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Abstract The current paper discusses an improvement to well known Neural Gauss
Newton(NGN) method, which makes the method capable of estimating nonlinear
parameters from Flight data. The estimation is taken over for a set of simulated
data with various control surface combinations. Then the estimation is carried out
for the simulated data with selected control surface combination, for which noise
is added, to test the handling capabilities of the Improved Neural Gauss New-
ton(INGN) method.

1 Introduction

System Identification is the process of providing a mathematical description to the
system under consideration, from a set of measured quantities, for a given set of
control inputs. We use the parameter estimation, which is an integral part of System
Identification, for estimating the unknown parameters in the assumed mathematical
model, based on the measurements made. Several methods have been proposed and
implemented for the parameter estimation, but a very few methods have the ability
of handling noise in a better way. Recently neural network based methods have been
proposed to estimate aerodynamic parameters from flight data [9, 3]. Such approach
generates a model based entirely on the input/output measurements of the system
without trying to model the internal physical mechanism of the system. It is impor-
tant to note that such an approach of model building for complex systems neither
requires postulation of mathematical model nor the solving of equations of motion.
Artificial neural networks(ANN) have been used to model aircraft dynamics where
aircraft motion and control variables are mapped to predict the total aerodynamic
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coefficients [4, 6, 10]. In all these papers, the emphasis has been on aerodynamic
modelling and estimation of aerodynamic coefficients using Feed Forward Neu-
ral Networks (FFNN). Raisinghani et al. [9, 3] proposed two new methods namely
the Delta and the Zero method for explicitly estimating aircraft parameters from
flight data using FFNN. Hence, the advantage of FFNNs in handling noise (having
zero mean) in flight data to yield better and consistent estimates cannot be ignored.
Further, the neural based methods have the advantage of being able to use a true
nonlinear function as the working model for prediction.

2 Improved NGN Method [1]

The NGN method [8], proposed by Peyada et. al, serves as an excellent tool in
recent times for parameter estimation from flight data. An improvement in NGN al-
gorithm [1] has been tried out, which was proved to be worth of trying the same base
algorithm for estimating nonlinear parameters. The finesse of the neural networks
relies upon the choice of input vector given for training. If we need to improve the
neural network, then it is best to start at the input vector. The better the training
given to ANN, the better the prediction, for a wide range of control inputs. The es-
timation process we used is mainly based upon the angle of attack(α), pitch rate(q)
and linear accelerations along X and Z axis(ax and az). In NGN method, the input
variables for training include the above mentioned. The force and moment coeffi-
cients are provided along with the accelerations, angle of attack(α), pitch rate(q) and
pitch angle(θ ) as outputs for training the neural model. The linear accelerations ac-
count mainly for the force coefficients, while the moment coefficient is characterized
mainly based on pitch rate(q) and angle of attack(α). The data used for estimation
is the trajectory model of the airplane under consideration i.e. time history of the
variables. Since the neural model is developed based on the input and output vector,
the idea of improving NGN is tried by including the first derivative of the important
motion variables, in the longitudinal case α̇ and q̇, for training. By introducing the
time derivatives of angle of attack and pitch rate, (α̇ and q̇), we can characterize the
force and moment coefficients(CL,CD and Cm) better than NGN method as follows.
Now by including these two vectors to the input matrix, the neural model will be
able to predict the outputs much better. The pattern following ability of the neural
network is exploited for this improvement. As we provide the first derivative of time
derivatives of angle of attack and pitch rate, (α̇ and q̇), the pattern following is im-
proved, and hence the neural network. This improves the robustness of the neural
model too, since we give the derivatives of the most influential variables for train-
ing. This improvement has brought better estimation of linear model with a much
lower standard deviation. This is has been validated using the HANSA-3 flight data
for longitudinal case, along with NGN for comparison [1]. The improvement made
has been proved very effective for linear model. With this method, we can estimate
nonlinear aerodynamic model. The input and output vector for the neural network
is given below: The input vector at kth instant is U(k)
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U(k) = [α(k),θ(k),q(k), α̇(k), q̇(k),CD(k),CL(k),Cm(k)] (1)

where the CD(k), CL(k) and Cm(k) at kth instant are obtained using the measure
quantity, α(k) in the following equations:

CD(k) =−CX (k)∗ cosα(k)−CZ(k) · sinα(k). (2a)
CL(k) =CX (k)∗ sinα(k)−Cz(k)∗ cosα(k). (2b)

Cm(k) = [Iy ∗q(k)− Ixz ∗ (p2(k)− r2(k))

− (Iz(k)− Ix(k))∗ p(k)r(k)

−Teng ∗ cosσ eng∗Zeng−Teng ∗ sinσ eng∗Xeng]/(q(k)SC).

