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Abstract This paper presents a fully autonomous system for a quadrotor unmanned

aerial vehicle (UAV) that employs the visual measurements to perform automatic

landing task on a specific landing platform. Basically, there are two main control

tasks discussed in this paper. The first task refers to the auto-land mission that tracks

the platform horizontally and performs the vertical landing. It was accomplished by

using the red blob tracking technique. The second task involves the robust motion

tracking that activates the recovery action once the target is lost so that the vehicle is

still able to hover steadily. It was realized by implementing the features accelerated

from segment test (FAST) technique with the pyramidal Lucas-Kanade algorithm to

detect the local feature in the image and compute the optical flow. From the visual

results obtained, the position and velocity of the vehicle were estimated using a

nested Kalman-based sensor fusion . The state estimation was validated in a series

of experiments using a CNC milling machine. Lastly, the control architecture for

automatic landing system was formed with the classical PID controller and the flight

test proved the success of the proposed system.

1 Introduction

The recent development of the UAV system has motivated the growth of the cost

effective inertial sensors and accurate navigation system. These advances are the

key determinants of the accomplishment of the UAV mission. For many years, the

successes of manned and unmanned aircraft navigation have been achieved using

the standard conventional navigation sensors, such as GPS for providing position

information, IMU for measuring orientation and specific forces, and pressure sen-
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sor for giving altitude measurement. Other modern sensors, like ultrasound, laser

range finder, camera, etc., were also introduced to replace or fuse with the conven-

tional sensors to perform some specific tasks. In fact, our particular interest involves

a quadrotor UAV landing on a target platform. Thus, the GPS navigation technique

is not reliable for this particular purpose which required high accuracy in position-

ing. An alternative way of measuring position is based on computer vision. Many

computer vision techniques using camera have been implemented in ground robots

to improve their autonomy and adaptability to operate in unstructured environment.

In comparison with typical sensors, visual sensors are passive, i.e. do not emit any

external signals, small, lightweight, and can provide rich information about aircraft

self-motion and surroundings structure [5], [7], [8] . Hence, computer vision can

be used for GPS-denied indoor, urban navigation, obstacle avoidance and accurate

landing purposes. In this paper, Section 2 described a general idea on how an au-

tomatic landing of a quadrotor can be performed using visual servoing techniques.

A new approach that combined two computer vision techniques was introduced to

guarantee the success of the landing process and ensure the safety of the quadrotor

when the target is not in the field of view (FOV). The algorithms of those techniques

were further discussed in Section 3. Once we have obtained the visual information,

the states of this flying robot were estimated using a Kalman-based sensor fusion

method from [3] which was improved by fusing an additional altitude measurement

from a Sonar sensor and it was presented in Section 4. The validation of the results

from state estimation was shown in Section 5. In Section 6 the controller design for

automatic landing tasks was proposed and also the real-time implementation of the

algorithms was described in Section 7. Finally, a conclusion was drawn in Section

8 based on the results and discussions from previous sections.

2 Design Solution

An overview of the design solution using computer vision for automatic landing

algorithm is described in this section. It is designed based on several logical scenar-

ios that could happen during the landing process. In general, the proposed design

solution for the project is illustrated in Fig. 1.

When the autopilot landing mode is activated, the quadrotor is guided by GPS

Navigation Mode to move to a way point near and above the landing platform. Then

the target searching mode is triggered to capture images continuously using onboard

camera and perform red blob detection to search for the landing platform. As long

as the platform is located in the FOV of the camera, blob tracking is carried out in

order to obtain its position relative to the platform and the quadrotor then descends

slowly. Until an altitude less than 20 cm and the vehicle is hovering closely to the

center of the platform, it will land upon it. This is a perfect landing solution and can

be easily accomplished by blob detection and tracking method.

