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Abstract This paper presents a Fault Detection and Isolation (FDthatefor Air
Data Sensors (ADS) of aircraft. In the most general casdt, detection of these
sensors on modern aircraft is performed by a logic that setate of, or combines
three redundant measurements. Such a method is complimtwirent airwor-
thiness regulations. However, in the framework of the dlataraft optimization
for future and upcoming aircraft, it could be required, ¢agextend the availabil-
ity of sensor measurements. So, an improvement of the statectice could be
useful. Introducing a form of analytical redundancy of theseasurements can in-
crease the fault detection performance and result in a weaghng of the aircraft
because there is no necessity anymore to increase the nafdemsors. Further-
more, the analytical redundancy can contribute to the &trakdesign optimization.
The analytical redundancy in this method is introduced gisin adaptive form of
the Extended Kalman Filter (EKF). This EKF uses the kinemeglations of the
aircraft and makes a state reconstruction from the availatg@lasurements possible.
From this estimated state, an estimated output is calclktel compared to the
measurements. Through observing a metric derived fronmth@vation of the Ex-
tended Kalman Filter (EKF), the performance of each of tltrinelant sensors is
monitored. This metric is then used to automatically isotae failing sensors.
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2 L. Van Eykeren and Q.P. Chu

1 Introduction

In this paper a newly developed architecture for Air Datassesn (ADS) moni-
toring is proposed. The method deals with the Fault Deteditd Isolation (FDI)
of measurements required for the Electronic Flight Cortiydtem (EFCS) of air-
craft and is part of the work performed for the Advanced F&ildgnosis for
Sustainable Flight Guidance and Control (ADDSAFE) projéidie goal of the
ADDSAFE project is to research and develop model-based Batéction and Di-
agnosis (FDD) methods for aircraft flight control systemaijnty sensor and actua-
tor malfunctions [12]. Furthermore, the ADDSAFE projeanaiat closing the gap
between the academic field of research of FDD and the praapgéication of these
methods in industry.

1.1 Motivation

In Fig. 1 an overview is given of the typical architecture d¥@E&S of an aircraft.
As can be noticed, one way of how faults can be introduced enctintrol loop
is by sensor faults, indicated as Air Data and Inertial Rezfee System (ADIRS)
faults in the figure. Faulty measurements which are fed badké flight control
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Fig. 1 Flight control architecture of an aircraft

laws can create unwanted control signals, leading e.ggteehioads on the aircraft
structure. For that reason, the aircraft structures ar@gues to withstand these
unwanted loads up to a level at which it is guaranteed thdaihles can be detected
and appropriate actions can be taken.
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Air Data Sensor Fault Detection using Kinematic Relations

However, for upcoming and future aircraft one importantegs$jis the structural
design optimization. This can lead to a substantial deergashe weight of the
aircraft, which again leads to an increase in the aircraftiformance, including a

decrease in fuel consumption, a decrease of produced nudsanaincreased range.

Furthermore, these advantages also satisfy the newetaadniperatives toward an
environmentally friendlier aircraft.

Sensor fault detection for flight parameter measuremeResgelg. air data and
inertial measurements in modern aircraft is generallyead through the use of
typically three redundant measurement units (e.g. Air Raich Inertial Reference
Units (ADIRUS) [22]). Through a decision logic, also calleohsolidation process,
the correct measurement is selected and used by the EFCRP10]

Improving the FDD performance of the aircraft's EFCS alldeptimize the
aircraft structural design and performance, resulting ioveer operating cost and
decreased environmental impact [13], as explained above.

Another motivation for the development of analytical redancy for aircraft

parameter measurements is to extend the availability oéimsor measurements.

Instead of adding one or several new sensors, the optiordaigd “virtual” sensor,
i.e. analytical redundancy, gives the advantage no additiveight is required. This
results again in the same advantages as described in theys@aragraph.

These two main reasons indicate the need to create new al/&dD methods
and to close the gap between academic research and intappiation.

1.2 Antecedents and main contribution

In this work a model-based FDD approach is presented forahk fletection of
Air Data Sensors (ADS), in particular applied to the andlatack measurements.
Different methods have been investigated for mitigatiregyeffects of failing ADS,
such as: signal based diagnosis [16],[9], alternativeisgmsethods which are fault
tolerant [4], robust fault detection approaches [11], figdivays to operate without
traditional ADS[6]. Other solutions for the problem of ADERmonitoring dealing
with oscillatory faults are presented in [3],[2].

