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Abstract In this paper, we develop a Direct Model Reference Adaptive
Tracking Controller for mildly non-linear systems with unknown time varying
input delays. This controller can also reject bounded disturbances of known
waveform but unknown amplitude, e.g. steps or sinusoids. In this paper a
robustness result is developed for DMRAC of mildly non-linear systems with
unknown small constant or time varying input delays using the concept of
un-delayed ideal trajectories. We will show that the adaptively controlled sys-
tem is globally stable, but the adaptive tracking error is no longer guaranteed
to approach the origin. However, exponential convergence to a neighborhood
can be achieved as a result of the control design. A simple example will be
provided to illustrate this adaptive control method. The proof of the corollary
for the application and further examples are provided in the paper: Model
Reference Adaptive Control of Mildly Non-Linear Systems with Time Vary-
ing Input Delay - Part II.

1 Introduction

Time delay affects many engineering, physics and biological systems [1]-[5].
These manuscripts present a firm motivation for the study of time delay
systems and a brief overview of the different control approaches commonly
used when delays are present. In this overview the open problem of control via
the delay and constructive use of the delayed inputs is presented [5].Further,
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many control systems suffer from unknown delays [6]-[7]. Often these are
introduced via systems controlled through a network, e.g in [7].

In previous work [8]-[11] direct model reference adaptive control (DM-
RAC) and disturbance rejection with very low order adaptive gain laws for
MIMO systems was accomplished. Feuntes and Balas developed an ultimate
bounded-ness theorem for DMRAC in [11]. When systems are subjected to
an unknown internal delay, the adaptive control theory can be modified to
handle this situation [12]. However, delays appearing in the inputs or outputs
of systems seem to cause more system sensitivity to the delay. A robustness
result for the Direct Adaptive Control (DAC) or input delay systems was
developed in [13]. A robustness result for the DMRAC of linear systems with
“small” input/output delays was developed in [14] using the concept of un-
delayed ideal trajectories for the development of the adaptive error system.
Using the concept of un-delayed ideal trajectories and this “small-ness” as-
sumption the results of [13] can achieved for the DMRAC of mildly non-linear
systems. We will show that the adaptively controlled system is globally sta-
ble, but the adaptive error is no longer guaranteed to approach the origin.
However, exponential convergence to a neighborhood can be achieved as a
result of the control design. A simple example will be provided to illustrate
this adaptive control method. The proof of the corollary for the application
and further examples are provided in the paper: Model Reference Adaptive
Control of Mildly Non-Linear Systems with Time Varying Input Delay - Part
II.

2 Development of the Adaptive Error System Using
“Undelayed Ideal Trajectories”

Our Mildly Non-Linear Plant with Unknown Delay will be modelled by the
following mildly non-linear system with an input delay term and an external
persistent disturbance:{

ẋ(t) = Ax(t) +Bu(t− τ(t)) + ΓuD(t) + f(x)
y(t) = Cx(t) ; x(0) = x0

(1)

where the plant state, x(t), is an N-dimensional vector with M-dimensional
control input vector, u(t), and M-dimensional sensor output vector, y(t), i.e.
the plant is square. The delay τ(t) > 0 is time varying and unknown. The
disturbance input vector uD(t) is ND-dimensional and will be thought to
come from the following Disturbance Generator:{

uD = Θ zD
żD = F zD ; zD(0) = z0

(2)
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The objective of control in this paper will be to cause the output y(t) of the
plant to asymptotically track the output ym (t) of an un-delayed Reference
Model: {

ẋm = Amxm +Bmum + fm(xm)
ym = Cmxm; xm(0) = xm0

(3)

where the reference model state xm (t) is an Nm-dimensional vector with
reference model output ym(t) having the same dimension as the plant output
y(t). In general, the plant and reference models need not have the same
dimensions. The excitation of the reference model is accomplished via the
vector um (t) which is generated by:

u̇m = Fmum; um(0) = um0 (4)

