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Abstract This paper presents a fault tolerant control scheme using sliding mode
control allocation for an octorotor UAV. Compared to the existing literature on
quadrotor or octorotor UAVs, the scheme in this paper takes full advantage of the
redundant rotors to handle more than one rotor failure. A sliding mode approach
is used as the core baseline controller, which is robust against uncertainty in the
input channels – including faults to any of the rotors. Even when total failures oc-
cur, no reconfiguration is required to the baseline controller, and the control signals
are simply re-allocated to the remaining healthy rotors using control allocation, to
maintain nominal fault-free performance. To highlight the efficacy of the scheme,
various types of rotor fault/failure scenarios have been tested on a nonlinear model.
The results show no visible change in performance when compared to the fault-free
case.

1 Introduction

There has been much research interest focussed on UAVs in recent years (see for ex-
ample [6, 15, 5, 19]). The quadrotor UAV is one of the most popular choices due to
its cheap cost, its simplicity of build and the availability of open source codes for the
controller. Whilst most of the fault tolerant control (FTC) schemes for aerospace ap-
plications presented in the literature1 cannot be tested easily due to cost and safety
factors, for quadrotors this is possible in controlled laboratory environments. The
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work described in [28] (and the references therein) catalogues leading work apply-
ing FTC schemes to quadrotors (see also [23, 14, 20]). Many different paradigms
have been proposed including PID [5, 7, 20, 28], LQR [1, 5, 7], sliding mode control
[18, 23, 26, 28], model predictive control (MPC) [14, 28], model reference adaptive
control (MRAC) [28, 20], nonlinear dynamic inversion (NDI) [11, 15] and backstep-
ping [7, 17, 16, 18, 28]. However because of the lack of redundancy in a quadrotor
(due to its 4 rotor configuration), which is a critical factor for FTC design, almost all
quadrotor FTC schemes in the literature only deal with partial faults on the rotors (or
motors). A notable exception is recent work in [11] which allows one of the rotors
to fail at the expense of yaw control, in order to maintain roll and pitch control.

Due to the lack of redundancy in quadrotors, it is natural to consider multirotor
UAVs such as the hexrotor [21, 27] and octorotor [24, 2] for testing FTC schemes.
However, despite the available redundancy, there has been almost no work for FTC
on hexrotor or octorotor UAVs with the exception of [2, 22] (although [2] only
allows for one of the rotors to fail). Despite discussing control allocation (CA) for
octorotors (which offers the possibility of re-routing control signals among all 8
rotors), the work in [8] did not explicitly propose any FTC schemes.

Despite the robustness properties of sliding mode control (SMC), which can in-
herently deal with actuator faults, most of the SMC work in the area of multi rotor
UAVs only focusses on quadrotors (see for example [7, 17, 16, 18, 26]), and only
deals with partial faults due to lack of redundancy. The scheme proposed in this pa-
per considers an octorotor and takes full advantage of the available redundant rotors
(double redundancy for octorotor) and uses the fault tolerant sliding mode control
allocation scheme originally developed in [4] to deal with faults and failures for
generic over-actuated systems. Simulation results on a nonlinear model with vari-
ous types of rotor fault/failure scenarios will be used to highlight the potential of the
proposed scheme.

2 Octorotor

2.1 Equations of Motion

As in [6, 1], several simplifying assumptions will be introduced to create a (linear)
model which can conveniently be used for control law design. Here it is assumed
that:

• drag and thrust coefficients are assumed to be constant;
• the hub forces and rolling moments are neglected;
• the inertia matrix off-diagonal terms are zero (the octorotor is symmetric).

Remark The first assumption is a stringent one, but it facilitates the creation of a
simplified linear model which can be used as the basis for the control law design.
However it is possible to go to the next level of complication and allow the drag
and thrust components to depend on measured parameters (such as speed) to create

FrBT1.1

1405



Fault Tolerant Control of Octorotor Using Sliding Mode Control Allocation 3

a LPV representation. In this situation a scheme such as the one recently proposed
in [12] could be employed to create a gain scheduled version of the scheme which
will be described in this paper.