In this paper a method is introduced based on the generaikitie relations
of aircraft. By relating different available measuremdntthe ADIRU, it becomes
possible to perform FDD of the ADS. For this purpose, an adaphodification
of the EKF is applied to the kinematic equations. The KalmaieiHKF) and its
numerous modifications have been used in the field of aereggragineering since
it was developed in the 1960s [14]. In this way, the EKF hae &ksen used for
sensor fault detection [7].

The EKF was originally formulated for state estimation ofdynic systems
when the dynamics and measurement equations are nonlngdinearizable [17]
and has been widely used for sensor monitoring and fusidmigaes [1]. The
method that will be proposed here directly builds on thisigple, i.e., using the
redundant measurements available form the multiple ADIRlidsstate of the air-
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4 L. Van Eykeren and Q.P. Chu

craft is reconstructed by means of a adaptive version of aR #HKich was first

introduced by [19]. [15] proposes sensor fault detectioresiuating the innova-
tion sequence of the filter. This information can furtherenbe used to fuse the
measurements in such a way that failing sensors are detuotedolated.

1.3 Structure of the paper

In the next section the FDD problem to solve is introducedingi the system de-
scription and the fault scenarios. In Section 3 the prop&&dd method is described
and in Section 4 the simulation results are presented. Tiper@ads with a conclu-
sion in Section 5.

2 Problem Definition

2.1 System Definition

One of the key elements of this method is the use of the kinemagtiations that
describe the aircraft’'s behavior, i.e., the state recanstm is achieved using the
measurements of the Inertial Reference Unit (IRU). When dlae factors and the
rotational rates are used as inputs to the EKF, the stateeditbraft can be recon-
structed ([5]). The big advantage of this approach lies éfttiowing three points:

1. The method developed is valid over the whole flight envelofthe aircraft. This
means that no special measures need to be taken such astgainlsrg, etc.

2. Secondly, the method can be applied to any aircraft, wittayge modifications
(except for the location of the sensors). So the developdatadds general for
aircraft.

3. The method is insensitive to other types of faults, e.tuator faults, control
surface jamming, etc.

The aircraft kinematics can be represented by the followimginear system:

t) 1)

Wherex represents the state of the systenthe input andz the measurable output

of the systemw(t) andv(t) represent Gaussian white noise sequences and are the

measurement noise of respectively the measured input apdtoln this particular
case, the state description can be reduced to a five stagers\estd these states are
measurable:
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Air Data Sensor Fault Detection using Kinematic Relations 5
x=|Viasa B 6] 2)
u= [AXAyAqur]T (3)
zZ= [VTAS a B Q G]T (4)

WhereVas is the true airspeedy the angle-of-attack3 the side-slip anglep the
roll angle andd the pitch angleAy, Ay, andA; are the accelerations at the center
of gravity, p, g, andr the rotational rates. Note that a transformation is necgssa
to convert the measured load factors at the IRU to accedeimiat the center of
gravity. Furthermore, note th& = |. In fact, both the inputs to this system and the
outputs are measured from the aircraft and can be assumiabéwan the EFCS
for each modern aircraft. Although the position of an aificcan be considered a
part of the state, it is not required for the purpose of faeledtion of the ADS.
Having only these five states, will decreases the compuiatioad of the proposed
method. Furthermore, no wind influences are accounted fibrisnvork. However,
according to [20] it is possible to estimate the wind, givanmore precise estimate
of the state of the aircraft if necessary, at the cost of aelasgate vector and so
increased computational load.

According to [8], the kinematic state update equations addscribed by:

V = g(—sinf cosa cosB + singcosh sinf + cospcosh sina cosp)

+Axcosa cosp + Aysinf + Azsina cosp (5)
T g . )
a = Vcosp (cospcosB cosa + sinBsina)

1 ) .

+Vcos[3' (Azcosa — Agsina ) +q—tanf (pcosa +rsina) (6)
B = \g/ (siné cosa sinf + sinpcosB cosB — cospcosd sina sin3)

+\% (—Axcosa sinf + Aycosf — A;sina sinf) + psina —r cosa (7)
@ = p+qsingtand +r cosptand (8)
6 = qcosp—rsing ©)

which defined(x) andG(x) in Eq. (1).