The reference model parameters (Am, Bm, Cm, Fm) will be completely known.
We define the output error vector:

ey ≡ y − ym −→
t→∞

0 (5)

and this control objective will be accomplished by an Adaptive Control
Law of the form:

u = Gmxm +Guum +Geey +GDϕD (6)

2.1 Ideal Trajectories

We define the “Un-Delayed Ideal Trajectories” for (1) in the following way:{
x∗ = S∗11xm + S∗12um + S∗13zD
u∗ = S∗21xm + S∗22um + S∗23zD

(7)

where the ideal trajectory x∗ (t) is generated by the ideal control u∗ (t) from{
ẋ∗ = Ax∗ +Bu∗ + ΓuD + f(x∗)

y∗ = Cx∗ = ym
. (8)

If such ideal trajectories exist, they will be linear combinations of the ref-
erence model state and input (3) and they will produce exact output tracking
in a delay-free plant (8).

By substitution of (7) into (8) using (3)-(4), we obtain the Model Matching
Conditions:

AS∗11 +BS∗21 = S∗11Am (9)

AS∗12 +BS∗22 = S∗12Fm + S∗11Bm (10)
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CS∗11 = Cm (11)

CS∗12 = 0 (12)

AS∗13 +BS∗23 + ΓΘ = S∗13F (13)

BS∗23 = 0 (14)

CS∗13 = 0 (15)

f(S∗11xm + S∗12um + S∗13zD) = S∗11fmxm (16)

These conditions (9)-(16) are necessary and sufficient conditions for the
existence of the ideal trajectories in the form of (7).

2.2 Fixed Gain Controller

In this section only we will assume that all parameters (A,B,C, Γ,Θ, F ) are
known, as well as the solutions to the Model Matching Conditions (9)-(16).
This section will help to explain the development of the adaptive scheme; it is
not meant to be used in place of such a scheme. We define the state tracking
error:

e∗ ≡ x− x∗ (17)

and, from (5) and (8) , we obtain

ey ≡ y − ym = y − y∗ = Cx− Cx∗ = Ce∗. (18)

Furthermore, from (1) and (8) , we have
e∗ ≡ x− x∗
∆u ≡ u− u∗
ey = y − y∗

∆f ≡ f(x)− f(x∗)

⇒

 ė∗ = Ae∗ +B(u(t− τ(t))− u∗) +∆f
∆u ≡ u(t− τ(t))− u∗ = u(t− τ(t))− u+ u− u∗

ey = Ce∗

(19)

We define a Fixed Gain Controller:

u = (S∗21xm + S∗22um + S∗23LϕD) +G∗eey = u∗ +G∗eey. (20)
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From (19) and (20), we have ė∗ = ACe∗ +B(u(t− τ(t))− u) +∆f
AC ≡ A+BG∗eC
∆f ≡ f(x)− f(x∗)

. (21)

The above can be summarized as:
If (A,B,C) is output feedback stabilize-able with a gain G∗e and the delay

equation (21) is stable, then the fixed gain controller (20) will produce local
output tracking, i.e.:

lim
t→∞

ey < R∗ (22)

Note that output feedback stabilization can be accomplished when

M + P +ND > N (23)

and (A, B, C) is controllable and observable; see [14]. Since (23) does not
require detailed knowledge of the parameter matrices, this suggests that an
adaptive control scheme might be possible.

2.3 The Adaptive Controller

The form of our adaptive controller remains (6). In this we must develop the
gain adaptation laws to make asymptotic output tracking possible. We form

∆Gu ≡ Gu − S∗22
∆Gm ≡ Gm − S∗21
∆Ge ≡ Ge −G∗e

∆GD ≡ GD − S∗23L

(24)

where the starred gains come from (9)-(16) and (20). Now, from (6), and
(20),

∆u = u− u∗ = ∆Guum +∆Gmxm + (G∗e +∆Ge)ey +∆GDϕD (25)

