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Abstract In-orbit rendezvous is a key enabling technology for many space missions.
Implementing it employing only bearing measurements would simplify the relative
navigation hardware currently required, increasing robustness and reliability by re-
ducing complexity, launch mass and cost. The problem of bearings-only navigation
has been studied intensively by the Naval and Military communities. Several authors
have proposed that a polar or spherical coordinate parametrization of the underlying
dynamics produces a more robust navigation filter due to the inherent de-coupling of
the observable and un-observable states. Nevertheless, the complexity of this prob-
lem increases significantly when the underlying dynamics follow those of relative
orbital motion. This paper develops a spherical coordinate parametrization of the
linearized relative orbital motion equations for elliptical orbits and uses an approx-
imation of these equations for circular orbits to develop an Extended Kalman Filter
(EKF) for bearings-only navigation. The resulting filter is compared to its equiva-
lent based on the well known Hill Equations in cartesian coordinates via a Monte
Carlo analysis for a given reference trajectory. Simulations show that a spherical co-
ordinate based EKF can perform better than its cartesian coordinate counterpart in
terms of long-term stability tracking of the reference trajectory, with little additional
computational effort.
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1 Introduction

In-orbit rendezvous is a key enabling technology for many space missions. Without
a technology allowing a chaser spacecraft to reach a target with high accuracy and
low collision risk, we could never achieve missions such as in-orbit assembly of
large structures (ISS); planetary exploration and return (Apollo and Mars Sample
Return); in-orbit servicing, refuelling and inspection (ATV, DEOS) and Active de-
orbiting (OTV).

While this topic has been widely researched and there exists significant heritage,
it currently requires complex and/or bulky hardware to measure the relative range
between the chaser spacecraft and the target [1]. This is especially the case with
un-cooperative targets at long distances, as the power requirements and complex-
ity of the range sensors increases exponentially without dedicated hardware on the
target [2]. There have been may efforts to simplify the required hardware for ren-
dezvous [1]. Nevertheless, most solutions only work at short ranges of less than a
few kilometres, such as those involving visual cameras using stereo vision (triangu-
lation along a well-known baseline) or estimation of the range from the relative size
of the target.

For these reasons there is a strong motivation to develop algorithms to perform
in-orbit rendezvous without requiring a direct measurement of the range between
the chaser and the target. Bearing measurements to an un-cooperative target are
easier to obtain, especially at long range, without the need of heavy or complex
hardware, for example by using a single optical camera to measure Line of Sight
to the target. Therefore, this would not only enable rendezvous missions with low
launch mass and cost, but would also provide a back-up strategy for contingency
cases in missions employing more advance sensors.

The problem of bearings-only navigation has been studied intensively by the
Naval and Military communities with applications to ship navigation and missile
guidance assuming a constantly moving and non-maneuvering target [3–5]. In par-
ticular, there have been several studies claiming that using a polar or spherical coor-
dinate parametrization of the equations of motion to construct an EKF for bearings-
only navigation naturally decouples the un-observable states (range) from the ob-
servable ones (angles). This prevents covariance matrix ill-conditioning and filter
instability, resulting in a more robust and unbiased filter [6, 7].

Nonetheless, the assumptions employed in the Naval and Military literature do
not apply to the in-orbit problem due to the complexity of orbital dynamics. Only
a few authors have treated the in-orbit bearings-only navigation problem [1] and to
the authors’ knowledge, none have attempted to test the potential advantages of a
spherical coordinate parametrization for a bearings-only navigation filter for in-orbit
rendezvous. This paper tackles this specific problem and for this purpose develops a
spherical coordinate parametrization for the equations of linearized relative orbital
motion for eccentric and circular orbits. The latter are equivalent to the well known
Hill Equations.
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A Spherical Coordinate Parametrization for an In-Orbit Bearings-Only Navigation Filter 3

2 Spherical Relative Motion Equations

In order to derive the equations of relative motion in Spherical coordinates, the
definition of the relative position vector in spherical coordinates (see Appendix) is
used in conjunction with the vectorial equation of relative motion (16) derived in the
Appendix. Solving for the desired accelerations in Spherical coordinates r̈, θ̈ and φ̈ ,
the final expressions for the Spherical Equations of Relative Motion emerge and are
shown in Equations 1 to 3. These equations are valid for elliptical orbits.
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aθ −2ṙωsφ sθ

rcφ

+
2φ̇ θ̇sφ − ω̇sφ sθ

cφ

− 2ṙθ̇
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Here ci = cos(i) and si = sin(i) for i = φ or θ are used to simplify the notation.
Substituting the assumptions of constant orbital rate ω =

