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Abstract This paper presents a Fault Detection and Isolation (FDI) method for Air
Data Sensors (ADS) of aircraft. In the most general case, fault detection of these
sensors on modern aircraft is performed by a logic that selects one of, or combines
three redundant measurements. Such a method is compliant with current airwor-
thiness regulations. However, in the framework of the global aircraft optimization
for future and upcoming aircraft, it could be required, e.g.to extend the availabil-
ity of sensor measurements. So, an improvement of the state of practice could be
useful. Introducing a form of analytical redundancy of these measurements can in-
crease the fault detection performance and result in a weight saving of the aircraft
because there is no necessity anymore to increase the numberof sensors. Further-
more, the analytical redundancy can contribute to the structural design optimization.
The analytical redundancy in this method is introduced using an adaptive form of
the Extended Kalman Filter (EKF). This EKF uses the kinematic relations of the
aircraft and makes a state reconstruction from the available measurements possible.
From this estimated state, an estimated output is calculated and compared to the
measurements. Through observing a metric derived from the innovation of the Ex-
tended Kalman Filter (EKF), the performance of each of the redundant sensors is
monitored. This metric is then used to automatically isolate the failing sensors.
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2 L. Van Eykeren and Q.P. Chu

1 Introduction

In this paper a newly developed architecture for Air Data Sensors (ADS) moni-
toring is proposed. The method deals with the Fault Detection and Isolation (FDI)
of measurements required for the Electronic Flight ControlSystem (EFCS) of air-
craft and is part of the work performed for the Advanced FaultDiagnosis for
Sustainable Flight Guidance and Control (ADDSAFE) project. The goal of the
ADDSAFE project is to research and develop model-based Fault Detection and Di-
agnosis (FDD) methods for aircraft flight control systems, mainly sensor and actua-
tor malfunctions [12]. Furthermore, the ADDSAFE project aims at closing the gap
between the academic field of research of FDD and the practical application of these
methods in industry.

1.1 Motivation

In Fig. 1 an overview is given of the typical architecture of EFCS of an aircraft.
As can be noticed, one way of how faults can be introduced in the control loop
is by sensor faults, indicated as Air Data and Inertial Reference System (ADIRS)
faults in the figure. Faulty measurements which are fed back to the flight control

Objectives
Flight Control

Laws

Consolidation
Aircraft state

ADIRS faults

ADIRU

Fig. 1 Flight control architecture of an aircraft

laws can create unwanted control signals, leading e.g. to higher loads on the aircraft
structure. For that reason, the aircraft structures are designed to withstand these
unwanted loads up to a level at which it is guaranteed that thefaults can be detected
and appropriate actions can be taken.
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Air Data Sensor Fault Detection using Kinematic Relations 3

However, for upcoming and future aircraft one important aspect is the structural
design optimization. This can lead to a substantial decrease in the weight of the
aircraft, which again leads to an increase in the aircraft’sperformance, including a
decrease in fuel consumption, a decrease of produced noise and an increased range.
Furthermore, these advantages also satisfy the newer societal imperatives toward an
environmentally friendlier aircraft.

Sensor fault detection for flight parameter measurements, like e.g. air data and
inertial measurements in modern aircraft is generally achieved through the use of
typically three redundant measurement units (e.g. Air Dataand Inertial Reference
Units (ADIRUs) [22]). Through a decision logic, also calledconsolidation process,
the correct measurement is selected and used by the EFCS [10],[22].

Improving the FDD performance of the aircraft’s EFCS allowsto optimize the
aircraft structural design and performance, resulting in alower operating cost and
decreased environmental impact [13], as explained above.

Another motivation for the development of analytical redundancy for aircraft
parameter measurements is to extend the availability of thesensor measurements.
Instead of adding one or several new sensors, the option of adding a “virtual” sensor,
i.e. analytical redundancy, gives the advantage no additional weight is required. This
results again in the same advantages as described in the previous paragraph.

These two main reasons indicate the need to create new advanced FDD methods
and to close the gap between academic research and industrial application.

