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Abstract In this paper, a proof for the corollary developed for the Direct
Model Reference Adaptive Tracking Control of mildly non-linear systems
with unknown time varying input delays found in Model Reference Adaptive
Control of Mildly Non-Linear Systems with Time Varying Input Delays - Part
I is completed. The adaptive error system was developed for the DMRAC of
mildly non-linear systems with unknown small constant or time varying input
delays using the concept of un-delayed ideal trajectories. We will show that
the adaptively controlled system is globally stable, but the adaptive tracking
error is no longer guaranteed to approach the origin. However, exponential
convergence to a neighborhood can be achieved as a result of the control
design. A simple example will be provided to illustrate this adaptive control
method.

1 Introduction

This paper is the companion to Model Reference Adaptive Control of Mildly
Non-Linear Systems with Time Varying Input Delays - Part I. The introduc-
tion and some of the theoretical development will be restated so it can be
read as a stand alone paper. Time delay affects many engineering, physics
and biological systems [1]-[5]. These manuscripts present a firm motivation
for the study of time delay systems and a brief overview of the different con-
trol approaches commonly used when delays are present. In this overview the
open problem of control via the delay and constructive use of the delayed
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inputs is presented [5].Further, many control systems suffer from unknown
delays [6]-[7]. Often these are introduced via systems controlled through a
network, e.g in [7].

In previous work [8]-[11] direct model reference adaptive control (DM-
RAC) and disturbance rejection with very low order adaptive gain laws for
MIMO systems was accomplished. Feuntes and Balas developed an ultimate
bounded-ness theorem for DMRAC in [11]. When systems are subjected to
an unknown internal delay, the adaptive control theory can be modified to
handle this situation [12]. However, delays appearing in the inputs or outputs
of systems seem to cause more system sensitivity to the delay. A robustness
result for the Direct Adaptive Control (DAC) or input delay systems was
developed in [13]. A robustness result for the DMRAC of linear systems with
“small” input/output delays was developed in [14] using the concept of un-
delayed ideal trajectories for the development of the adaptive error system.
Using the concept of un-delayed ideal trajectories and this “small-ness” as-
sumption the results of [13] can achieved for the DMRAC of mildly non-linear
systems. We will show that the adaptively controlled system is globally sta-
ble, but the adaptive error is no longer guaranteed to approach the origin.
However, exponential convergence to a neighborhood can be achieved as a
result of the control design.

2 Robustness of the Adaptive Error System

In the paper: Model Reference Adaptive Control of Mildly Non-Linear Sys-
tems with Time Varying Input Delay - Part I the concept of “undelayed ideal
trajectories” was used to develop the adaptive error system:

ė∗ = ACe∗ +B(u(t− τ(t))− u) +B∆Gη +∆f
ey = Ce∗

∆Ġ = Ġ = −eyηTH − aG(t)
. (1)

Recall the theorem developed in [13]
Theorem: Consider the nonlinear, coupled system of differential equa-

tions, 
ė = Ace+ f(e) +B (G(t)−G∗) z + ν + f(x)

ey = Ce

Ġ(t) = −eyzTγ − aG(t)
. (2)

where G* is any constant matrix and is any positive definite constant
matrix, each of appropriate dimension. Assume the following:

1. the delay-free linear part (Ac, B, C) is SPR (see [15]),
2. ∃Mg 0 3

√
tr(G∗G∗T ) ≤MG
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3. ∃Mv 0 3 sup
t≥0
‖ν(t)‖ ≤Mν

4. ∃a 0 3 a ≤ β
2pmin

;β ≡ qmin − 2µfpmax > 0where pmin, pmax are the mini-
mum and maximum eigenvalues of P and qmin is the minimum eigenvalue
of Q with respect to the Kalman-Yacubovich equations,

5. the positive definite matrix γ satisfies

tr(γ−1) ≤
(
Mν

aMG

)2

6. the nonlinear term f(x) is Lipshitz continuous at 0, i.e.

