () +0.8619x,(t) + 1 /2exp (%W) where %, = 2/1807
and o = 0.0233. This set of uncertainties is equivalent to 50% increase in the
static instability, 80% decrease in the pitch damping and a control effectiveness
of 50% [12]. Additionally, the nominal control is given by u,(t) = —(2wla;; +
0%+ a3, +an)x(t) — (an + azn +208)x2(t) + ®>x1 cma(t). The parameters are
given by a;; = —1.0189, ay; = —0.8223, ay; = —1.0774, the natural frequency is
® = 4rad/s at a damping ratio of { = 0.6. The adaptive control consists of the
learning rates I ; = 30 and I, = 50 along with eleven evenly spaced Gaussian func-
tions of the width ¢ with the centers placed between 10/180x and —10/1807 for
o (x(1)). The command governor gain is chosen as A = 30.

The objective of the constraint enforcement is to limit the angle of attack to
|x1(¢)| < 5°. The constraint enforcement term (25) is used, where Q reduces to a
scalar and is chosen 1. Furthermore, since the angle of attack is not in the input range
of D, the structure of the parameter matrix is changed to (7)) = [u1(¢),0; 1 (¢),0;]
with definition (26). Additionally, x jim () = 5°sign(x(¢)), X1 emd,max =4-8°, €1 =0
and ¥, = 10.

In Fig. 6 the performance of the constraint enforcing term is displayed. Here, the
actual command is 4% less than the constraint that has to be met, which implies an
overshoot of the desired reference model. However, the constraint is still met for all
times. If a higher input is acceptable, even higher commands (over 4.9°) are pos-
sible. The combination of command governor and adaption ensures nearly perfect
tracking of the desired reference model in transient time and therefore, no constraint
term is needed if the desired reference model stays within the boundaries (this is the
case for a command of 4.5°). That is, the command governor based adaptive control
scheme presented above is enforcing the constraint by good tracking of a reasonable
chosen reference model. The constraint enforcement term is an additional tool for
keeping the system states within desired boundaries.

Finally, note that the approach proposed here is able to achieve steady-state angle
of attacks of 4.9° with the constraints being met for all times. This is a significant
improvement in comparison to the state limiter suggested by [12] (4.3°). In contrast
to this approach, it is furthermore possible to limit systems of higher order without
turning the adaption off.
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Fig. 5 angle of attack command 4.8°, comparison with and without constraint enforcement

7 Conclusion

We present a new method in order to enforce state constraints on dynamical systems
in presence of uncertainties. Specifically, we first discuss the command governor
structure [19] and show, that the uncertain dynamical system approximates the de-
sired reference model. Secondly, we motivate the use of a novel augmentation of the
command applied to an closed-loop reference model and the uncertain dynamical
system, and show stability of the control system consisting of command governor,
adaptive control and a constraint enforcement command. We furthermore discuss
the fact that just constraints in the input range of D can be met. Finally, we show
examples that discuss workarounds for this problem in certain cases and illustrate
the compatibility of theory and numerical results. An improvement in comparison
to the limiter term from [12] is shown. Future research will contain application of
the constraint enforcement on an unmanned helicopter.
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