1.2 Antecedents and main contribution

In this work a model-based FDD approach is presented for the fault detection of
Air Data Sensors (ADS), in particular applied to the angle-of-attack measurements.
Different methods have been investigated for mitigating the effects of failing ADS,
such as: signal based diagnosis [16],[9], alternative sensing methods which are fault
tolerant [4], robust fault detection approaches [11], finding ways to operate without
traditional ADS[6]. Other solutions for the problem of ADIRS monitoring dealing
with oscillatory faults are presented in [3],[2].

In this paper a method is introduced based on the general kinematic relations
of aircraft. By relating different available measurementsin the ADIRU, it becomes
possible to perform FDD of the ADS. For this purpose, an adaptive modification
of the EKF is applied to the kinematic equations. The Kalman Filter (KF) and its
numerous modifications have been used in the field of aerospace engineering since
it was developed in the 1960s [14]. In this way, the EKF has also been used for
sensor fault detection [7].

The EKF was originally formulated for state estimation of dynamic systems
when the dynamics and measurement equations are nonlinear,but linearizable [17]
and has been widely used for sensor monitoring and fusion techniques [1]. The
method that will be proposed here directly builds on this principle, i.e., using the
redundant measurements available form the multiple ADIRUsthe state of the air-
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4 L. Van Eykeren and Q.P. Chu

craft is reconstructed by means of a adaptive version of an EKF which was first
introduced by [19]. [15] proposes sensor fault detection byevaluating the innova-
tion sequence of the filter. This information can furthermore be used to fuse the
measurements in such a way that failing sensors are detectedand isolated.

1.3 Structure of the paper

In the next section the FDD problem to solve is introduced, giving the system de-
scription and the fault scenarios. In Section 3 the proposedFDD method is described
and in Section 4 the simulation results are presented. The paper ends with a conclu-
sion in Section 5.

2 Problem Definition

2.1 System Definition

One of the key elements of this method is the use of the kinematic equations that
describe the aircraft’s behavior, i.e., the state reconstruction is achieved using the
measurements of the Inertial Reference Unit (IRU). When the load factors and the
rotational rates are used as inputs to the EKF, the state of the aircraft can be recon-
structed ([5]). The big advantage of this approach lies in the following three points:

1. The method developed is valid over the whole flight envelope of the aircraft. This
means that no special measures need to be taken such as gain scheduling, etc.

2. Secondly, the method can be applied to any aircraft, without large modifications
(except for the location of the sensors). So the developed method is general for
aircraft.

3. The method is insensitive to other types of faults, e.g. actuator faults, control
surface jamming, etc.

The aircraft kinematics can be represented by the followingnonlinear system:

ẋ(t) = f(x(t))+G(x(t))(u(t)+w(t))

z(t) = Cx(t)

zm(t) = Cx(t)+v(t)

(1)

Wherex represents the state of the system,u the input andz the measurable output
of the system.w(t) andv(t) represent Gaussian white noise sequences and are the
measurement noise of respectively the measured input and output. In this particular
case, the state description can be reduced to a five state system, and these states are
measurable:
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x =
[

VTAS α β φ θ
]⊤

(2)

u =
[

Ax Ay Az p q r
]⊤

(3)

z =
[

VTAS α β φ θ
]⊤

(4)

WhereVTAS is the true airspeed,α the angle-of-attack,β the side-slip angle,φ the
roll angle andθ the pitch angle.Ax, Ay, andAz are the accelerations at the center
of gravity, p, q, andr the rotational rates. Note that a transformation is necessary
to convert the measured load factors at the IRU to accelerations at the center of
gravity. Furthermore, note thatC = I . In fact, both the inputs to this system and the
outputs are measured from the aircraft and can be assumed available in the EFCS
for each modern aircraft. Although the position of an aircraft can be considered a
part of the state, it is not required for the purpose of fault detection of the ADS.
Having only these five states, will decreases the computational load of the proposed
method. Furthermore, no wind influences are accounted for inthis work. However,
according to [20] it is possible to estimate the wind, givinga more precise estimate
of the state of the aircraft if necessary, at the cost of a larger state vector and so
increased computational load.