√
µ/r3

t into Equations 1
to 3, yields the Equations for Relative Motion in Spherical Coordinates for Circular
Orbits, shown in Equations 4 to 6. These are equivalent to the Hill Equations cited
in many references including [2], also shown in the Appendix.
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3 Validation of the Spherical Equations

In order to validate the equations of relative motion for circular orbits in Spherical
coordinates, a comparison of equations 4 to 6 with the Hill Equations (see Ap-
pendix) was performed via numerical simulations. Various test orbits were propa-
gated from a known initial condition using both sets of equations. The the result-
ing trajectories were then compared to verify the equivalence of the equations. The
propagation were carried out using the MATLAB R© ODE45 solver. In addition, for
some test cases the trajectories were validated using the linearized solution to the
Hill Equations, the Clohessy-Wiltshire (CW) equations [2]. Table 1 lists the trajecto-
ries tested as well as the resulting position and velocity errors between the Spherical
and Cartesian trajectories, over the whole simulation period. The errors for all the
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trajectories tested were within numerical integration errors in the order of 1×10−6

meters. An example of the validation trajectories, corresponding to the last row of
Table 1, is shown in Figure 1 and the corresponding errors in Figure 2.

Table 1 Spherical relative motion equations validation results.

Test Description (Compared with) IC [m & m/s] ||xc(t)−xs(t) ||
(xc = [x y z ẋ ẏ ż]T ) Pos [m] Vel [m/s]

Arbitrary IC (CW) [100 10 150 0.01 0.1 0.2] 8.00e-08 4.77e-11
Arbitrary IC (Hill) [100 10 150 0.01 0.1 0.2] 7.23e-08 3.86e-11
Different Altitude (CW) [0 0 150 0.2617994 0 0] 2.31e-08 1.26e-11
Release at Z-Direction (CW) [0 0 150 0 0 0] 7.32e-08 8.04e-11
Release at Y-Direction (CW) [0 10 0 0 0 0] 3.31e-10 1.78e-09
Initial Velocity on X-Direction (CW) [ε∗ 0 0 0.01 0 0] 7.01e-09 6.07e-12
Initial Velocity Out of Plane (CW) [0 ε∗ 0 0 0.1 0] 9.51e-10 3.57e-10
Forced Motion with Accelerations∗∗ (Hill) [1000 10 15 0.01 0.01 0.02] 3.84e-05 3.37e-08

∗Note: ε = 2.22e-16 is used to avoid the numerical singularity at r = [000]T m
∗∗Constant acceleration used throughout the simulation: a = [123]T m/s2

4 In-Orbit Bearings-Only Navigation Filters

Two discrete Extended Kalman filters were formulated according to [8], using the
Cartesian and Spherical equations of motion. The propagation step within the filters
was implemented using a fourth order Runge-Kutta (RK4) integration of the state
equations, shown below.

The state vectors for the navigation filters in Cartesian xc and Spherical xs coor-
dinates are defined as in Equations 23 and 24 respectively. The state equations for
each filter, fc(xc) and fs(xs), were formulated from the relative motion equations
for circular orbits in Cartesian (18-20) and Spherical (4-6) coordinates respectively.
These are shown in Equations 7 and 8 below.

ẋc = fc(xc) =


ẋ
ẏ
ż

2żω +ax
−ω2y+ay

3ω2z−2ẋω +az

 (7)
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A Spherical Coordinate Parametrization for an In-Orbit Bearings-Only Navigation Filter 5

Fig. 1 Validation Example Trajectory for the Spherical Relative Motion Equations
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Finally, the angles-only measurement equations for each filter were developed
from the geometric relations in Figure 10. These are shown in Equation 9 and 10 for
the Cartesian and Spherical filters respectively.
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Fig. 2 Validation Errors for the Example Trajectory
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hc(xc) =

[
arctan(y/x)

arcsin
(

z/
√

x2 + y2 + z2
)] (9)

hs(xs) =

[
θ

φ

]
(10)

4.1 Filter Stability Measure

Even though the stability of Extended Kalman Filters can not be guaranteed, EKFs
are attractive since their performance is near-optimal when the estimation errors are
small and the non-linearities are tightly cone bounded [9]. Several references includ-
ing [9] suggest that the performance of an EKF depends heavily on the coordinate
system used to formulate the filter. In order to aid in the selection of a suitable co-
ordinate system, Weiss and Moore [9] provide a “stability measure” test based on a
bound on the decay rate of a Lyapunov function. According to this test, the larger
the value of the “stability measure” µs in Equation 11, the more stable the system
will be over the range of state estimates. Here, R is the noise covariance matrix for
the measurements.