2.2 Fault Scenario

The definition for the fault scenario follows from the ADDSBERproject [12]. All
faults investigated in this paper are related to the measemeof the angle-of-attack
o, however the method developed can be extended to the miagitdithe measure-
ments of the true airspe&gas and the side-slip angl@, without losing generality.
Different types of faults are considered, such as osaillpfaults, runaway faults
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and increased noise faults, of which examples are showrgirENote that in this
graph, and all other graphs in this paper, all values are alized to the operational
range of the measurements. Furthermore, also the time d@kisennormalized for

each simulation.

Oscilllation
0.15¢
= 01}
£
S5 005 W\N
~
S ol |
0 0.2 04 0.6 0.8 1
Time [-]
Runaway
1
g 05 /
S
AN
S
0 L L L L
0 0.2 04 0.6 0.8 1
Time [-]
Increased noise
I
£
S
~
S

Time [-]

Fig. 2 Different types of faults

Each of the different type of faults can occur on one or siemébusly on two
sensors. Whereas the fault detection of the case of only dimgfaensor is a trivial
task, the fault detection when two sensors fail at the same is less obvious with-
out incorporating any kind of analytical redundancy. Anrew of the different
faults investigated and there amplitudes is shown in Table 1
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Air Data Sensor Fault Detection using Kinematic Relations 7

Table 1 Fault Amplitudes (for the runaway, the rate is expressed asc@pege obyax, for the
extra noise the standard deviation of the noise as a percerftagg,9

Scenario Fault type Amplitude (% 0Ofnax)
1 Oscillation 1 sensor 4
2 Oscillation 2 sensors 11
3 Runaway slow 2 sensors 9
4 Runaway fast 2 sensors 33
5 Extra noise 1 sensor 2
6 Extra noise 2 sensors 14

3 FDD Approach

The general idea of the approach taken here is to fuse thedadumeasurements
based on the quality of the measurement. This is achievedtéyrfg the available
measurements using an EKF and comparing the state estimighethe redundant
measurements based on a so-callRétlaptation” [21], which will be explained in
Section 3.2.

For this purpose, first the basic principles of the EKF areflyrexplained, which
is essential in understanding the method. Then the senswoitaring algorithm is
addressed, which is used to perform the FDD.

3.1 Extended Kalman Filter

The standard EKF exists of two main steps. The first step camalted the predic-

tion of the estimated mean of the state of the system, andthisesystem dynamic
equations. Also the covariance of the estimate is predidtei$ step can be repre-
sented by:

Kigk—1 = Rk—1jk-1+ ttk [f(X(1)) +G(X(T))um(T)] dT (10)

k-1

Pik-1 = PP 1k 1P +Qq (11)

WhereX_1 is the estimated state at tirhe- ty, knowing the measurement at time
t =1t_1. Um(t) represents the measured input to the system. The nRriy,_;
represents the covariance matrix of the estimated statmat t tx_1. The matrix
@, is the discretized version of the Jacobian mafjixboth defined as follows:

Oy = eFkAt _ i FI? (nA|t)n (12)
oo O(f(x)+G(x)u)
with: Fk = T X:)”(k‘k (13)
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8 L. Van Eykeren and Q.P. Chu
and from [18] we can approxima@y as:
Qa(k) = MQrg. (14)
with: [y = ( /k quakm> G (%) (15)

whereQ = E [w(t)w' (t)] represents the input noise covariance matrix.
The second step is the measurement update. It is repressnted

-1
Kk = PygeaH (HPKHHHT n R) (16)
Kk = Xigk—1 + Kk (zm —h(Xige-1)) (17)
Pk = [| — KicH] Pi_1 [1 = KicH] " + KRK (18)

WhereK is the Kalman gainH = 9! =1, andR = E [v(t)v' ()] the measure-

ment noise covariance matrix. Furthermore, from thesetemsawe can define the
innovation azny, — z and the innovation covariance matrix as:

Ve =HPy_1H' +R (19)

This standard EKF can be applied to the system describedditio8e2.1 with the
triple measurement of the angle-of-attamkaugmented in the measurement vec-
tor. Note that is was chosen for this approach in favor of acdeed filter for each
ADIRU, as to reduce the computational load. In this casemalsition was chosen
with a double runaway fault, i.e., sensor 1 and 2 experiette@dame runaway fault
att = 0.03. In Fig. 3 the result of the estimated angle-of-attackqan be seen com-
pared to the three different measurements. As can be notiteastimated value
of the angle-of-attack is in between the measured valuds.iJogical, as the as-
signed variances to the different sensors, through thexxRtiare equal. Therefore,
each measurement of the same variable is equally weightédebfiiter. From the
figure it is clear that it cannot be decided on this informatidhich sensor is failing,
and which sensor is providing a correct value. In this we fintbéivation to modify
the algorithm such that FDI becomes possible by monitotiegerformance of the
Sensors.