Based on the above assumptions, the nonlinear equations of motion for an oc-
torotor are the same as those for the quadrotor in [6], and can be written as:

Ẋ(t) =
d
dt



xb
yb
zb
ϕ
θ
ψ
ẋb
ẏb
żb
p
q
r



=



ẋb
ẏb
żb

p+qsin(ϕ)tan(θ)+ rcos(ϕ)tan(θ)
qcos(ϕ)− rsin(θ)

qsin(ϕ)sec(θ)+ rcos(ϕ)sec(θ)
bx

1
m τ1(t)

by
1
m τ1(t)

g−bz
1
m τ1(t)

Iyy−Izz
Ixx

qr+ Jr
Ixx

qΩr +
l

Ixx
τ2(t)

Izz−Ixx
Iyy

pr− Jr
Iyy

pΩr +
l

Iyy
τ3(t)

Ixx−Iyy
Izz

qp+ 1
Izz

τ4(t)



(1)

where the quantities bz = cos(ϕ)cos(θ), by = cos(ϕ)sin(θ)cos(ψ)− sin(ϕ)cos(ψ)
and bx = cos(ϕ)sin(θ)cos(ψ) + sin(ϕ)sin(ψ). The parameter m represents mass,
Ixx, Iyy, Izz are the inertia coefficients on the x,y,z axis, Jr is the rotor inertia, L is the
arm length and l is the moment arm length (i.e. l = Lcos(π/8) for the octorotor [1]).
The states are

X =
[

xb yb zb ϕ θ ψ ẋb ẏb żb p q r
]T (2)

which represent position in the body x,y,z axis; roll angle, pitch angle, yaw angle;
velocity in the body x,y,z axis; roll rate, pitch rate and yaw rate. The inputs are

τ(t) =
[

τ1(t) τ2(t) τ3(t) τ4(t)
]T (3)

which represent the total thrust, roll torque, pitch torque and yaw torque respec-
tively on the vehicle. The variable Ωr is the overall residual propeller speed from
unbalanced rotor rotation and is given by

Ωr =−Ω1 −Ω2 +Ω3 +Ω4 −Ω5 −Ω6 +Ω7 +Ω8 (4)

where Ω1, . . .Ω8 are the individual propeller angular rates. The plant input torque
and the forces τ1(t), . . .τ4(t) are mapped from the individual contributions of each
of the eight rotors [1, 24] and are given by

FrBT1.1

1406



4 Halim Alwi and Christopher Edwards
τ1(t)
τ2(t)
τ3(t)
τ4(t)


︸ ︷︷ ︸

τ(t)

=


b b b b b b b b
0 0 −bl −bl 0 0 bl bl

bl bl 0 0 −bl −bl 0 0
−d −d d d −d −d d d


︸ ︷︷ ︸

BΩ

Ω 2
1 (t)
...

Ω 2
8 (t)


︸ ︷︷ ︸

u(t)

(5)

In (5) b and d are the thrust factor and drag factor respectively, which are assumed
to be fixed [6]. Note that in terms of the equation of motion, (5) is the only source
of difference when compared to the typical quadrotor.

2.2 Linearization

A linearization has been obtained at steady hover at an altitude of 10m. During hover
p = q = r = ϕ = θ = ψ = 0. For design, only the following states are considered

x(t) =
[

zb ϕ θ ψ żb p q r
]T (6)

The linear model matrices given by [6] are:

ẋ(t) = Ax(t)+Bτ τ(t)+DΩr(t) (7)

where

A =

[
0 I4
0 0

]
, Bτ =

[
0

Bτ,2

]
, D =

[
0

D2

]
= 0 (8)

and Bτ,2 = diag(− 1
m ,

1
Ixx
, 1

Iyy
, 1

Izz
), D2 = [0 Jr

Ixx
p Jr

Iyy
q 0 ]T. Note that the last term in

(7) is considered as a disturbance term and is not considered during the controller
synthesis. (Furthermore based on a hover condition about which the controller is
designed, D = 0 since p = q = 0.) Also note that Bτ and D in (8) have a special
structure which will be exploited during the controller design – especially in the
control allocation scheme. The linear model which is used for synthesis is given by