‖f(x)‖ ≤ µf ‖x‖

with
µf <

qmin

2pmax

Then the gain matrix, G(t), is bounded, and the state, e(t) exponentially
with rate approaches the ball of radius

R∗ ≡
(
1 +
√
pmax

)
a
√
pmin

Mν

We can obtain a corollary of the above theorem for the adaptive error system
in (1) with the following assumptions:

We will say that the unknown time varying delay τ(t) is small when{
|τ(t)| ≤ τ∗ <∞

‖u(t)− u(t− τ(t))‖ 6M(τ∗) →
t∗→0

0 (3)

the above system must have output tracking to a neighborhood:

ey →
t→∞

R∗ (4)

The adaptive controller will have the form:
Ġu = −eyuTmh11 − aGu(t)

Ġm = −eyxTmh22 − aGm(t)

Ġe = −eyeTy h33 − aGe(t)
ĠD = −eyϕTDh44 − aGD(t)

. (5)

Using the above, we have the following corollary about the corresponding
direct adaptive control strategy the adaptive error system in 1:

Corollary: Assume the following:
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1. There exists a gain, G∗esuch that the triple (AC ≡ A + BG∗eC,B,C) is
SPR (this is known to be equivalent to CB > 0 and the open loop transfer
function

P (s) ≡ C(sI −A)−1B (6)

is minimum phase),
2. (3) is satisfied
3. Span(Γ ) ⊆ Span(B)

with a positive constants, then the output y exponentially approaches a
neighborhood with radius proportional to the magnitude of the disturbance,
v, for sufficiently small a and γi. Furthermore, each adaptive gain matrix is
bounded.

This corollary provides a control law that is robust with respect to persis-
tent disturbances and, exponentially with rate e−at, produces:

lim
τ→∞

‖e(t)‖ 6
(
1 +
√
pmax

)
a
√
pmin

‖B‖M(τ) →
t→0

0.

Proof:
We form the Energy Storage Functions:

V =
1

2
eTPe+

1

2
tr
[
∆Gγ−1∆GT

]
(7)

where tr Q ≡
N∑
i=1

qii and P > 0 is the solution of the following pair of

equations: {
ATc P + PAc = −Q < 0

PB = CT
(8)

These equations are usually known as the Kalman-Yacubovic Conditions.
The existence of a symmetric positive definite solution of (8) is known to be
equivalent to the following condition:

Tc(s) ≡ C(sI −Ac)−1B (9)

strict positive realness (SPR). TC(s) (SPR) means, for some σ > 0,

ReTC(−σ + jω) > 0 (10)

for all ω real. When the open-loop system (A, B, C) can be made SPR by
output feedback AC ≡ A + BG∗eC, we say the open-loop system is almost
strictly positive real (ASPR). This is known to be equivalent to CB > 0

and the open-loop T (s) ≡ C(sI −A)
−1
B being minimum phase, i.e. all
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transmission zeros stable; for example, see [16]. If we calculate the derivatives
along the trajectories of (7), we have, using (1), that

V̇ = eTPAc e+ eTPBw + eTP∆f + tr
[
∆Ġγ−1∆GT

]
+ νTPe;

where
w ≡ ∆Gη

and
v ≡ B(u(t− τ(t))− u).

Invoking the equalities in the definition of SPR and substituting into the last
expression, we get



V̇ = − 1
2e

TQe+ 〈ey, w〉+ eTP∆f − a · tr
[
Gγ−1∆GT

]
− tr(eyzT∆GT )︸ ︷︷ ︸

〈ey,w〉

+νTPe

≤ − 1
2 (qmin − 2µfpmax)︸ ︷︷ ︸

β

‖e‖2 − a · tr
[
(∆G+G∗)γ−1∆GT

]
+ νTPe

≤ −( 1
2β‖e‖

2
+ a · tr

[
∆Gγ−1∆GT

]
) + a ·

∣∣tr [G∗γ−1∆GT
]∣∣+

∣∣vTPe∣∣
≤ −( β

2pmin
eTPe+ 2a • 1

2 tr
[
∆Gγ−1∆GT

]
) + a ·

∣∣tr [G∗γ−1∆GT
]∣∣+

∣∣vTPe∣∣
≤ −2aV + a ·

∣∣tr [G∗γ−1∆GT
]∣∣+

∣∣vTPe∣∣
.