3.2 Adaptive Fusion

Instead of using all redundant measurements as separaeatiens in an adaptive
EKF [23], here is chosen to fuse the redundant measuremastsiion their per-
formance. For this, a certain metric is introduced whichrespnts the performance
(fault-free/fault) of the sensor.

The theoretical innovation covariance of the EKF is repmése by (19). This
value can also be estimated online:
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Fig. 3 & compared with measurements for runaway fault of sensor 1 and 2| (egitavalue),
regular EKF

A 1k R R
VeK:N (Zm —2)(zm —2)"
i=kTN+1

(20)

whereN represents the moving window width. In the case a sensa, fail each
diagonal value, the estimated value will exceed the thealetalue, i.e.:

Vq‘(u) = [Hpk“"lHT] (i) R (21)

where the subscript . ;) means the value on thth diagonal. Now one can intro-
duce the diagonal scale factor mat8ifk) ([21]) such that:

N T N
Ve = [HP"““lH }(i,i)+s<(i’i>R<l’l) 22)
And therefore the values &k) can be calculated as:
_ [\ _ T —1
S = (V%,i> [HPMHH Lm) R} (23)

In the fault free case, the matr$(k) will approximate the unity matrik, in a faulty
case, the diagonal value related to the failing sensor mdlieéase and become bigger
than 1. To perform the fusion of the redundant measuremtén@scale factors are
calculated for the different sensors. Then a weighted gecoathe three measure-
ments is taken using the reciprocalsfk) as weights:
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1 31
L S &9

As can be noticed, in the case one or two sensors give a badireesnt, the related
value ofS(k) will increase and the faulty measurement will be given a loweight.
As will be shown in the results, the scale factor of the fautigasurement is much
larger than 1, s&k) > 1, and as such the faulty measurements will have almost no
influence onac. The detection and isolation signal will then be based ontkdre
the value ofS(k) will exceed a preset threshold. Another approach would seta
threshold, and disregard any measurement with a scale fwotee this threshold.
Note that the method as presented here is limited to thetimiedf measurement
faults related to the signals iy as defined in Eq. (4). It is assumed that the input
measurements are fault-free.

4 Simulation Results

The method described above is applied to the system deddrilgection 2.1. Sim-
ulations were run on the ADDSAFE benchmark. Two main tuniatggmeters are
required to be determined for the application of the filterstrof all, there is the
time windowN, over which the estimate of the innovation covariance isudated.
This parameter depends on the system dynamics and theeéalgtection perfor-
mance. However, setting this parameter is trivial, and rseduoy trial and error. The
second tuning parameter is the thresh®léhtroduced in the previous paragraph.
This parameter can be set based on the amplitude of the aésidifault-free cases.
Although the matrice® andR can be considered as tuning variables, they are re-
lated to the performance of the sensors measuring the ingud@tput vectors and

z. Therefore, both matrices should be based on the real spadormances which
are considered to be known.

First, the method was applied to the same simulation as showig. 3. The
result is shown in Fig. 4. As can be noticed, the estimatedw follows the correct
measurementrs and a; and a, are discarded. Fig. 5 shows the valuesSgf i =
1,2,3. The scale factors related to sensor 1 and 2 clearly showcagase in value
after the fault occurred. Other typical results for theetfiéint scenarios described in
Table 1 are shown in Figs. 6, 7, 8 and 9.

A simulation campaign was set-up to test the proposed FDhoaetThis cam-
paign existed of fault-free simulations in which differemaneuvers were performed
to test the false alarm rate. These simulations includedesu@itch up maneuvers
with high angle-of-attack attitudes and lateral maneuirestsiding substantial side
slipping of the aircraft. The introduction of faults ocoegrduring simulations of the
cruise condition of the aircraft, for the faults presentedable 1.