ẋ(t) = Ax(t)+Bτ τ(t) (9)

From (5), the torques and forces τ(t) = BΩ u(t), and therefore, the overall linear
model can be written in terms of the contribution of each rotor as

ẋ(t) = Ax(t)+Bτ BΩ︸ ︷︷ ︸
B

u(t) (10)

The linear model given in (10) will be used for the controller design and the stability
analysis. This representation is used in order to analyze the effect of rotor faults and
failures on the performance and stability of the system, as well as to present the
control allocation scheme used for FTC. Due to the structure of Bτ and BΩ in (8)
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and (5), the B matrix in (10) can be factorized as

B = Bτ BΩ =

[
0
I4

]
︸ ︷︷ ︸

Bν

B2 (11)

where

B2 =


− 1

m b − 1
m b − 1

m b − 1
m b − 1

m b − 1
m b − 1

m b − 1
m b

0 0 − 1
Ixx bl − 1

Ixx bl 0 0 1
Ixx bl 1

Ixx bl
1

Iyy bl 1
Iyy bl 0 0 − 1

Iyy bl − 1
Iyy bl 0 0

− 1
Izz d − 1

Izz d 1
Izz d 1

Izz d − 1
Izz d − 1

Izz d 1
Izz d 1

Izz d

 (12)

Note that the decompositions in equations (10) and (11) are standard in control
allocation problems [3, 13] and will be exploited here in order to achieve FTC. In
particular, the structure in (11) allows ‘perfect factorization’ of the input distribution
matrix.

3 Sliding Mode Control Synthesis

3.1 Control Allocation

In the event of a fault/failure occurring in any of the rotors, equation (10) can be
written as

ẋ(t) = Ax(t)+BWu(t)+DΩr(t) (13)

where W = diag(w1 . . .w8) represent the effectiveness of the rotors. The scalars wi
model each individual rotor effectiveness level and satisfy 0 ≤ wi ≤ 1. In the fault
free case wi = 1, in the faulty case wi < 1, and when wi = 0 the rotor has failed
totally. Note that Ωr is ‘matched uncertainty’ [10] due to the structure of D in (8).

First define
ν(t) := B2u(t) (14)

From (14) the control signal u(t) can be written as

u(t) = B†
2ν(t) (15)

where B†
2 is the right pseudo inverse of B2 defined as

B†
2 :=WBT

2(B2WBT
2)

−1 (16)

Using the fact that B = Bν B2, from (11) and using (14)-(16), equation (13) can be
written as
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6 Halim Alwi and Christopher Edwards

ẋ(t) = Ax(t)+Bν B2WB†
2ν(t)+DΩr(t)

= Ax(t)+Bν ν̂(t)+DΩr(t) (17)

where ν̂(t) is the virtual control defined as

ν̂(t) := B2W 2BT
2(B2WBT

2)
−1ν(t) (18)

Note that in the sliding mode literature, faults and uncertainty with the structure of
Ωr in (17), are classified as ‘matched uncertainty’ [10, 4, 25]. Furthermore sliding
modes are inherently robust against such a class of uncertainty [10, 25]. Therefore
in the case when a fault occurs in any of the rotors, sliding modes will reject such
effects. In the case when a total failure occurs (provided enough redundancy still
exists in the system so that det(B2WBT

2) ̸= 0), control allocation can be used to
redistribute the control signals to the remaining healthy rotors.