However, when there is a small disturbance, such a gust or an airflow generated

by itself, during the landing process, the vehicle will be forced away from the plat-
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Fig. 1 Design Solution of

An Automatic Landing Algo-

rithm
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form. Then the target is not in the FOV of the camera and the state information of

the aircraft will be lost. The solution for this problem is to use or detect the local

features in the image, such as corners, and perform corner tracking to compute the

optical flow. Once we have the optical flow, the horizontal velocity of the vehicle

can be estimated. Then the velocity feedback enables the quadrotor to hover and

climb slowly until it detects the target again. As a safety precaution, the landing au-

topilot mode will be switched back to GPS navigation mode and the quadrotor UAV

will be repositioned to the starting way point where the landing autopilot mode was

activated if the relative height is above 2 m. Lastly it will perform the landing pro-

cess using the blob tracking method. It is called as a robust motion tracking due to

the fact that it does not depend on the visibility of the platform in the images but it

relies on the local features in the current image.

3 Computer Vision Techniques

The proposed computer vision techniques consist of a target detection and a robust

motion detection. Both methods are working in parallel in order to make sure that

the visual information is always available for the state estimation of the vehicle

during the landing process. The results of the state estimation are used by the visual

servoing to perform the auto-land mission.
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3.1 Target Detection and Tracking

In this project, it is essential to determine the position of the quadrotor relative to the

landing platform. Therefore, a visual cue can be placed at the center of the landing

platform to allow the computer vision to detect it based on images taken by the

onboard camera and then compute its relative position. The closed-loop control will

track the target using this relative position and land upon the platform.

3.1.1 Blob Detection and Tracking

A blob is a commonly-used object for target detection and tracking in computer vi-

sion. Due to the simplicity and feasibility, a red-colored blob with a solid circular

shape of a radius of 135 mm is designed as an object of the target detection. For

obtaining the relative position, an algorithm of red blob detection and tracking was

developed. Basically, the goal of this algorithm is to eventually calculate the geo-

metric center of the red blob. Thus, the following steps were taken to detect the red

blob and compute its centroid:

1. Extraction of the Blue Green Red Color Mode (BGR) values of every pixel. A

BGR image captured by a camera is represented by a grid of numbers or pixels.

Each pixel is actually a vector with three parameters which have a value of 0 to

255 (8-bit integer) as shown in Eq. 1.

Image =







(B,G,R)11 (B,G,R)12 . . .
(B,G,R)21 (B,G,R)22 . . .

...
...

. . .






(1)

2. Thresholding/ Conversion to a binary image. After getting these parameters, the

BGR image can be easily converted to binary image by giving a value of one for

which a certain condition is satisfied and vice versa. This condition defines which

pixels are red. Theoretically, a pure red pixel is described by [0,0,255] in BGR

format. However, searching for pure red pixel is not practical as the change of

light intensity and the presence of noise will result in the change of this absolute

value. Hence, some tolerances need to be given for accepting the red-like object.

In this case, the condition of selecting the red pixel is presented in Eq. 2.

R > T +B and R > T +G (2)

where T is the tuning parameter. If T is large, only the pure red is accepted and

vice versa.

3. Advanced morphological transformation of the binary image. Since the thresh-

olding is a subjective process, the resulting binary image may contain unwanted

noise. Hence, one of the advanced morphological transformations, i.e. the open-
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ing morphology can be performed to remove those noise particles. It is obtained

by the erosion of an image followed by the dilation process.

4. Labeling of the connected parts of a binary image. This step uses an algorithm

based on a paper from [2] to extract the contour of the blob. The advantage of

implementing this approach is that it scans a binary image only once and thus it

is computationally effective.

5. Detected Blob Centroid Calculation. The centroid of a blob is computed using

the detected blob area as shown in Eq. 3. The advantage of computing the area

centroid is that when only part of the circle appears in the FOV of the camera it

also allows the vehicle to know the best estimated relative position between the

target and itself.

x =
total moments in x−direction

total area
=

∑n Anxn

∑n An

y =
total moments in y−direction

total area
=

∑n Anyn

∑n An

(3)

3.2 Robust Motion Detection and Tracking

As mentioned in Section 2, disturbances can cause the target out of the FOV of the

camera during the landing process. Therefore, it is necessary to find out another way

to obtain the state of the vehicle in order to feed it into the control loop. A robust

motion detection and tracking is introduced in this section aiming for obtaining the

velocity of the rotorcraft even without the presence of the target platform in the FOV

of the camera.