The simulation campaign involved changing the followinggmaeters of the sim-
ulations: the flight parameters (altitude, velocity), gedrc parameters (mass, posi-
tion of center of gravity), uncertainties in the measuretmémass, velocity, center
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Fig. 4 & compared with measurements for runaway fault of sensor 1 and 2| (egitavalue),
EKF with adaptive fusion
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Fig. 5 & for the different sensors for runaway fault of sensor 1 and 2 (efqué value), EKF
with adaptive fusion

of gravity, altitude) and the aerodynamic coefficients. thikse parameters were
adjusted in two different ways: using the extreme valuelsu@tertainties on the
minimum or maximum value at the same time) and using MontéoGamnulations.
In this way, a large part of the flight envelope of the aircvedis covered.

In Table 2 an overview is given of the detection performant¢éhese simu-
lations, consisting of 252 simulations (152 parametridgataims and 100 Monte
Carlo variations) for each scenario. In this table, “DTRir&ts for “Detection Time
Performance” and is expressed in function of the maximaladt detection time
for that type of fault. As can be noticed, for the differenilfescenarios considered,
a 100% fault detection performance was achieved, i.e., rssedi detections and
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Fig. 6 & compared with measurements for oscillatory fault of sensor 3, EKlr adaptive fusion
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Fig. 7 S for the different sensors for oscillatory fault of sensor 3, EKEhveidaptive fusion

no late detections. The low values for scenario 1 and 5 araaldéferent maxi-
mum allowed detection times. It can be noted that the alesaletection times for
both one or two sensors failing were in the same magnituderoird., the absolute
detection time is not influenced by the amount of sensors gomeo) that are fail-
ing. Furthermore, no false alarms were obtained duringithalation of fault-free
maneuvers. Here only results are presented for the detesfifaults in the angle-
of-attack sensors. However, it should be noted that thisrR€hod can be extended
to the other variables in the measurement veztoithout losing any functionality.
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Fig. 9 S, for the different sensors for “noise” fault of sensor 1 and 2, EKthwdaptive fusion

As these types of faults can be detected and accounted fhelsatme methodology,
it can be stated that the fault detection of one specific blis insensitive to other
faults. The detection of measurement faults of the varg@abiehe input vectou,
being the accelerations and rotational rates, is not cersitlin this work, and so
these measurements are assumed to be fault-free, i.e.pFblelse measurements
is covered by a different methodology.
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14 L. Van Eykeren and Q.P. Chu

Table 2 Summary of obtained simulation results

# Detection DTP DTP DTP
(%) mean max min
100 0.0063 0.0068 0.0062
100 0.16 0.18 0.14
100 0.41 095 0.32
100 0.16 0.20 0.13
100 0.0035 0.0042 0.0030
100 0.06 0.06 0.06

o Uh WN -

5 Conclusion

This paper presented an algorithm based on an adaptive oattifi to the EKF
that is capable of providing mathematical redundancy fer glarpose of sensor
fault detection. The main advantages of this method arentthepiendence from the
dynamics of the aircraft and it's low tuning complexity. brct, the only aircraft spe-
cific knowledge required is the exact location of the IRU dreldensor performance
characteristics. Because only kinematic and no dynamicgtand moments) rela-
tions are used, no special measures need to be taken to matetitod valid over
the whole flight envelope of the aircraft. This results in apew tuning complex-
ity, limited to setting a time window and one threshold. Rermore, it should be
noted that this method can be extended to other air data mezasnts, which will
be investigated in future work.

References

1. Allerton, D.J., Jia, H.: A Review of Multisensor Fusion Methtmdpes for Aircraft Navigation
Systems. Journal of Navigati&8(03), 405 (2005). DOI 10.1017/S0373463305003383

2. Berdjag, D., Cieslak, J., Zolghadri, A.: Fault diagnosis em@hitoring of oscillatory failure
case in aircraft inertial system. Control Engineering Pra@®(&2), 1410-1425 (2012). URL
http://lwww.sciencedirect.com/science/article/pii/S0385112001682

3. Berdjag, D., Zolghadri, A., Cieslak, J., Goupil, P.: Faudtattion and isolation for redun-
dant aircraft sensors. In: 2010 Conference on Control and-Faldtant Systems (SysTol),
1, pp. 137-142. leee, Nice, France (2010). DOI 10.1109/SMS7010.5675993. URL
http://ieeexplore.ieee.org/lpdocs/epicO3/wrapper.aimPmber=5675993

4. Cervia, F., Denti, E., Galatolo, R., Schettini, F.: AirtB&omputation in Fly-By-Wire Flight-
Control Systems. Journal of Aircradt3(2), 450-455 (2006). DOI 10.2514/1.16270. URL
http://arc.aiaa.org/doi/abs/10.2514/1.16270