3.2 Sliding Mode

Equation (17) can be written in detail as[
ẋ1(t)
ẋ2(t)

]
︸ ︷︷ ︸

ẋ(t)

=

[
A11 A12
A21 A22

]
︸ ︷︷ ︸

A

[
x1(t)
x2(t)

]
︸ ︷︷ ︸

x(t)

+

[
0
I4

]
︸ ︷︷ ︸

Bν

ν̂(t)+
[

0
D2

]
︸ ︷︷ ︸

D

Ωr(t) (19)

Note that (19) is naturally in ‘regular form’ [10, 4] due to the structure of Bν . There-
fore any standard sliding mode scheme in the literature (e.g. [10, 4]) can be used to
directly design the virtual controller.

To synthesize the ‘virtual’ control ν(t), define a switching function s(t) to be

s(t) = Sx(t) (20)

where S ∈ IR4×8 and SBν = I. Let S be the hyperplane S = {x ∈ IR8 : Sx = 0}.
If a control law can be developed which forces the closed-loop trajectories onto
the surface S in finite time and constrains the states to remain there, then an ideal
sliding motion is said to have been attained [10, 4]. The selection of the sliding
surface is the first part of any sliding mode design and defines the system’s closed-
loop performance. The second aspect of the control design, is the synthesis of a
control law to guarantee that the surface is reached in finite time and a sliding mode
is maintained.

In the regular form coordinates as given in (refeq:lin4a), a suitable choice for the
sliding surface matrix is

S =
[

M I4
]

(21)

where M ∈ IR4×4 represents design freedom. Introduce a transformation so that
(x1,x2) 7→ T x = (x1,s) associated with the nonsingular matrix
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Ts =

[
I4 0
M I4

]
(22)

In the new coordinates, equation (19) then becomes[
ẋ1(t)
ṡ(t)

]
=

[
Â11 Â12
Â21 Â22

][
x1(t)
s(t)

]
+

[
0
I4

]
ν̂(t)+

[
0

D2

]
Ωr(t) (23)

where Â11 := A11 −A12M, Â21 := MÂ11 +A21 −MA22 and Â22 = MA12 +A22. If a
control law can be designed to induce sliding, then during sliding ṡ(t) = s(t) = 0,
and the reduced order sliding motion is given by the top partition of (23):

ẋ(t) = Â11x̂1(t) (24)

In (24), the matrix Â11 := A11 −A12M can be made stable by choice of M in (21).
The selected control law comprises linear and nonlinear components given by

ν̂(t) = ν̂l(t)+ ν̂n(t) (25)

The linear component is defined as

ν̂l(t) =−Â21x̂1(t)− (Â22 −Φ)s(t) (26)

where Φ ∈ IR4×4 is any stable design matrix and the nonlinear component

ν̂n(t) =−ρ(t,x)
P2s(t)
∥P2s(t)∥

if s(t) ̸= 0 (27)

where P2 ∈ IR4×4 is a s.p.d matrix satisfying the Lyapunov equation

P2Φ +ΦTP2 =−I4 (28)

The problem of determining the stability of the closed-loop system under the influ-
ence of matched uncertainty becomes the problem of ensuring that sliding occurs
despite the presence of uncertainty or faults.
Assumption: the signal Ωr from (4) is considered as uncertainty and is assumed to
be bounded and satisfies

∥Ωr(t)∥ ≤ γ∥ν̂(t)∥+α(t,x) (29)

where α(·) is a known function while the gain γ satisfies γ∥D2∥< 1.
The following proposition shows that if (29) is satisfied, the controller in (25)

will still induce sliding in the presence of the ‘matched uncertainty’.

Proposition 1. If the matrix M has been chosen so that Â11 = A11 −A12M is stable,
then choosing

ρ(t,x)≥ ∥D2∥(γ∥ν̂l∥+α(t,x))+η
(1− γ∥D2∥)

(30)
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8 Halim Alwi and Christopher Edwards

where η is a positive scalar and γ is a known constant, ensures a sliding motion
takes place on S in finite time.