µs = hT R−1h− [Hkx−h]T R−1 [Hkx−h] (11)

where Hk =
∂h(x)
∂xT

∣∣∣∣
x=xk

Applying this stability measure to both the cartesian and spherical systems by
substituting the corresponding measurement equations from 9 and 10 into Equation
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A Spherical Coordinate Parametrization for an In-Orbit Bearings-Only Navigation Filter 7

11, we obtain the following measures for each system, shown in equations 12 and
13.

µ
c
s = 0 (12)

µ
s
s = (hs)T R−1hs =

φ 2

Rφ

+
θ 2

Rθ

(13)

Since µs
s > 0 for any real value of hs, the stability measure test proposes that the

spherical coordinate formulation is a better candidate for an EKF than its cartesian
counterpart. Note that this is not in any way a guarantee of stability of the EKF. It
is only an indicator that in the linear case, or when the filter is operating near the
linearization set-point, the rate of decay of ”energy” in the system for the spherical
filter formulation would be positive and larger than the cartesian one. Therefore, this
supports the results of the simulations that are presented in the next Section.

5 Navigation Filter Simulations

A Simulink R© simulation was prepared where both the Cartesian and the Spherical
filters were used to estimate a trajectory propagated using the Hill equations. The
simulation model is shown in Figure 3.

Fig. 3 Simulation Model
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The parameters and tunings used to initialize the simulations of the navigation
filters are summarized in Table 2 . It is important to note that the same tunings
and initialization parameters were used for both filters by converting the cartesian
quantities into spherical ones, as explained in the Appendix.
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Table 2 Filter Comparison Simulation Parameters

Parameter Description Simulator Value Units

Environment
Orbital Period (T ) 90 min 54000 [s]
Fly-around IC (xc

0) [xyz ẋ ẏ ż] [10000 5 1 0 0 -2] [m & m/s]
Unmodelled Acceleration 100m/rev 3σ ([100/T2 100/T2 100/T2]/3)2 [m/s]
Time Step (Ts) 10 sec 10 [s]

Sensor
Measurement Noise 1 mrad/axis 3σ ([1e-3 1e-3]/3)2 [rad]
Measurement Bias None [0 0] [rad]

Filters
Spread of Initial Errors StDev 1σ [300 30 300 0.03 0.3 0.3]/3 [m & m/s]
Initial Covariance 300m, 0.3 m/s 3σ diag(([300 300 300 0.3 0.3 0.3]/3)2) [m & m/s]
Sensor Noise Covariance 1 mrad/axis 3σ diag(([1e−3 1e−3]/3)2) [rad]
Plant Noise Covariance 100 m/rev 3σ diag(([0 0 0 100 100 100]/3T)2)/Ts [m & m/s]
Orbital Rate (ω) 2π/T 0.0012 [rad/s]
Time Step (Ts) 10 sec 10 [s]

5.1 Observability of the Bearings-Only Problem

The problem of estimating position and velocity from only angle measurements
is known to have reduced observability depending on the relative motion between
the satellites [10]. In addition, the range along the LOS direction is known to be not
observable in the bearings-only problem, unless a maneuver is executed in a suitable
direction [10].

In order to illustrate this point as well as to validate the functionality of the fil-
ters, a ‘noiseless’ simulation was performed. All sensor noises and un-modelled
disturbances in Table 2 were set to zero. The reference trajectory was gener-
ated by propagating the following initial condition for the position and velocity
x0 = [xyz ẋ ẏ ż]T = [10000 5 1 0.2 0.1 −2]T . As it can be seen on Figure 4 and 5,
both filters can track the reference trajectory fairly well.