5. Chu, Q.P., Mulder, J.A., Sridhar, J.K.: Decomposition of Aaft State and Parameter Esti-
mation Problems. Proceedings of the 10th IFAC Symposium on Systemtification, Vol. 3,
Danish Automation Society, Copenhagen, Denmark pp. 61-66H199

6. Colgren, R., Frye, M., Olson, W.: A Proposed System Architecfor Estimation of Angle-
Of-Attack and Sideslip Angle. In: AIAA Guidance, Navigatiand Control Conference, pp.
743-750. AIAA (1999)

427

WeCT1.3



WeCT1.3

Air Data Sensor Fault Detection using Kinematic Relations 15

7. Del Gobbo, D., Napolitano, M., Famouri, P., Innocenti, Experimental application of ex-
tended Kalman filtering for sensor validation. IEEE Transastion Control Systems Tech-
nology9(2), 376-380 (2001). DOI 10.1109/87.911389

8. Duke, E.L., Antoniewicz, R.F., Krambeer, K.D.: Derivatiand Definition of a Linear Aircraft
model. Tech. rep., NASA (1988)

9. Eubank, R.D., Atkins, E.M., Ogura, S.: Fault Detection d&adl-Safe Operation with a
Multiple-Redundancy Air-Data System. In: AIAA Guidance, Ngation, and Control Con-
ference, August, pp. 1-14. Toronto, Canada (2010)

10. Favre, C.: Fly-by-wire for commercial aircraft: the Aidbaxperience. International Journal
of Control59(1), 139-157 (1994)

11. Freeman, P., Seiler, P., Balas, G.J.: Robust Fault Detdoti@ommercial Transport Air Data
Probes. In: 18th IFAC World Congress. IFAC, Milan, Italy (2011)

12. Goupil, P., Marcos, A.: Advanced Diagnosis for Sustain#tiight Guidance and Control:
The European ADDSAFE Project. SAE Technical Paper 201284 (2011). DOI
10.4271/2011-01-2804

13. Goupil, P., Marcos, A.: Industrial benchmarking and evianeof ADDSAFE FDD designs.
In: 8th IFAC Symposium on Fault Detection, Supervision and gadéTechnical Processes.
Mexico City, Mexico (2012)

14. Grewal, M.S., Andrews, A.P.: Applications of Kalman Hiligy in Aerospace 1960 to the
Present. Control Systems Magazine, IERE3), 69-78 (2010)

15. Hajiyev, C.: Testing the covariance matrix of the innaMatsequence with sensor / actuator
fault detection applications. International Journal of Coinénd Signal Processing4(9),
717-730 (2010). DOI 10.1002/acs.1160

16. Houck, D., Atlas, L.: Air Data Sensor Failure Detection: 1ith Digital Avionics Systems
Conference, May 1979. AIAA/IEEE/SAE (1998)

17. Jazwinski, A.H.: Stochastic Processes and Filtering Thedtgademic Press, New York
(1970)

18. Lombaerts, T.J.J.: Fault Tolerant Flight Control, A PhysMaldel Approach. Phd thesis,
Delft University of Technology (2010)

19. Mehra, R.K., Peschon, J.: An Innovations Approach to Haetéection and Diagnosis in Dy-
namic Systems. Automaticg 637—-640 (1971)

20. Mulder, J.A., Chu, Q.P., Sridhar, J.K., Breeman, J.H., LabanNon-linear aircraft flight
path reconstruction review and new advances. Progress in Asm®srience85(7), 673—
726 (1999)

21. Soken, H.E., Hajiyev, C.: Fault Tolerant Attitude Estimatfor Pico Satellites Using Ro-
bust Adaptive UKF. In: 8th IFAC Symposium on Fault Detectionp&wision and Safety of
Technical Processes. IFAC (2012)

22. Traverse, P., Lacaze, |., Souyris, J.: Airbus fly-by-wirdotal approach to dependability. In:
Proceedings of the 18th IFIP world computer congress, pp. 21 ®ulouse, France (2004)

23. Van Eykeren, L., Chu, Q.P., Mulder, J.A.: Sensor Fault &&te and Isolation using Adaptive
Extended Kalman Filter. In: 8th IFAC Symposium on Fault DetattSupervision and Safety
of Technical Processes, pp. 1155-1160. IFAC, Mexico City, ®ex2012)

428