Proof: Substituting the control law in (25)-(27) into system (23) gives:

˙̂x1(t) = Â11x̂1(t)+ Â12s(t) (31)

ṡ(t) = Φs(t)−ρ(t,x)
P2s

∥P2s∥
+D2Ωr(t) (32)

Consider a Lyapunov function V (s) = sTP2s for (32). Differentiating the Lyapunov
function yields:

V̇ = ṡTP2s+ sTP2ṡ

=

(
Φs−ρ

P2s
∥P2s∥

+D2Ωr(t)
)T

P2s+ sTP2

(
Φs−ρ

P2s
∥P2s∥

+D2Ωr(t)
)

= sT (ΦTP2 +P2Φ
)

s−2ρ
1

∥P2s∥
(
sTP2P2s

)
+2sTP2D2Ωr(t)

= −∥s∥2 −2ρ ∥P2s∥+2sTP2D2Ωr(t) (33)

since sTs = ∥s∥2, sTP2P2s = ∥P2s∥2 and ΦTP2 +P2Φ =−I. Furthermore since

∥sTP2D2Ωr(t)∥< ∥P2s∥∥D2∥∥Ωr(t)∥

from the Cauchy-Schwartz inequality,

V̇ ≤ −∥s∥2 −2∥P2s∥(ρ −∥D2∥∥Ωr(t)∥) (34)

The idea is to represent ρ in (34) in terms of the uncertainty Ωr using the definition
of ρ given in (30). From (25) and (27), and using the triangle inequality property of
norms

∥ν̂(t)∥ ≤ ∥ν̂l(t)∥+∥ν̂n(t)∥ ≤ ∥ν̂l(t)∥+ρ (35)

Equation (30) can be written as

ρ(t,x)(1− γ∥D2∥)≥ ∥D2∥(γ∥ν̂l∥+α(t,x))+η (36)

Rearranging this equation yields

ρ(t,x) ≥ ∥D2∥
(
γ∥ν̂l∥+α(t,x)

)
+η +ρ(t,x)γ∥D2∥

≥ ∥D2∥
(
γ∥ν̂l∥+ρ(t,x)γ +α(t,x)

)
+η

Using (35) and (29), the above can be written as

ρ(t,x) ≥ ∥D2∥(γ∥ν̂∥+α(t,x))+η ≥ ∥D2∥∥Ωr∥+η (37)

Substituting for (37) in (34) yields
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V̇ ≤ −∥s∥2 −2∥P2s∥(∥D2∥∥Ωr∥+η)+2∥P2s∥∥D2∥∥Ωr∥
≤ −∥s∥2 −2η∥P2s∥ (38)

Equation (38) shows that the controller in the form (25)-(27), induces ideal sliding
in the presence of matched uncertainty. This inequality will be used to show that
sliding on S takes place in finite time. From the Rayleigh principle

∥P2s∥2 = (P1/2
2 s)TP2(P

1/2
2 s)≥ λmin(P2)∥P1/2

2 s∥2 = λmin(P2)V (s) (39)

which together with (38) gives

V̇ ≤−2η
√

λmin(P2)
√

V (40)

Integrating (40) implies that the time taken to reach the sliding surface S denoted
by ts satisfies

ts ≤ η−1
√

V (s0)/λmin(P2) (41)

where s0 represents the initial value of s(t) at t = 0 [10].
The final control law is obtained using (15)-(16) and (18) which establishes

u(t) =WB2(B2W 2BT
2)

−1ν̂(t) (42)

Note that the control which is sent to the actuators is dependent on the effectiveness
gains wi (from the diagonal weighting matrix W ) and therefore wi must be estimated
from a fault detection and isolation (FDI) scheme.