According to [8], the kinematic state update equations can be described by:

V̇ = g(−sinθ cosα cosβ +sinφ cosθ sinβ +cosφ cosθ sinα cosβ )
+Ax cosα cosβ +Ay sinβ +Az sinα cosβ (5)

α̇ =
g

V cosβ
(cosφ cosθ cosα +sinθ sinα)

+
1

V cosβ
(Az cosα −Ax sinα)+q− tanβ (pcosα + r sinα) (6)

β̇ =
g
V
(sinθ cosα sinβ +sinφ cosθ cosβ −cosφ cosθ sinα sinβ )

+
1
V
(−Ax cosα sinβ +Ay cosβ −Az sinα sinβ )+ psinα − r cosα (7)

φ̇ = p+qsinφ tanθ + r cosφ tanθ (8)

θ̇ = qcosφ − r sinφ (9)

which definesf(x) andG(x) in Eq. (1).

2.2 Fault Scenario

The definition for the fault scenario follows from the ADDSAFE project [12]. All
faults investigated in this paper are related to the measurement of the angle-of-attack
α, however the method developed can be extended to the monitoring of the measure-
ments of the true airspeedVTAS and the side-slip angleβ , without losing generality.
Different types of faults are considered, such as oscillating faults, runaway faults
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and increased noise faults, of which examples are shown in Fig. 2. Note that in this
graph, and all other graphs in this paper, all values are normalized to the operational
range of the measurements. Furthermore, also the time axis will be normalized for
each simulation.
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Fig. 2 Different types of faults

Each of the different type of faults can occur on one or simultaneously on two
sensors. Whereas the fault detection of the case of only one failing sensor is a trivial
task, the fault detection when two sensors fail at the same time is less obvious with-
out incorporating any kind of analytical redundancy. An overview of the different
faults investigated and there amplitudes is shown in Table 1.
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Table 1 Fault Amplitudes (for the runaway, the rate is expressed as a percentage ofαmax, for the
extra noise the standard deviation of the noise as a percentage of αmax)

Scenario Fault type Amplitude (% ofαmax)
1 Oscillation 1 sensor 4
2 Oscillation 2 sensors 11
3 Runaway slow 2 sensors 9
4 Runaway fast 2 sensors 33
5 Extra noise 1 sensor 2
6 Extra noise 2 sensors 14

3 FDD Approach

The general idea of the approach taken here is to fuse the redundant measurements
based on the quality of the measurement. This is achieved by filtering the available
measurements using an EKF and comparing the state estimateswith the redundant
measurements based on a so-called “R-adaptation” [21], which will be explained in
Section 3.2.

For this purpose, first the basic principles of the EKF are briefly explained, which
is essential in understanding the method. Then the sensor monitoring algorithm is
addressed, which is used to perform the FDD.

3.1 Extended Kalman Filter

The standard EKF exists of two main steps. The first step can becalled the predic-
tion of the estimated mean of the state of the system, and usesthe system dynamic
equations. Also the covariance of the estimate is predicted. This step can be repre-
sented by:

x̂k|k−1 = x̂k−1|k−1+
∫ tk

tk−1

[f(x̂(τ))+G(x̂(τ))um(τ)] dτ (10)

Pk|k−1 = ΦkPk−1|k−1Φ⊤
k +Qd (11)

Wherex̂k|k−1 is the estimated state at timet = tk, knowing the measurement at time
t = tk−1. um(t) represents the measured input to the system. The matrixPk−1|k−1
represents the covariance matrix of the estimated state at time t = tk−1. The matrix
Φk is the discretized version of the Jacobian matrixFk, both defined as follows:

Φk = eFk∆ t =
∞

∑
n

Fn
k (∆ t)n

n!
(12)

with: Fk =
∂ (f(x)+G(x)u)

∂x

∣

∣

∣

∣

x=x̂k|k

(13)
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8 L. Van Eykeren and Q.P. Chu

and from [18] we can approximateQd as:

Qd(k) = ΓkQΓ⊤
k (14)

with: Γk =

(

∫ k

k−1
Φk∆ t

)

G(x̂k|k) (15)

whereQ = E
[

w(t)w⊤(t)
]

represents the input noise covariance matrix.
The second step is the measurement update. It is representedby:

K k = Pk|k−1H⊤
(

HPk|k−1H⊤+R
)−1

(16)

x̂k|k = x̂k|k−1+K k
(

zm −h(x̂k|k−1)
)

(17)

Pk|k = [I −K kH]Pk|k−1 [I −K kH]⊤+K kRK⊤
k (18)