3.2.1 Features Detection and Tracking

In section 3.1.1, a specific target is designed for platform tracking purpose. Without

seeing the target, the questions on what is the kind of the local features can be trusted

and how to detect and trace a selected good feature were addressed. In fact, corners

were considered intuitively as the good features and were used in robust motion

tracking as they are unique and contain enough information to be picked out from

one frame to the next.

Furthermore, the selection of features detector depends on the mission tasks. In

this project, features detection and tracking are performed in real-time processing.

Therefore, the processing speed is the top priority followed by the quality of the

features detected. A comparison of the performance between different feature de-

tection algorithms1 has been done and it was used as a reference for the selection.

1 Eugene, K.: Comparison of the OpenCVs Features Detection Algorithm (2012). URL

http://computer-vision-talks.com/
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Fig. 3 Comparison between GFTT and FAST

FAST algorithm, by its name, has the fastest average detection time if compared to

other features detectors. Regarding the quality of this features detector, its average

feature point drift is low.

According to [6], a point of interest or a pixel P in Fig. 2 is tested by examining

a circle of 16 pixels surrounding this point at a fixed radius. If at least 12 contiguous

pixels have the intensities above or below the intensity of point p by some threshold,

this point of interest can be considered as a good feature, i.e. a corner. Furthermore,

the test is optimized by first examining the pixel 1, 9, 5 and 13. The candidate pixels

can be rejected quickly if two of these four testing pixels do not satisfy the condition.

In order to validate its performance, a test has been carried out to compare its

performances with a well-known Shi and Tomasi corner detection (GFTT). To make

them comparable, the quality level of the GFTT and the threshold value of FAST

were tunned in such a way that the numbers of detected corners from both methods

were almost the same. After that, the processing speeds were measured and the

detected features were compared. In Fig. 3, we can observe that these two methods

detected almost the same corners. However, FAST can achieve approximately 30×

faster than GFTT, i.e. it required only 0.837 ms while GFTT needed 29.066 ms.

Hence, FAST is preferable as a corner detector for the real-time implementation.

In this project, we are interested to know the motion of the quadrotor based on a

sequence of images taken by an onboard camera. Between two subsequent frames,
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Automatic Landing System of a Quadrotor UAV Using Visual Servoing 7

a pattern of apparent motion of the local features caused by the relative motion

between the camera and the features can be observed and it is called the optical

flows. To compute the optical flow, a famous gradient technique, Lucas-Kanade

(LK) method, is used to derive the local information from a small window sur-

rounding each of the points of interest [4].

4 State Estimation Using Sensor Fusion

From the result of the computer vision, the position of the vehicle relative to the plat-

form was computed from the blob tracking while the optical flow was also calculated

from the corner tracking. Now, those measurements in pixel have to be transformed

into measurements in physical unit. It was done using the information from mul-

tiple sensors and camera calibration. The camera calibration was carried out using

a method proposed by [9] to solve for the camera intrinsic parameters, i.e. the fo-

cal length in pixel and the correction for the image center, and obtain the distortion

model parameters using [1] model.

4.1 Position Estimation

The relative position was estimated using a simple pinhole camera model as shown

in Fig. 4. Focal length in pixel, f was obtained from the camera calibration and

height, Z was measured using Sonar sensor. After the relative position, xi in pixel

was computed from the blob tracking, the horizontal position of the vehicle in the

real world relative to the blob, Xo can be calculated using Eq. 4.