4 Design and Simulations

The octorotor parameters are inspired by the quadrotor parameters taken from [6].
Most of the parameters such as weight and inertia, are double those from the
quadrotor described in [6]. Specifically the parameters are: m = 1.3(kg), Ixx = Iyy =
0.0150(kgm2), Ixx = 0.0026(kgm2), b = 3.13×10−5(Ns2), d = 7.5×10−7(Nms2),
Jr = 6.0× 10−5(Kgm2) and L = 0.23(m). For design, the trim condition used for
linearization is steady hover at an altitude of 10m. Solving for Ω1 during a hover
condition gives each rotor the initial condition Ωi(0) =

√
mg/8b = 225.5628 (rpm)

which translates to τ(0) =
[

12.74 0 0 0
]T. The linear matrices used for design are

given by

A =

[
04×4 I4
04×4 04×4

]
, Bν =

[
04×4

I4

]
(43)

To include a tracking facility, integral action [10, 4] has been included in the design.
Let xc(t) represent integral action states given by

ẋc(t) = yc(t)−Ccx(t) (44)
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10 Halim Alwi and Christopher Edwards

where Cc =
[

I4 04×4
]

is the distribution matrix associated with the controlled out-
puts, and yc(t) is the (differentiable) reference signal [10] which represents the z axis
position, roll, pitch and yaw angle commands. The differentiable (filtered reference)
signal yc(t) is assumed to satisfy

ẏc(t) = Γ (yc(t)−Yc) (45)

where Γ ∈ IR4×4 is a stable design matrix and Yc is a constant demand vector [10].
Augmenting the states from (43) with the integral action states and then defining
xa(t) = col(xc(t),x(t)), it follows that

ẋa(t) = Aaxa(t)+Bau(t)+Bcyc(t) (46)

where

Aa =

[
0 −Cc
0 A

]
Ba =

[
0

Bν

]
Bc =

[
I4
0

]
(47)

It is easy to check (Aa,Ba) is controllable [10]. Define a switching function

sa(t) = Saxa(t) =
[

Ma I4
]

(48)

where Ma ∈ IR4×8. As in (25) the proposed ‘virtual control’ law comprises two
components ν̂(t) = ν̂l(t) + ν̂n(t). Now because of the reference signal yc(t), the
linear component has a feed-forward reference term and ν̂l(t) = Laxa(t)+Lcyc(t)
where La =−(SaAa −ΦaSa) and Lc =−MaBc. Here Aa, Ba and Sa are the matrices
from (47) and (48) which are already in regular form while Φa is the design freedom
(analogous to Φ in (28)). Note that an extra term Lc has appeared in this tracking
formulation compared to the one in (26). The nonlinear component is defined as

ν̂n(t) =−ρ(t,xa)
sa(t)
∥sa(t)∥ for sa(t) ̸= 0 (49)

A quadratic optimal design has been used to obtain the sliding surface matrix Sa
(see for example [25, 10]). The symmetric positive definite weighting matrix has
been chosen as Q = diag(10,100,100,100,1,1,1,1,1,1,1,1) while the parameter
Φa = diag(−10,−10,−10,−10). The poles associated with the reduced order slid-
ing motion are

{−1.3532±1.1537i,−2.2913±2.1794i,−2.2913±2.1794i,−2.2913±2.1794i}

The pre-filter from (45) has been chosen as Γ = −20I4. In the simulations the dis-
continuity in the nonlinear control term in (49) has been smoothed by using a sig-
moidal approximation sa

∥sa∥+δa
, where the scalar δa has been chosen as δa = 0.01

(see for example §3.7 in [10]). This removes the discontinuity and introduces a fur-
ther degree of tuning to accommodate the motor limits – especially during actuator
fault or failure conditions. Finally the nonlinear modulation gain ρ from (27) has
been chosen as ρ = 10.
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yaw cmd

W

Fig. 1 Controller Architecture

4.1 Simulation Results

Note that although the design is based on a linear model, the simulation tests have
been conducted on the nonlinear model in (1). A gust condition is also included
in the simulation, where band limited white noise with a variance of 1× 10−3 is
applied to the p,q and r channels.

Note that during the simulations, the motor speed is limited to a range
[

0 600
]

(rpm). For position control in the x and y direction, a PD control has been used to
provide roll and pitch commands while the yaw command is set to zero (see Figure 1
for the architecture of the overall control scheme). The gains for the x and y position
PD controller are kp,x = 1,kd,x = 7 and kp,y = 1,kd,y = 7 respectively. Note that the
scheme requires the effectiveness levels w1 . . .w8 of each rotor – which are assumed
to be available from an FDI unit. In the simulations, this is obtained by directly
comparing the demanded and the actual rotor speed. This is possible in practice,
since modern motors have a built-in encoder, which allows motor speed to be mea-
sured in real time. Alternatively, any FDI scheme such as the fault reconstruction
methodology described in [4] can also be used.