The filter covariance is also shown in Figure 4 for some points along the trajec-
tory. These ellipses, which are the filter’s estimate of its own errors, correspond to
the 3σ values from the error covariance matrices, scaled by a factor of 3 for easy
visualization. The covariances are very similar for both filters since they employ the
same tunning of their Plant and Sensor noise covariance matrices. Finally, it can be
seen that the uncertainty is always greater in the LOS direction to the target at [0,0],
as there is no observability in this direction when no maneuvers are performed.
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A Spherical Coordinate Parametrization for an In-Orbit Bearings-Only Navigation Filter 9

Fig. 4 Filter Comparison Trajectory
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5.2 Filter Comparison Monte Carlo

One hundred Monte Carlo Simulations were run in order to test the performance of
the filters over a range of different initialization errors employing noisy measure-
ments and subject to disturbances in the reference trajectory. In order to provide a
high dynamic relative motion that aids filter convergence, the relative initial condi-
tions were chosen to yield a ‘football’ or ‘fly-around’ periodic trajectory. Table 2 in
section 5 summarizes all the parameters used to initialize the Monte Carlo.

In addition, a maneuver was performed mid way through the simulation in or-
der to show how the filters gain observability in the range direction. This im-
pulsive maneuver was executed after two orbits via an acceleration pulse aman =
[0 0.005 −0.005]T lasting 10 seconds, resulting in a total delta-V of 0.1 m/s in the
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Fig. 5 Filter Comparison Velocities
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y and−z directions. Figure 6 shows the resulting trajectory estimates by both filters,
along with the reference trajectories for each of the Monte Carlo simulations. Note
the trajectory change due to the maneuver after two orbits.

Statistical dispersions were computed from the trajectory errors of each simu-
lation in order to evaluate the 1σ performance of each filter. These are shown in
Figure 7 along with their percentage of the range to the target. This last measure is
very useful in spacecraft rendezvous since, as a rule of thumb, a relative position
estimate of around 1% of the range is required to achieve impulsive rendezvous [2].

Finally, the run-time of each filter was analyzed during the Monte Carlo simula-
tions. On a 1.8 GHz computer, the cartesian filter demanded on average 8.3×10−4

seconds per call (propagation + update), while the spherical one demanded 9.1×
10−4 seconds per call. That is only about a 10% increase in average CPU run time
for the spherical filter.

5.3 Filter Comparison Results

The Monte Carlo analysis shows that for the reference trajectory chosen, the spheri-
cal filter statistically outperforms the cartesian one. This can be seen in the resulting
navigation dispersions shown in Figure 7. Note that both solutions slowly diverge
due to the inherent reduced observability of the bearings-only navigation problem.
However, when a maneuver is performed in a suitable direction [10], it provides the
necessary observability to reduce the estimated error in the LOS direction. Both fil-
ters take advantage of this and reduce their total estimation uncertainties when the
maneuver is performed.

In any case, the spherical filter tracks the reference trajectory with superiority
when no maneuvers are performed, diverging at a much slower rate. Conceptually,
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A Spherical Coordinate Parametrization for an In-Orbit Bearings-Only Navigation Filter 11

Fig. 6 Monte Carlo Trajectories
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this is due to the fact that in contrast to the cartesian filter, the spherical filter sep-
arates the observable (angles) and un-observable (range) states. Essentially, it only
needs to estimate the range and range-rate, as the other four states are directly the
measurements and their derivatives. On the other hand, the cartesian filter needs
to estimate all six states (position and velocities) from measurements that are non-
linearly related to its states, resulting in lower performance. Mathematically, this is
readily explained by noting where the filters employ key linearizations of the un-
derlying equations. The Extended Kalman filter relies on a linearization of the mea-
surement equation in order to calculate the Kalman Gain that is used to apply the
measurement update. In contrast to the spherical filter where this equation is already
linear, the measurement equation in the cartesian filter is highly non-linear (Refer
to Equations 9 and 10). Thus, the linearization required in the cartesian filter results
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12 J. Grzymisch, W. Fichter, M. Casasco and D. Losa

Fig. 7 Monte Carlo Trajectory Dispersions
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in a slightly less accurate measurement update. In addition, the linearized measure-
ment equation is also used in the update of the filter covariance matrix, introducing
further inaccuracies. Therefore, even though both filters rely on a linearized state
transition matrix to propagate their covariance matrix, the cartesian filter also re-
lies on a linearized measurement equation. This introduces additional inaccuracies
compared to the the spherical filter, where the measurement equation is already lin-
ear. Hence, decoupling the observable and un-observable states results in a simple
measurement equation which reduces the linearization inaccuracies in the filter.