Then, via (18) and (25), with appropriate definitions, we have

ė∗ = Ae∗ +B(u(t− τ(t))− u) +B∆u+∆f
= (A+BG∗eC) e∗ +B(u(t− τ(t))− u) +B

[
∆Gu ∆Gm ∆Ge ∆GD

]
η +∆f

= ACe∗ +B(u(t− τ(t))− u) +B∆Gη +∆f
(26)

where,
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η ≡ [uTmx
T
me

T
y ϕ

T
D]T

is the vector of known available signals.
We combine (18) and (26) to obtain the Tracking Error System:{

ė∗ = ACe∗ +B(u(t− τ(t))− u) +B∆Gη +∆f
ey = Ce∗

. (27)

Now we specify the Adaptive Gain Laws:

Ġ = −eyηTH − aG(t) (28)

where

H ≡ diag[h11, h22, h33, h44] > 0

is an arbitrary, diagonal, positive definite matrix. This yields
Ġu = −eyuTmh11 − aGu(t)

Ġm = −eyxTmh22 − aGm(t)

Ġe = −eyeTy h33 − aGe(t)
ĠD = −eyϕTDh44 − aGD(t)

(29)

3 Robustness of the Adaptive Error System

Our closed loop Adaptive Error System becomes (27) with the above adaptive
gain laws (29)

ė∗ = ACe∗ +B(u(t− τ(t))− u) +B∆Gη +∆f
ey = Ce∗

∆Ġ = Ġ = −eyηTH − aG(t)
. (30)

With the development of the above adaptive error system, recall the the-
orem developed in [13]

Theorem: Consider the nonlinear, coupled system of differential equa-
tions, 

ė = Ace+ f(e) +B (G(t)−G∗) z + ν + f(x)
ey = Ce

Ġ(t) = −eyzTγ − aG(t)
. (31)

where G* is any constant matrix and is any positive definite constant
matrix, each of appropriate dimension. Assume the following:

1. the delay-free linear part (Ac, B, C) is SPR (see [15]),
2. ∃Mg > 0 3

√
tr(G∗G∗T ) ≤MG

3. ∃Mv > 0 3 sup
t≥0
‖ν(t)‖ ≤Mν
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4. ∃a > 0 3 a ≤ β
2pmin

;β ≡ qmin−2µfpmax > 0where pmin, pmax are the min-
imum and maximum eigenvalues of P and qmin is the minimum eigenvalue
of Q with respect to the Kalman-Yacubovich equations,

5. the positive definite matrix γ satisfies

tr(γ−1) ≤
(
Mν

aMG

)2

6. the nonlinear term f(x) is Lipshitz continuous at 0, i.e.

‖f(x)‖ ≤ µf ‖x‖

with
µf <

qmin

2pmax

Then the gain matrix, G(t), is bounded, and the state, e(t) exponentially
with rate approaches the ball of radius

R∗ ≡
(
1 +
√
pmax

)
a
√
pmin

Mν

We can obtain a corollary of the above theorem for the adaptive error system
(30) with the following assumptions:

We will say that the unknown time varying delay τ(t) is small when{
|τ(t)| ≤ τ∗ <∞

‖u(t)− u(t− τ(t))‖ 6M(τ∗) →
t∗→0

0 (32)

the above system must have output tracking to a neighborhood:

ey →
t→∞

R∗ (33)

The adaptive controller will have the form:
Ġu = −eyuTmh11 − aGu(t)

Ġm = −eyxTmh22 − aGm(t)

Ġe = −eyeTy h33 − aGe(t)
ĠD = −eyϕTDh44 − aGD(t)

. (34)

Using the above, we have the following corollary about the corresponding
direct adaptive control strategy for the adaptive error system in 30:

Corollary: Assume the following:

1. There exists a gain, G∗esuch that the triple (AC ≡ A + BG∗eC,B,C) is
SPR (this is known to be equivalent to CB > 0 and the open loop transfer
function
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P (s) ≡ C(sI −A)−1B (35)

is minimum phase),
2. (32) is satisfied
3. Span(Γ ) ⊆ Span(B)

with a positive constants, then the output y exponentially approaches a
neighborhood with radius proportional to the magnitude of the disturbance,
v, for sufficiently small a and γi. Furthermore, each adaptive gain matrix is
bounded.