Fig. 4 Pinhole Camera Model
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8 H.W. Ho and Q.P.Chu

xi = f
Xo

Z
(4)

4.2 Velocity Estimation

Since quadrotor UAV is an under-actuated system, its horizontal motion is generated

by the pitch and roll angular displacements. Therefore, a single camera mounted on

the body of the vehicle measures the optical flow (ẋOF , ẏOF ) from both translational

(TOF ) and rotational (ROF ) motion as presented in Eq. 5. The relation of the optical

flow with the vehicle motion can be derived in terms of body velocities (Vx,Vy,Vz)

and angular rates (Ωx,Ωy,Ωz) as given in Eq. 6. x and y are the corner coordinates

in body x and y axes.
[

ẋOF

ẏOF

]

= TOF + ROF (5)

[

ẋOF

ẏOF

]

=
1

Z

[

− f 0 x

0 − f y

]





Vx

Vy

Vz



+

[

xy
f

− f − x2

f
y

f + y2

f
−

xy
f

−x

]





Ωx

Ωy

Ωz



 (6)

In Fig. 5, the quadrotor rotates to move to the left side. At the instant of rotation,

it measures a certain amount of optical flow and this causes the velocity estimated

in an opposite direction. As a result, it will in turn cause a problem in the controller

action. For instance, the velocity which is used for motion damping in the controller

will eventually act as an accelerator.

4.2.1 Kalman-based Sensor Fusion

To overcome this problem, a kalman-based sensor fusion was proposed to elimi-

nate the rotational optical flow and estimate the horizontal velocity. From [3], the

Fig. 5 Rotation Effect on

Optical Flow
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Automatic Landing System of a Quadrotor UAV Using Visual Servoing 9

camera-IMU fusion was introduced to solve structure from motion problem. The

3-nested Kalman Filter (KF) was modified to fuse camera, IMU and Sonar sensors

to improve the accuracy of the horizontal motion estimation. Fig. 6 presented the

overview of a 3-nested KF where the estimated states for each step were used as

the measurements for the following step. The first KF (KF I) was used for filtering

the noise of the visual measurements. Furthermore, the second KF (KF II) fused the

camera with IMU to compensate the rotational effect on optical flow. Lastly, the es-

timated translational optical flow was used in the last KF (KF III) for the horizontal

velocity estimation using altitude measurement from Sonar and accelerations from

IMU.

The discrete-time state space representation of the 3-nested KF is presented in

details in Table 1. The dynamics of the KF I was modelled by using the Euler method

and the brownian process. For the KF II, besides using the brownian process for

its dynamics, the observation model was derived from Eq. 6 by replacing the first

term in the equation with a vector [ ˆ̇xOFtrans , ˆ̇yOFtrans
]T . Lastly, the KF III refers to

an extended KF due to the nonlinear obvervation model which was obtained by
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Fig. 6 Kalman-based Sensor Fusion for Rotation Compensation of the Optical Flow and Estima-

tion of the Horizontal Velocity
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equaling the first term from both Eq. 5 and Eq. 6 while its dynamic model was also

obtained using Euler method.

Table 1 Kalman-based Sensor Fusion

KF I KF II KF III

KF

Model
X1k+1

= A1k
X1k

+w1k

Z1k+1
= C1X1k+1

+ v1k+1

X2k+1
= A2k

X2k
+w2k

Z2k+1
= C2X2k+1

+ v2k+1

X3k+1
= A3k

X3k
+B3k

U3k
+w3k

Z3k+1
= h

[

X3k+1

]

+ v3k+1

State

vector
X1 =

[

x̂, ŷ, ˆ̇xOF , ˆ̇yOF

]T X2 = [Ωx,Ωy,Ωz,
ˆ̇xOFtrans , ˆ̇yOFtrans

]T
X3 = [Vx,Vy,Vz,Z]

T

State

Matrix

A1 =









1 0 ∆ tk 0

0 1 0 ∆ tk
0 0 1 0

0 0 0 1









A2 = I5×5

A3 =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 −∆ tk 1









Input

Vector

- -

U3 = [Ax,Ay,Az]
T

Input

Matrix

- -

B =









∆ tk 0 0

0 ∆ tk 0

0 0 ∆ tk
0 0 0









Measurement

vector
Z1 = [xm,ym,

ẋOFm , ẏOFm ]
T

Z2 = [ ˆ̇xOF , ˆ̇yOF ,
Ωxm,Ωym

,Ωzm]
T

Z3 =
[

ˆ̇xOFtrans , ˆ̇yOFtrans
,Z
]T

Output

Matrix
C1 = I4×4

C2 =















x̂ŷ
f

− f − x̂2

f
ŷ 1 0

f + x̂2

f
−

x̂ŷ
f

−x̂ 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0















h
[

X3k+1

]