WhereK is the Kalman gain,H = ∂h
∂x = I , andR = E

[

v(t)v⊤(t)
]

the measure-
ment noise covariance matrix. Furthermore, from these equations we can define the
innovation aszmk − ẑk and the innovation covariance matrix as:

Vek = HPk|k−1H⊤+R (19)

This standard EKF can be applied to the system described in Section 2.1 with the
triple measurement of the angle-of-attackα augmented in the measurement vec-
tor. Note that is was chosen for this approach in favor of a dedicated filter for each
ADIRU, as to reduce the computational load. In this case, a simulation was chosen
with a double runaway fault, i.e., sensor 1 and 2 experiencedthe same runaway fault
att = 0.03. In Fig. 3 the result of the estimated angle-of-attack (α̂) can be seen com-
pared to the three different measurements. As can be noticed, the estimated value
of the angle-of-attack is in between the measured values. This is logical, as the as-
signed variances to the different sensors, through the matrix R, are equal. Therefore,
each measurement of the same variable is equally weighted bythe filter. From the
figure it is clear that it cannot be decided on this information which sensor is failing,
and which sensor is providing a correct value. In this we find amotivation to modify
the algorithm such that FDI becomes possible by monitoring the performance of the
sensors.

3.2 Adaptive Fusion

Instead of using all redundant measurements as separate observations in an adaptive
EKF [23], here is chosen to fuse the redundant measurements based on their per-
formance. For this, a certain metric is introduced which represents the performance
(fault-free/fault) of the sensor.

The theoretical innovation covariance of the EKF is represented by (19). This
value can also be estimated online:
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Fig. 3 α̂ compared with measurements for runaway fault of sensor 1 and 2 (equal fault value),
regular EKF

V̂ek =
1
N

k

∑
i=k−N+1

(zmi − ẑi)(zmi − ẑi)
⊤ (20)

whereN represents the moving window width. In the case a sensor fails, for each
diagonal value, the estimated value will exceed the theoretical value, i.e.:

V̂ek(i,i)
≥
[

HPk|k−1H⊤
]

(i,i)
+R(i,i) (21)

where the subscript. . .(i,i) means the value on theith diagonal. Now one can intro-
duce the diagonal scale factor matrixS(k) ([21]) such that:

V̂ek(i,i)
=
[

HPk|k−1H⊤
]

(i,i)
+Sk(i,i)R(i,i) (22)

And therefore the values ofS(k) can be calculated as:

Sk(i,i) =

(

V̂ek(i,i)
−
[

HPk|k−1H⊤
]

(i,i)

)

R−1
(i,i) (23)

In the fault free case, the matrixS(k) will approximate the unity matrixI , in a faulty
case, the diagonal value related to the failing sensor will increase and become bigger
than 1. To perform the fusion of the redundant measurements,the scale factors are
calculated for the different sensors. Then a weighted average of the three measure-
ments is taken using the reciprocals ofS(k) as weights:
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αc =
1

∑3
i=1

1
S∗αi

3

∑
i=1

1
S∗αi

αi (24)

As can be noticed, in the case one or two sensors give a bad measurement, the related
value ofS(k) will increase and the faulty measurement will be given a lower weight.
As will be shown in the results, the scale factor of the faultymeasurement is much
larger than 1, soS(k)≫ 1, and as such the faulty measurements will have almost no
influence onαc. The detection and isolation signal will then be based on whether
the value ofS(k) will exceed a preset threshold. Another approach would be toset a
threshold, and disregard any measurement with a scale factor above this threshold.

Note that the method as presented here is limited to the detection of measurement
faults related to the signals inz, as defined in Eq. (4). It is assumed that the input
measurementsu are fault-free.

4 Simulation Results

The method described above is applied to the system described in Section 2.1. Sim-
ulations were run on the ADDSAFE benchmark. Two main tuning parameters are
required to be determined for the application of the filter. First of all, there is the
time windowN, over which the estimate of the innovation covariance is calculated.
This parameter depends on the system dynamics and the required detection perfor-
mance. However, setting this parameter is trivial, and is done by trial and error. The
second tuning parameter is the thresholdT introduced in the previous paragraph.
This parameter can be set based on the amplitude of the residuals in fault-free cases.
Although the matricesQ andR can be considered as tuning variables, they are re-
lated to the performance of the sensors measuring the input and output vectorsu and
z. Therefore, both matrices should be based on the real sensorperformances which
are considered to be known.