4.1.1 Fault Free

Figures 2-3 show the results for a fault free scenario. Figure 2(a) shows the overall
manoeuvres. These manoeuvres will also be used in the fault/failure scenarios to
make a performance comparison to the fault free case. The simulation starts with an
immediate increase in altitude followed by a series of position changes and finally
a landing close to the original starting point. Figure 2(b) shows good state tracking
performance and the roll, pitch, yaw and altitude closely track the command signals.
Figure 3(a) shows the virtual control signals produced by the controller while Figure
3(b) shows the speed for each rotor.
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4.1.2 Rotor 2,4,6,8 failure

Figure 4(b) shows the rotor speeds when rotors 2, 4, 6 and 8 are totally failed after
20sec during a change in the xb position. Figure 4(a) shows the states of both the
fault free and failure cases, to show the difference between the two cases. It can be
seen that despite the failure to 4 rotors, there is no visible change in terms of the
performance (lines overlap), thus highlighting the efficacy of the proposed scheme.
Note that compared to [2], the scheme proposed here can deal with more than one
single rotor failure, by taking advantage of the available redundancy through control
allocation.

4.1.3 Rotor 1,4,6,7 failure

Figure 5 shows simulation results when a different set of rotors (rotor 1, 4, 6 and 7)
fail at 20 sec. Figure 5(b) clearly shows the speed of rotors 1, 4, 6 and 7 has dropped
to zero at 20 sec – which simulates the failure. The control signal is redistributed to
rotors 2, 3, 5 and 7 which show an increase in speed in order to compensate for the
failed rotors. Again Figure 5(a) shows no visible degradation in performance when
compared to the fault free case (the lines overlap) which highlights the efficacy of
the proposed scheme.

4.1.4 Rotor 1,3,5,7 failure

Figure 6 shows the effect when rotors 1, 3, 5 and 7 fail at different times during
the manoeuvre. Figure 6(b) shows rotors 1, 3, 5, 7 fail at 20, 30, 40 and 50 sec
respectively. It can be seen that the rotor speed for rotors 2, 4, 6, 8 increases to
compensate for the effect of rotor failures. Figure 6(a) shows no visible difference
in terms of state tracking performance (the lines overlap) despite the failure of 4 of
the rotors.

4.1.5 Rotor 2,4,6,8 fault and rotor 1,3 failure

Figure 7(b) shows a more severe fault/failure scenario where rotors 2, 4, 6 and 8 are
only 50% effective from 20 sec onwards, and then rotor 1 and 3 fail totally at 30sec.
Despite the fact that 4 rotors are only 50% effective and 2 rotors have totally failed,
Figure 7(a) shows no visible difference in terms of state performance compared to
the fault free case (lines overlap), and thus the proposed scheme has managed to
maintain fault free performance.
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Fig. 4 Rotor 2,4,6,8 failure
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Fig. 5 Rotor 1,4,6,7 failure
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Fig. 6 Rotor 1,3,5,7 failure at different time
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Fig. 7 Rotor 2,4,6,8 fault and rotor 1,3 failure
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5 Conclusions

This paper has presented a sliding mode control allocation scheme for an octorotor.
The scheme takes full advantage of the redundant rotors to handle more than one
rotor failure as compared to the existing literature. The core controller is based on
a sliding mode design which is robust against faults and uncertainty in the input
channels (matched uncertainty). When a fault/failure occurs, no reconfiguration is
required and the control effort to the faulty rotors is re-allocated to the healthy ones
using control allocation. Simulation results show no visible change in performance
(as compared to the fault free case) for various types of fault/failure scenarios, high-
lighting the efficacy of the proposed scheme.
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