=





− f
Z

Vx +
x
Z

Vz
− f
Z

Vy +
y
Z

Vz

Z





w1, w2, w3 are the state noise vectors with covariance matrices Q1, Q2, Q3 respectively.

v1, v2, v3 are the measurement noise vectors with covariance matrices R1, R2, R3 respectively.
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Automatic Landing System of a Quadrotor UAV Using Visual Servoing 11

5 Validation for the State Estimation

It is a challenging task to validate the estimated position and velocity with a reliable

source of reference. In fact, the conventional way to obtain the states of the UAV,

i.e. using GPS, cannot be implemented for the validation because the noise of the

GPS measurement can cause an error up to 10 m while we expected the camera can

produce centimeter or even milimeter accuracy. Besides, validation using external

cameras is not wise as it is also using the similar approach, i.e. the computer vision

techniques to compare both results. Hence, an accurate source of reference with

different calculation approach is needed to validate the estimated velocities. Thus, a

validation method using computer numerical control (CNC) machine was proposed

due to the fact that it has been widely used in precision engineering to produce

highly accurate and precise movement. Therefore, the quadrotor can be attached

to it and moved with the known position and velocity references. The setup of the

validation test is presented in Fig. 7. The CNC machine used in the test is Superior

1600 which has a positioning speed of 4000 mm/min, accuracy of repetition of +/−
0.02 mm, and maximum positioning error less than 0.1 mm/100 mm. However, the

drawback of using this CNC machine is that the real-time speed information is not

available. In order to command the machine, a movement path needs to be designed

in XpertMill software to move the quadrotor to a specific position with a designated

speed.

Fig. 7 Setup of the Validation

Test for State Estimation
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12 H.W. Ho and Q.P.Chu

5.1 Position Validation

A test using CNC machine was carried out to check the accuracy of the estimated

position. The movement path designed in XpertMill as shown in Fig. 8 moved the

quadrotor to a distance of 50 mm, 100 mm, and 150 mm from the origin where a red

blob was placed exactly underneath the onboard camera.

The relative position of the vehicle was estimated using Eq. 4 and compared with

the ground truth as shown in Fig. 9. It is clearly seen that the position estimated from

the result of the computer vision technique can achieve milimeter accuracy. There-

fore, it validated that the proposed method is feasible to deliver accurate position of

the quadrotor relative to the landing platform.

Fig. 8 Movement Path for

Position Validation (Side

View)
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Fig. 9 Comparison of The Distance Estimated From Blob Tracking And The Ground Truth
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Automatic Landing System of a Quadrotor UAV Using Visual Servoing 13

5.2 Velocity Validation

Besides position validation, the body velocity estimated using Kalman-based sensor

fusion from the optical flow also needs to be validated. There are two movement path

designed for this purpose: 1. Rectangle 2. Triangle

5.2.1 Rectangular Movement Path

The easiest way to validate the estimated body velocities is to use CNC machine

to move the quadrotor in a rectangular path as shown in Fig. 10. In this figure, the

red dot represents the starting and end point. Besides, the speed has a designated

value of 2000 mm/min (33.33 mm/sec) and the test was performed for two rounds

in order to test the consistency of the estimated results.

Fig. 11 presented the estimated velocities in body-x and body-y axes of the

quadrotor moving at 2000 mm/min. It is clearly seen that both estimated veloci-

ties from the optical flow can actually match well to the machine velocity and the

consistency is extremely good as the quadrotor accelerated at the beginning, reached

the constant velocity, and lastly decelerated to nearly zero. There were two spikes

in the figure, one at the beginning and another one in the end, generated by the ma-

chine when it moved from its zero reference point to the starting point of the path.

Thus, it can be ignored as it is irrelevant to the test. Hence, we can conclude that

the horizontal body velocities estimated using optical flow with Kalman fusion are

accurate and precise.