First, the method was applied to the same simulation as shownin Fig. 3. The
result is shown in Fig. 4. As can be noticed, the estimatedα̂ now follows the correct
measurementα3 andα1 andα2 are discarded. Fig. 5 shows the values ofSαi , i =
1,2,3. The scale factors related to sensor 1 and 2 clearly show an increase in value
after the fault occurred. Other typical results for the different scenarios described in
Table 1 are shown in Figs. 6, 7, 8 and 9.

A simulation campaign was set-up to test the proposed FDI method. This cam-
paign existed of fault-free simulations in which differentmaneuvers were performed
to test the false alarm rate. These simulations included sudden pitch up maneuvers
with high angle-of-attack attitudes and lateral maneuversincluding substantial side
slipping of the aircraft. The introduction of faults occurred during simulations of the
cruise condition of the aircraft, for the faults presented in Table 1.

The simulation campaign involved changing the following parameters of the sim-
ulations: the flight parameters (altitude, velocity), geometric parameters (mass, posi-
tion of center of gravity), uncertainties in the measurements (mass, velocity, center
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Fig. 4 α̂ compared with measurements for runaway fault of sensor 1 and 2 (equal fault value),
EKF with adaptive fusion
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Fig. 5 Sα for the different sensors for runaway fault of sensor 1 and 2 (equal fault value), EKF
with adaptive fusion

of gravity, altitude) and the aerodynamic coefficients. Allthese parameters were
adjusted in two different ways: using the extreme values (all uncertainties on the
minimum or maximum value at the same time) and using Monte Carlo simulations.
In this way, a large part of the flight envelope of the aircraftwas covered.

In Table 2 an overview is given of the detection performance of these simu-
lations, consisting of 252 simulations (152 parametric variations and 100 Monte
Carlo variations) for each scenario. In this table, “DTP” stands for “Detection Time
Performance” and is expressed in function of the maximal allowed detection time
for that type of fault. As can be noticed, for the different fault scenarios considered,
a 100% fault detection performance was achieved, i.e., no missed detections and
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Fig. 7 Sα for the different sensors for oscillatory fault of sensor 3, EKF with adaptive fusion

no late detections. The low values for scenario 1 and 5 are dueto different maxi-
mum allowed detection times. It can be noted that the absolute detection times for
both one or two sensors failing were in the same magnitude order, i.e., the absolute
detection time is not influenced by the amount of sensors (oneor two) that are fail-
ing. Furthermore, no false alarms were obtained during the simulation of fault-free
maneuvers. Here only results are presented for the detection of faults in the angle-
of-attack sensors. However, it should be noted that this FDImethod can be extended
to the other variables in the measurement vectorz without losing any functionality.
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Fig. 9 Sα for the different sensors for “noise” fault of sensor 1 and 2, EKF with adaptive fusion

As these types of faults can be detected and accounted for by the same methodology,
it can be stated that the fault detection of one specific variable is insensitive to other
faults. The detection of measurement faults of the variables in the input vectoru,
being the accelerations and rotational rates, is not considered in this work, and so
these measurements are assumed to be fault-free, i.e., FDI for these measurements
is covered by a different methodology.
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Table 2 Summary of obtained simulation results

# Detection DTP DTP DTP
(%) mean max min

1 100 0.0063 0.0068 0.0062
2 100 0.16 0.18 0.14
3 100 0.41 0.95 0.32
4 100 0.16 0.20 0.13
5 100 0.0035 0.0042 0.0030
8 100 0.06 0.06 0.06

5 Conclusion

This paper presented an algorithm based on an adaptive modification to the EKF
that is capable of providing mathematical redundancy for the purpose of sensor
fault detection. The main advantages of this method are the independence from the
dynamics of the aircraft and it’s low tuning complexity. In fact, the only aircraft spe-
cific knowledge required is the exact location of the IRU and the sensor performance
characteristics. Because only kinematic and no dynamic (forces and moments) rela-
tions are used, no special measures need to be taken to make tomethod valid over
the whole flight envelope of the aircraft. This results in a very low tuning complex-
ity, limited to setting a time window and one threshold. Furthermore, it should be
noted that this method can be extended to other air data measurements, which will
be investigated in future work.
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