Several other simulations on top of the Monte-Carlo analysis were performed
during the characterization of the spherical filter implementation, which are not
shown here due to space constraints. Nevertheless, the general observation was that
the Spherical filter implementation was found to be more robust than the Cartesian
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A Spherical Coordinate Parametrization for an In-Orbit Bearings-Only Navigation Filter 13

one in terms of changes to its tunning parameters as well as changes to the measure-
ment update frequency.

Finally, as mentioned in section 5.2, the increase in performance from the spher-
ical filter only comes with a small increase of about a 10% in CPU run-time.

6 Conclusions

In this paper, the linearized equations of relative orbital motion were derived in
spherical coordinates and a new in-orbit bearings-only navigation filter was imple-
mented using these equations.

This work shows that a spherical coordinate based filter can perform better for
the bearings-only in-orbit navigation problem than a traditional Cartesian imple-
mentation. A more in depth characterization of the robustness of the spherical filter
implementation with respect to different measurement errors, update frequencies
and and filter tunings is required. Nevertheless, these results show the potential ad-
vantages in performance and robustness that can result from the use of a coordinate
system parameterization that acquires the measurements as its own states. This re-
sults in simple measurement equations, essentially shifting the non-linearities inside
the EKF from the measurement update, where linearizations are heavily relied upon,
to the propagation, where the full state equations can be partly employed. This was
shown in the construction of the spherical filter.

Even though this filter implementation implies more development effort due to
the complex and longer equations required to model the relative motion dynamics,
there is little additional on-line computational effort required to perform the actual
trajectory estimation. This makes the spherical filter a very interesting robust alter-
native for an on-board implementation.
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Appendix

In-Orbit Relative Motion Background

A generic derivation of the in-orbit relative motion equations is presented here. A
more detailed derivation, but focused on the Cartesian coordinate parametrization
of the equations, can be found in [2] and [11].
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Relative Motion in the Inertial Frame

Consider the general scenario of two point mass spacecraft subject to the effects of
a central Spherical gravity field and other external accelerations. Their geometry is
defined in Figure 8, where the spacecraft are denominated as a Target and a Chaser
with position vectors rt and rc respectively. In inertial space, the relative acceleration
is directly the second time derivative of the relative position vector r̈.

Fig. 8 Definition of the
chaser, target and relative
position vectors in the inertial
frame
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The motion of each of these spacecraft can be described by Newton’s Second
Law Fi = mr̈i, where Fi must include all external forces for each vehicle. Consid-
ering only the influence of a central gravity force given by Newton’s law of Gravi-
tation as well as control thrust accelerations from the chaser vehicle aext = Fext/mc,
the linearized differential equation for relative motion in the inertial frame is:

r̈ =
dfg (ri)

dri

∣∣∣∣
ri=rt

r+aext (14)

where the jacobian of fg (ri) comes from the linearization by Taylor expansion of
the gravitational force of the chaser around the target location, which expressed with
respect to a generic vector ri = [xi yi zi]

T is as follows:

dfg(ri)

dri
=

µ

r3
i


3x2

i
r2
i
−1 3xi yi

r2
i

3xi zi
r2
i

3xi yi
r2
i

3y2
i

r2
i
−1 3yi zi

r2
i

3xi zi
r2
i

3yi zi
r2
i

3z2
i

r2
i
−1

 (15)

where ri =
√

x2
i + y2

i + z2
i .

Relative Motion in the Local Orbital Frame

The Local Orbital Frame (Flo), fixed to the orbital motion of the target spacecraft,
is centered at the target position rt and rotates with respect to the inertial frame at
a rate ωωω equal to the instantaneous orbital rate of the target, as depicted in Figure
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9. Here, the z-axis always points towards the center of the orbit; the y-axis is in the
opposite direction of the angular momentum and the x-axis completes the triad.