Now, using the Cauchy-Schwartz Inequality∣∣tr [G∗γ−1∆GT
]∣∣ ≤ ‖G∗‖2‖∆G‖2

and ∣∣vTPe∣∣ ≤ ∥∥∥P 1
2 ν
∥∥∥ ∥∥∥P 1

2 e
∥∥∥ =
√
vTPν •

√
eTPe

We will say that the unknown delay τ(t) is small when (3) is satisfied so,

‖ν‖ ≡ ‖B‖ ‖u(t)− u(t− τ(t))‖ 6 ‖B‖M(τ).

We have

V̇ + 2aV 6 a · ‖G∗‖2‖∆G‖2 +
√
pmax ‖ν‖

√
eTPe

6 a · ‖G∗‖2‖∆G‖2 + (
√
pmax‖B‖M(τ))

√
eTPe

6 (a‖G∗‖2 +
√
pmax‖B‖M(τ))

√
2 [

1

2
eTPe+

1

2
‖∆G‖22]

1
2

︸ ︷︷ ︸
V

1
2

∴
V̇ + 2aV

V
1
2

6 (a‖G∗‖2 +
√
pmax‖B‖M(τ))

√
2 .
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Now, using the identitytr [ABC] = tr [CAB] ,

‖G∗‖2 ≡ [tr(G∗γ−1(G∗)T )]
1
2 = [tr((G∗)TG∗γ−1)]

1
2

≤ [(tr((G∗)TG∗(G∗)TG∗)
1
2 (tr(γ−1γ−1)

1
2 ]

1
2

= [tr(G∗(G∗)T )]
1
2 [trγ−1]

1
2 ≤ ‖B‖M(τ)

aMG
•MG = ‖B‖M(τ)

a

⇒ V̇ + 2aV

V
1
2

≤ (1 +
√
pmax)‖B‖M(τ))

√
2, (11)

from

d

dt
(2eatV

1
2 ) = eat

V̇ + 2aV

V
1
2

≤ eat(1 +
√
pmax)‖B‖M(τ))

√
2.

Integrating this expression we have:

eatV (t)1/2 − V (0)1/2 ≤
(
1 +
√
pmax

)
‖B‖M(τ)

a

(
eat − 1

)

∴ V (t)1/2 ≤ V (0)1/2e−at +

(
1 +
√
pmax

)
‖B‖M(τ)

a

(
1− e−at

)
(12)

The function V is a norm function of the state e(t) and matrix G(t): so,

since V
1
2 is bounded for all t, then e(t) and G(t) are bounded. We also have

the following inequality:

√
pmin ‖e(t)‖ ≤ V (t)1/2.

Substitution of this into (12) gives us an exponential bound on state e(τ):

‖e(t)‖ ≤ e−at
√
pmin

V (0)1/2 +

(
1 +
√
pmax

)
‖B‖M(τ)

a
√
pmin

(
1− e−at

)
(13)

Taking the limit superior of (13), we have

lim
τ→∞

‖e(t)‖ ≤
(
1 +
√
pmax

)
a
√
pmin

‖B‖M(τ) ≡ R∗ (14)

#

3 Simulation and Results

We will illustrate the above robust adaptive controller on the following plant:
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ẋ =

[
x2

0.3 ∗ sin(x1)

]
︸ ︷︷ ︸

A(x)

+

[
0
1

]
︸︷︷︸
B

u(t− τ) +

[
0
1

]
︸︷︷︸
Γ

uD

y =
[

1 0.1
]︸ ︷︷ ︸

C

x

(15)

We use step disturbances to provide simulation results for various small
time varying values of delay τ(t). An adequate reference model must be devel-
oped for output tracking. The open loop output response to a step disturbance
of magnitude 1 can be seen in Fig. 1(a). The desired reference model output,
ym(t), for the closed loop reference model linear plant and lead controller to
a step disturbance of magnitude 1 can be seen in Fig. 1(b). This reference
model output was created by designing a lead controller to stabilize the plant
and achieve the desired temporal response characteristics.
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(a) Output response, y(t)
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(b) Output response, ym(t)

Fig. 1 Output response, (a) y(t), for the open loop plant and (b) ym(t), for the closed

loop reference model plant and lead controller to a step disturbance of magnitude 1.