(2c)

and CX (k) and CZ(k) are computed as below.

CX (k) =
m∗aXCG(k)

q(k)S
. (3a)

CZ(k) =
m∗aZCG(k)

q(k)S
. (3b)

where

• p, q, r are the angular rates about the three axis respectively
• σeng is the engine thrust setting angle of the airplane
• Zeng and Xeng are the offset distances from the CG
• Teng is the engine thrust

The output vector for the neural network training is organized as follows:

Z(k+1) = [α(k+1),θ(k+1),q(k+1), q̇(k+1),ax(k+1),az(k+1)]. (4)

3 Data generation for Estimation Purposes

A five degree-of-freedom (DOF) rig system has been used to simulate near free
flight manoeuvres inside the wind tunnel by exciting a scaled down model aircraft
through various types of control surface deflections. The equations of motion are
presented by Peyada.N.K. et.al [7]. We solve the equations of motion of the 5 DOF
dynamic rig for the given speed and control surface deflection to simulate the data
[2] for the McDonnell Douglas F-4 aircraft. For longitudinal case, the derivative
values, which also include the cross derivatives, are given in the tables 1 and 2.
Hence, the data required for Estimation process requires the inclusion of trajectory
variable angle of side slip. To generate such data, we have to simulate the data
by deflecting both elevator and rudder. By deflecting both elevator and rudder, the
combined effect of angle of attack and angle of sideslip is captured in the data,

WeAT3.2

133



4 Dhayalan. R, A. K. Ghosh

which is also done for four different combinations of the control surfaces which
maximizes the energy of the whole input [5]. The simulation is carried out for two
Angle of attack regimes, i.e. α ≤ 150 and 150 < α ≤ 300.

Table 1: Original values of derivatives for α ≤ 150[2]

Derivative Original
Value Derivative Original

Value Derivative Original
Value

CX0 -4.34E-02 CZ0 -1.31E-01 Cm0 -6.61E-03
CXα

2.39E-03 CZα
-5.38E-02 Cmα

-2.67E-03
CX

β2 2.53E-05 CZδe
-4.76E-03 Cm

β2 -6.48E-05
CX

αβ2 -1.07E-06 CZδeα
-3.30E-05 Cm

αβ2 -2.65E-06
CXδe

9.50E-04 CZq -6.36 Cmδe
-6.54E-03

CX
δeβ2 -8.50E-07 CZqα

2.96E-01 Cmδeα
-8.49E-05

CXq 5.00E-01 CZqα2 6.30E-02 Cm
δeβ2 3.74E-06

CXqα
5.73E-02 Cmq -2.71

CXqα2 -1.00E-02 Cmqα
-9.00E-02

Table 2: Original values of derivatives for 150 < α ≤ 300[2]

Derivative Original
Value Derivative Original

Value Derivative Original
Value

CX0 1.41E-01 CZ0 -6.08E-01 Cm0 5.490E-02
CXα

-1.54E-02 CZα
-2.20E-02 Cmα

-6.080E-03
CX

α2 2.96E-04 CZδe
-6.77E-03 Cm

β2 -1.690E-04
CX

β2 -3.72E-04 CZδeα
9.7E-5 Cm

αβ2 5.640E-07
CX

αβ2 4.14E-5 CZq 1.136 Cmδe
-8.140E-03

CX
α2β2 -9.1E-7 CZqα

-1.418E-01 Cmδeα
1.100E-04

CXδe
1.82E-03 CZqα2 3.110E-03 Cmq -9.510E-02

CXδeα
-7.3E-5 Cmqα

1.400E-03
CXq -6.02E-02
CXqα

2.04E-03

4 I-NGN Estimation

The I-NGN method is applied for the above mentioned simulated data individu-
ally, to obtain the derivatives. The trained and estimated trajectory are shown in the
figures 1 and 2. The results are compared in the error plot comparing with the
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Fig. 1: Data without noise - Training

original values, which are given the table 1. The error plot(Figure 3) shows that the
combination of δe(±20) with 3211 configuration and δr(±50) with Doublet config-
uration, is behaving well enough to estimate the parameters close to the originals,
even though the values of the derivatives are very small. In case of strong derivatives
such as, Czα

and Cmα
, the error is very small i.e. well within 1%. Even for the cross

derivatives the error with respect to the original values is within 3%. This proves that
the method is very effective in estimating the nonlinear and coupled derivatives irre-
spective of the tininess of the value. But this is for the case of simulation data, which
doesn’t have real measurement noise or other noises. Now to apply this method in
the real flight data, we should verify the robustness of the I-NGN method to differ-
ent level of noises. The derivatives of coefficients are numbered and corresponding
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Fig. 2: Data without noise - Estimation

numbers are used for plotting the error of individual derivatives. The numbering is
explained in the caption below the figure 3.