Fig. 10 Rectangular Move-

ment Path (Top View)
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Fig. 11 Estimated and Machine Velocities in Body Axes of the Rectangular Movement path (2000

mm/min)

5.2.2 Triangular Movement Path

Additionally, it would also be interesting to see what the estimated horizontal ve-

locities will be when the quadrotor moves not just along its body axes. From this

idea, a triangular movement path as presented in Fig. 12 was designed to examine

the estimated results.

Fig. 13 presented the estimated velocities in body-x and body-y axes of the

quadrotor moving at 2000 mm/min. As we expected, when the quadrotor was moved

in the hypotenuse of this triangular path, it measured the components of the machine

velocity in body axes. Since the movement path is a right isosceles triangle, the es-

timated velocities in body axes should be the cosine of fourty-five degree of the

machine velocity. The results are surprisingly good and the horizontal velocities of

the quadrotor can be accurately estimated as we expected.

Fig. 12 Triangular Movement

Path (Top View)
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Fig. 13 Estimated and Machine Velocities in Body Axes of the Triangular Movement path (2000

mm/min)

6 Controller Design

Since a quadrotor UAV operating with four actuators has six degree of freedom in

flight, it is thus considered as an under-actuated vehicle. Designing a controller to

perform a particular task for this kind of vehicle is a challenging task. Moreover, it is

recognized as dynamically unstable meaning that a closed-loop control is necessary.

6.1 Visual Servoing

The feedback control technique using computer vision is called visual servoing. In

this case, indirect visual servoing is preferable because the visual information is

used and obtained in the outer loop so that it allows a lower sample rate for visual

control.

Furthermore, a more detailed control architecture designed to achieve the goal of

this project is illustrated in Fig. 14. It mainly consists of two nested control loops

in the design, i.e. inner and outer loops. The inner loops are responsible for attitude

and angular rate control while the outer loops are in charge of position and velocity

controls. It can be observed in the figure that the outer loops are further divided into

horizontal and vertical control loops. In addition, for safety and other purposes, the

control design in the outer loop is made so that the pilot can always intervene the

autopilot control by using a joystick input. State estimation using sensor fusion, as

discussed in Section 4, is also presented because it is needed to coorperate with the

control strategy.

In this proposed control architecture, the preferred control method is the clas-

sical PID control as it is not only recommended by many literatures and also it is

simple to be implemented as well as it can perform well. The PID control structure
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Fig. 14 Control Architecture for Autonomous Landing System

in its complete form consists of three components, i.e. Proportional, Integral, and

Derivative parts as presented in Eq. 7.

u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t) (7)

where Kp, Ki, Kd are the PID gains, e is the error, t is the instantaneous time, and τ is

the variable of integration which values computed from starting time to the current

time.

The inner control loops in the control achitecture contain the attitude control loop

and angular rate control loop. The first one calculates an angular rate setpoints based

on the errors of the estimated attitudes and the attitude setpoints.

The attitudes are estimated from the fusion of gyroscope and accelerometer mea-

surements. This fusion of inertial sensors is used to correct for the biases during

the initialization of the flight. During hovering, the attitude setpoints are assigned to

zero values. Those computed angular rate setpoints are tracked with a PI controller

in the angular rate control loop. Then this control loop controls the motor with the

proportional controllers in the inner loop.

The outer control loops are divided into the horizontal and vertical control loops.

The horizontal control loop performs the hovering and the target tracking using

visual servoing while the vertical control loop also supports the hovering and carries

out the landing process using the feedback of the Sonar measurement. Basically,

the error between the desired position, xsp and the estimated position, xm, and the

error between the desired velocity, Vsp and the estimated velocity, Vm of the vehicle

are feedback to make sure that the desired position is tracked and the motion of

the quadrotor is damped correspondingly. Therefore, this controller action can be

interpreted as a PD controller as presented in Eq. 8. For horizontal control loop, xsp
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is set to zero value while for vertical control loop, it is set to an appropriate value

for hovering, landing, and recovery tasks in the autopilot. For both control loops,

Vsp is assigned as zero value. In addition, the controller gains (Kp, Kd) were tunned

manually in the flight to optimize its performance practically.