3.1 Step Disturbances

The response to a step disturbance of magnitude 10 of the output response,
y(t), control effort u(t), and the adaptive gains for no input delay are shown
in Fig. 2(a), 2(b) and 2(c) respectively.The response to a step disturbance
of magnitude 10 of the output response, y(t), control effort u(t), and the
adaptive gains for the input delay time, τ = 0.09s are shown in Fig. 3(a),
3(b) and 3(c) respectively. The response to a step disturbance of magnitude
10 of the output response, y(t), control effort u(t), and the adaptive gains
for the input delay time, τ = 0.115s are shown in Fig. 4(a), 4(b) and 4(c)
respectively. It can be seen that the adaptive error system adequately tracks
the desired reference model output for the delay free system and the “small”
delay case. As the constant delay grows, the adaptive system still tracks the
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desired reference model output, albeit with poor temporal characteristics.
The waveform of time varying delay τ(t) = |0.56∗sin(10t)+0.34|(s) is shown
in Fig. 5(a). The response to a step disturbance of magnitude 10 of the output
response, y(t), control effort u(t), and the adaptive gains for the input delay
time, τ(t) = |0.56 ∗ sin(10t) + 0.34|(s) are shown in Fig. 5(b), 5(c) and 5(d)
respectively. This simulation has shown that the adaptive controller can force
a simple midly-nonlinear plant to adequately track a linear reference model.
The adaptive controller can operate in the presence of “small” constant and
time varying delays without any knowledge of the delay.
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(a) Output response, y(t)

0 5 10 15 20 25 30
−80

−60

−40

−20

0

20

40

60

80

C
on

tr
ol

 E
ffo

rt
 u

(t
)

Time,s

(b) Control Effort, u(t)

0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

0

5

R
es

po
ns

e 
of

 A
da

pt
iv

e 
G

ai
ns

 G
e, G

D
, G

m
 a

nd
 G

u

Time,s

 

 
G

e

G
D

G
m

G
u

(c) Response of adaptive gains

Fig. 2 (a) Output response, y(t), (b) Control Effort, u(t) and (c) Response of adaptive
gains for a step disturbance of magnitude 10 and no delay.
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(b) Control Effort, u(t)
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(c) Response of adaptive gains

Fig. 3 (a) Output response, y(t), (b) Control Effort, u(t) and (c) Response of adaptive

gains for a step disturbance of magnitude 10 and τ = 0.09s.
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(b) Control Effort, u(t)
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(c) Response of adaptive gains

Fig. 4 (a) Output response, y(t), (b) Control Effort, u(t) and (c) Response of adaptive

gains for a step disturbance of magnitude 10 and τ = 0.155s.
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(d) Response of adaptive gains

Fig. 5 (a)Delay waveform, τ(t), (b) Output response, y(t), (c) Control Effort, u(t) and

(d) Response of adaptive gains for a step disturbance of magnitude 10 and τ(t) = |0.56 ∗
sin(10t) + 0.34|(s).
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4 Conclusions

In this paper, a proof for the corollary developed for the Direct Model Refer-
ence Adaptive Tracking Control of mildly non-linear systems with unknown
time varying input delays found in Model Reference Adaptive Control of
Mildly Non-Linear Systems with Time Varying Input Delays - Part I was
completed. The adaptive error system was developed for the DMRAC of
mildly non-linear systems with unknown small constant or time varying in-
put delays using the concept of un-delayed ideal trajectories. It has been
shown that the adaptively controlled system is globally stable, but the adap-
tive tracking error is no longer guaranteed to approach the origin. However,
exponential convergence to a neighborhood is achieved as a result of the con-
trol design. A simple example was provided to illustrate this adaptive control
method.
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