5 Noise Introduction

The noise is introduced as a Gaussian noise model to the all trajectory variables, as
the following equation depicts. The noise was introduced for four different scales
from 0.01 to 0.2.
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Fig. 3: Error Plot for different set of Control Surface Deflections
(1 : CX0 , 2 : CXα
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δeβ2 , 7 : CXq , 8 : CXqα
, 9 : CXqα2 ,

10 : CZ0 , 11 : CZα
, 12 : CZδe

, 13 : CZδeα
, 14 : CZq , 15 : CZqα

, 16 : CZqα2 ,
17 : Cm0 , 18 : Cmα
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αβ2 , 21 : Cmδe
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, 23 : Cm
δeβ2 ,

24 : Cmq , 25 : Cmqα
)

Zn = Z +n′ ∗Z ∗ scale; (5)

where Z is the set of simulated data, Zn is the noise added data, n is vector of random
numbers between 0 and 1.

5.1 Low Angle Regime

The results for low angles of attack (α ≤ 150) are shown in figures 5, 6 and 7. For
strong derivatives, the noise introduction doesn’t bring significant changes in the
estimation process. The I-NGN is capable of handling noise level in the simulated
measurement vector well enough such that, the error is well within 10% even for the
noise scale of 0.2 of the simulated variables. Thus the method holds good amount
of robustness for noises. While checking the error level for the cross derivatives and
nonlinear derivatives, the most affected derivative is the one which the square of
angle of sideslip(β 2), the deviation goes very high for the highest scale i.e. 0.2. But
for lower noise levels the error deviation is still under control. The lower numerical
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values for the derivatives may be a good reason for this deviation, since even a
considerable amount noise may bring out big change in the derivatives. The order
of magnitude analysis will say that the values are being deviated largely from the
original value, which is very small. The other nonlinear derivatives have smaller
error compared to the derivatives having angle of sideslip(β ). Since most of the
nonlinear derivatives are very small compared to the strong, linear derivatives, we
need to have the range of data for higher values of these derivatives.

5.2 High Angle regime

The same estimation is carried out for the angle of attack range of 150− 300, for
the same noise scales, as before. Most of the parameters are the same, except for a
few which appear only in this regime. The error plots are given in figures 7, 8 and 9.
The effect of noise is seen in all the derivatives. For some nonlinear parameters, the
error is very high, the reason being the small value of these parameters when com-
pared to other parameters. In high alpha regime, the smallest change in variables due
to noise may result in considerable deviation of the parameters during the estima-
tion, hence the higher error percentage. The linear parameters, which includes some
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Fig. 7: Error Plot in 150 < α ≤ 300 - Axial Force Coefficient CX
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strong derivatives such as, CLα
,Cmα

,Cmδe
, are estimated well enough even in higher

noise scales. This method is efficient and effective in high angle regimes too, with
moderate noise levels. But for the nonlinear parameters, the method is less effective
when the noise levels are increased. But still, if we can filter the noises out as much
as possible, then the method is well effective in its purpose. This is evident from the
comparison plots figures 10 and 11. The first plot compares the linear derivatives,
with zero noise level, for two angle of attack regimes under study. From the plot,
it is evident that these parameters are estimated well enough in both regimes, with
the error from their original values is less than 1%, barring one parameter(CZδe

). The
second plot compares the nonlinear derivatives which are common for the two angle
regimes. These nonlinear parameters are very small compared to the linear deriva-
tives,but still the method is capable of estimating mos of them even in high angle
regimes with error less than 1%. Now this gives us a good proof, that the method is
capable of handling nonlinear estimation.
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6 Conclusion

The improved NGN has been tried out for simulated longitudinal trajectory data of
F-4 [2] aircraft. The simulation is carried out for four combinations of Control sur-
face deflections, from which one combination is selected for estimation with noises.
The noise is introduced for four scales, which is introduced in all measured vari-
ables. The estimation is carried out with noisy data and the error plot is presented.
The strong parameters are not affected much by the noises, but some nonlinear pa-
rameters are affected in a large scale. The Noise level increase may pose a big threat
to the method, but never-the-less, the method is effective and efficient for high an-
gle regimes, where the nonlinearity plays a big role. This effectiveness has to be
tested with the real flight nonlinear data, without which this method may not be
good for nonlinear estimation. This method gives a good starting point for the better
exploration of nonlinear regimes for any unknown system.
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