u(t) = Kp(xsp− xm)+Kd(Vsp−Vm) (8)

6.2 Landing Autopilot

Generally, landing autopilot combines both hovering and tracking control in hori-

zontal control loop with additional control to the vertical control loops in order to

hover and land the quadrotor upon the target. It starts with a target searching and

recovery task. This flight task is automatically activated when the target is not in the

FOV or lost. When this happens, the vertical control loop, in coorperated with the

horizontal control loop for hovering stabilization, increases the altitude by 10 cm

every 1 sec. When the target is seen in the image, the target tracking and descend

tasks will take over the autopilot automatically. The vertical control loop decreases

its current altitude by 10 cm every 1 sec when the target is observed and tracked by

the horizontal control loop with the position of the vehicle relative to the target not

more than 5 cm. After the altitude is lowered to below 20 cm, the landing task is

activated to land the quadrotor on the landing platform.

7 Real-Time Implementation

In this section, the proposed control strategy and method were implemented and

tested in the indoor flight test. During the flight test, the important data were logged

and the results will be discussed in this section. Generally, the real-time architecture

of the vision-based autopilot system is presented in Fig. 15. The required measure-

ments of the onboard sensors including video from the camera were transmitted

through WIFI to the ground station. Then, the ground computer processed the im-

ages, performed computer vision techniques and state estimation, and lastly sent the

commands for the outer loop control back to the onboard computer for carrying out

the tasks of the autopilot mode.

7.1 Flight Test

A flight test has been conducted to evaluate the proposed automatic landing algo-

rithm. For the purpose of challenging this autopilot, the quadrotor was placed at a

distance away from the blob such that the blob was not inside the FOV after take-
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Fig. 15 Real-Time Architecture of the Vision-based Autopilot

off. Once the quadrotor took-off and the blob was not detected, the target searching

and recovery task was automatically performed. It is clearly seen from Fig. 16 that

the relative horizontal position was zero indicating that the blob was not inside the

FOV. The vertical control loop performed the searching task by steadily increasing

the altitude until the blob was detected while the horizontal control loop made sure

that the horizontal velocity was controlled to zero. The real-time estimated hori-

zontal velocities and measured vertical velocity are plotted in Fig. 17. Besides, the

measured body attitude is shown in Fig. 18.

At the instant when the blob was detected, the tracking and descend task was au-

tomatically activated to perform continuous target tracking and descend. In Fig. 16,

the quadrotor detected a distance away from the target at around 38 sec and reacted

quickly by moving towards the target. After that, it slowly descended at a nearly

constant rate when the estimated relative position tracked has an error below 5 cm.

After the quadrotor moved close to the platform (below 20 cm), landing mode was

automatically activated to land the quadrotor upon the platform. Therefore, it can

conclude based on the results from the flight tests that the design and implementa-

tion of the fully autonomous landing system of the quadrotor using a single onboard

camera has suceeded.
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Fig. 16 Real-Time Estimated Relative Horizontal Position and Altitude Measurement during Au-

tonomous Landing
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Fig. 17 Real-Time Estimated Body Horizontal Velocities and Vertical Velocity Measurement dur-

ing Autonomous Landing
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Fig. 18 Body Attitudes Measurement during Autonomous Landing

8 Conclusion

In this paper, an automatic landing system using visual servoing technique was pre-

sented. In order to achieve the goal of the project, a design solution for a compre-
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hensive automatic landing algorithm comprising a new approach that combines two

different computer vision techniques was proposed. A red blob tracking was imple-

mented to obtain the position of the quadrotor UAV relative to the landing platform

while a robust motion tracking using corner tracking was suggested working par-

allel with the target tracking to give additional state information to the controller

when the target is not in the FOV of the camera. From the results obtained in 2-

dimensional image, the position and velocity of the vehicle in physical units were

estimated using a Kalman-based sensor fusion. The state estimation has been val-

idated in a series of experiments using a CNC milling machine to show that the

estimated state is accurate and precise. Finally, the control architecture for auto-

matic landing system was formed with the classical PID controller. The flight tests

proved that the proposed system succeeded.
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