This corollary provides a control law that is robust with respect to persis-
tent disturbances and, exponentially with rate e−at, produces:

lim
τ→∞

‖e(t)‖ 6
(
1 +
√
pmax

)
a
√
pmin

‖B‖M(τ) →
t→0

0.

The Proof of the Corollary is provided in the paper: Model Reference
Adaptive Control of Mildly Non-Linear Systems with Time Varying Input
Delay - Part II.

4 Simulation and Results

We will illustrate the above robust adaptive controller on the following plant:
ẋ =

[
x2

0.3 ∗ sin(x1)

]
︸ ︷︷ ︸

A(x)

+

[
0
1

]
︸︷︷︸
B

u(t− τ) +

[
0
1

]
︸︷︷︸
Γ

uD

y =
[

1 0.1
]︸ ︷︷ ︸

C

x

(36)

We use step disturbances to provide simulation results for various small
time varying values of delay τ(t). An adequate reference model must be de-
veloped for output tracking. The open loop output response to a step distur-
bance of magnitude 1 can be seen in Fig. 1(a). The desired reference model
output, ym(t), for the closed loop reference model linear plant and lead con-
troller to a step disturbance of magnitude 1 can be seen in Fig. 1(b). This
reference model output was created by designing a lead controller to stabilize
the plant and achieve the desired temporal response characteristics. Further
simulations to illustrate this adaptive control method are provided in the pa-
per: Model Reference Adaptive Control of Mildly Non-Linear Systems with
Time Varying Input Delay - Part II.
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(a) Output response, y(t)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
es

po
ns

e 
of

 R
ef

er
en

ce
 M

od
el

 O
ut

pu
t y

m

Time,s

(b) Output response, ym(t)

Fig. 1 Output response, (a) y(t), for the open loop plant and (b) ym(t), for the closed

loop reference model plant and lead controller to a step disturbance of magnitude 1.

4.1 Step Disturbances

The waveform of time varying delay τ(t) = |0.56∗sin(10t)+0.34|(s) is shown
in Fig. 2(a). The response to a step disturbance of magnitude 10 of the output
response, y(t), control effort u(t), and the adaptive gains for the input delay
time, τ(t) = |0.56 ∗ sin(10t) + 0.34|(s) are shown in Fig. 2(b), 2(c) and 2(d)
respectively. This simulation has shown that the adaptive controller can force
a simple midly-nonlinear plant to adequately track a linear reference model.
The adaptive controller can operate in the presence of “small” constant and
time varying delays without any knowledge of the delay.

5 Conclusions

In this paper, we developed a Direct Model Reference Adaptive Tracking Con-
troller for mildly non-linear systems with unknown time varying input delays.
This controller can also reject bounded disturbances of known wave form but
unknown amplitude, e.g. steps or sinusoids. In this paper a robustness result
was developed for DMRAC of mildly non-linear systems with unknown small
constant or time varying input delays using the concept of un-delayed ideal
trajectories. We showed that the adaptively controlled system is globally sta-
ble, but the adaptive tracking error is no longer guaranteed to approach the
origin. However, exponential convergence to a neighborhood can be achieved
as a result of the control design. A simple example was provided to illustrate
this adaptive control method. The proof of the corollary for the application
and further examples are provided in the paper: Model Reference Adaptive
Control of Mildly Non-Linear Systems with Time Varying Input Delay - Part
II.
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(a) Delay waveform, τ(t)
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(b) Output response, y(t)
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(c) Control Effort, u(t)
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(d) Response of adaptive gains

Fig. 2 (a)Delay waveform, τ(t), (b) Output response, y(t), (c) Control Effort, u(t) and
(d) Response of adaptive gains for a step disturbance of magnitude 10 and τ(t) = |0.56 ∗
sin(10t) + 0.34|(s).
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