Fig. 9 Definition of the local
orbital frame
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In order to obtain the equations of relative motion in the Flo frame, Equation 14
can be expressed in this frame by using the second derivative of the relative position
vector r in the rotating frame:

r̈lo +2ωωω× ṙlo + ω̇ωω× rlo +ωωω×ωωω× rlo−
dfg(ri)

dri

∣∣∣∣
ri=rlo

t

rlo = alo
ext (16)

In addition, from the definition of the Flo frame, the following assumptions apply
to Equation 16:

rlo
t =

 0
0
−rt

 , ωωω =

 0
−ω

0

 , h = rt
2
ω and k =

µ

h
3
2

(17)

where the constant h is the orbital momentum for the planar orbital motion of the
target spacecraft and the constant k is defined as done in [11] in order to remove the
orbital radius rt from the equations.

The Hill Equations

The Hill equations, shown below, can be obtained by substituting into Equation 16
the assumptions related to a cartesian position vector r = [x y z]T along with the
assumptions for circular orbits described in Section 2.

ẍ = ax +2ω ż (18)
ÿ = ay−ω

2 y (19)

z̈ = 3zω
2−2 ẋω +az (20)
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Definition of the Spherical Coordinates

In the Flo frame, we can define the relative position vector in terms of the Spherical
coordinates r, θ and φ as shown in Figure 10.

Fig. 10 Definition of the Rel-
ative Position Vector in terms
of the Spherical Coordinates
in the Flo frame
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The relative position vector in terms of these Spherical coordinates is:

rlo =

 x
y
z

=

 rcφ cθ

rcφ sθ

rsφ

 (21)

where ci = cos(i) and si = sin(i) for i = φ or θ is used to simplify the notation.
It is also useful to express the external accelerations alo

ext in terms of the spherical
variables alo

sph =
[
ar aθ aφ

]T :

alo
ext = Csc

T alo
sph where Csc =

 cφ cθ cφ sθ sφ

−sθ cθ 0
−cθ sφ −sφ sθ cφ

 (22)

Coordinate Transformations

In order to compare the Spherical coordinate results with the Cartesian ones, the
following coordinate transformations were defined. These were used to compute the
equivalent initial conditions in Spherical coordinates as well as to translate the re-
sulting trajectories to Cartesian coordinates. Each position-velocity vector expressed
in Cartesian xc

i or Spherical coordinates xs
i , can be transformed back and forth be-

tween the coordinate systems by using the relationships in Equations 23 and 24.
These relations were obtained from the geometric definitions of Figure 10 as well
as their time derivatives.
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xc
i =


x
y
z
ẋ
ẏ
ż

≡ Fcs(xs
i ) =


rcφ cθ

rcφ sθ

rsφ

ṙcφ cθ − rθ̇cφ sθ − φ̇rcθ sφ

ṙcφ sθ − φ̇rsφ sθ + rθ̇cφ cθ

ṙsφ + φ̇rcφ

 (23)

xs
i =


r
θ

φ

ṙ
θ̇

φ̇

≡≡≡ Fsc(xc
i ) =



√
x2 + y2 + z2

arctan
( y

x

)
arcsin

(
z/
√

x2 + y2 + z2
)

x ẋ+y ẏ+z ż√
x2+y2+z2

x ẏ−ẋ y
x2+y2

ż x2−ẋ zx+ż y2−ẏ zy√
1− z2

x2+y2+z2 (x2+y2+z2)
3
2


(24)

Note that the singularity arising when x and y are zero in the calculation of θ and
θ̇ can be resolved by using the atan2 function. The velocities ṙ, θ̇ and φ̇ are then
solved for using the expressions in Equation 23. The covariance matrices can be
transformed back and forth between the coordinate systems via a similarity trans-
formation [12]. For example, to convert a Cartesian covariance matrix Pc

i into a
spherical one Ps

i , the transformation is as follows:

Ps
i = Msc Pc

i MT
sc where Msc =

dFsc(xc)

dxc

∣∣∣∣
xc=xc

i

where the matrix Msc is the Jacobian of the transformation function Fsc in Equa-
tion 24 with respect to the cartesian coordinates xc = [x y z ẋ ẏ ż], evaluated at the
corresponding position-velocity point xc

i where the covariance matrix is sampled.
The inverse transformation is constructed in a similar way, using the transformation
function Fcs in Equation 23.

Finally, the accelerations can be transformed back and forth betwen the cartesian
[ax ay az] and spherical

[
ar aθ aφ

]
representations via the simple rotation matrix

defined in Equation 22.
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