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Abstract Within the framework of automatic ground propulsion systems for air-
craft, a method is presented to generate Feedback Linearization based controllers
in an automated way. A nonlinear on-ground aircraft model realized in the object-
oriented language Modelica is inverted automatically and used as Feedback Lin-
earizing core of a ground trajectory tracking system. The controller is completed by
an outer linear loop. Issues in the model inversion process are discussed. In particu-
lar, robustness against parameter uncertainties must be assessed carefully. With this
method, the study and development of automatic ground propulsion systems can be
quickened because control laws can be obtained for different system architectures
and different aircraft starting from the respective dynamic models, allowing easier
and quicker assessment of these technologies and comparisons between different
aircraft platforms.

1 Introduction

A number of airframers, suppliers and research institutions are investigating and de-
signing innovative zero-emission taxiing systems that allow to move the aircraft on
ground without generation of noise or pollution and with greater energetic efficiency
than conventional taxi with jet engines. Proposed solutions include using electric
motors to drive the landing gear wheels [10]. Along with these propulsion devices,
some have proposed automatic ground control systems. While automatic flying con-
trols are common to the point that they are taken for granted in present-day flight,
ground movements are mostly accomplished by the pilot himself manually and the
potential of automation in this area is often underestimated. Indeed, autonomous
taxi would be beneficial in a number of aspects. Taxi may be more robust to exter-
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Fig. 1 Proposed control architecture for autonomous taxiing aircraft

nal disturbances (e.g. wind gusts). Also, the pilot can concentrate more on pre-flight
and post-flight activities. In a future perspective, autonomous taxi might be part of a
fully automated ground control at airport level, which would use the infrastructure
capacity more efficiently and enhance the safety of ground movements by reduc-
ing the risk of human errors. Also, autonomous taxi can help optimize the use of
electric taxiing systems from an energetic point of view by commanding convenient
dynamics with regard to the taxi path, the airport traffic and other constraints.

In this paper, a method is presented to automatically generate inversion-based
controllers starting from an object-oriented aircraft model. The issue to be addressed
is that a ground vehicle (as a taxiing aircraft can be considered) is a nonlinear dy-
namic system. Simple linear control methods will fail to stabilize the system in
complex situations like turns with large steering angles (e.g. U-turns) or with low
grip. This can be solved in a conceptually simple way by using Feedback Lineariza-
tion (FBL), also known as Nonlinear Dynamic Inversion (NDI). The core of the
controller contains an inverse model of the plant that cancels out the plant non-
linearities, whereas the desired closed-loop behavior is imposed by an outer linear
control loop (fig. 1). Here, the features of object-oriented modeling languages, such
as Modelica [3], can be exploited to quickly obtain an inverse model from a given
aircraft model. This is a very interesting feature in the research and engineering
phase of such ground propulsion systems because it allows to easily adapt the plant
and the controller to different aircraft architectures, making it possible to carry out
comparisons and to assess the viability and performance of those systems in various
conditions on different aircraft starting from their respective models. In section 2,
the theoretical framework of the method will be presented first. Then in section 3, the
steps needed to automatically generate the inverse model for control are illustrated.
In section 4, a simplified aircraft model will be realized in Modelica and exported
to Simulink to build a controlled plant model for the purpose of demonstrating the
proposed method. Concluding remarks will be given in section 5.
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Fig. 2 One-track model (”bycicle model”) of the on-ground aircraft

2 Theoretical background

The principle of the proposed method shall be illustrated in this chapter. The feed-
back linearization of a simplified, nonlinear on-ground aircraft model will be per-
formed for this purpose.

2.1 On-ground aircraft model

A nonlinear one-track model (”bicycle model”) will be used for the on-ground air-
craft (Fig. 2). The vehicle features one steerable wheel at the front and one driv-
able/brakable wheel at the rear. Vertical dynamics is neglected, aerodynamics only
include the aerodynamic resistance as function of the longitudinal speed (effects of
aerodynamic surfaces are neglected). Moreover, the dynamics of the front tire will
be neglected; its longitudinal slip and longitudinal force (along the wheel plane) will
be considered zero at all times. With these assumptions, the equations of motion are:

m(v̇x− ψ̇vy) =−Fy f sinδ +Fxr−Fres
m(v̇y + ψ̇vx) = Fy f cosδ +Fyr

Jzψ̈ = b f Fy f cosδ −brFyr
Jrω̇r = Mr−FxrRr

(1)

where:

• m is the aircraft mass
• Jz is the aircraft moment of inertia around the vertical axis
• vx and vy are the longitudinal resp. lateral velocity in body coordinates
• ψ̇ is the yaw rate
• ωr is the angular velocity of the rear wheel
• Rr and Jr are the rear wheel radius and moment of inertia
• Mr is the driving/braking moment on the rear wheel
• δ is the nose wheel steering angle
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• Fx f , Fy f , Fxr, Fyr are the tire forces in longitudinal resp. lateral direction (sub-
script x and y) in the wheel local coordinates for the front resp. rear tire (subscript
f and r)

• Fres = Fres(vx) summarizes the resistances, including rolling and aerodynamic
resistance

• b f and br are the distances of the front resp. rear wheel to the aircraft center of
gravity.

A tire model is needed to link the tire forces to the aircraft kinematics. For this
example, a simple linear tire model is chosen:

Fx f = 0 (see assumptions) Fy f = ky f α f
Fxr =−kxrσr Fyr = kyrαr

(2)

with kx f , ky f , kxr, kyr constant stiffnesses of the tires, σ f , σr are the longitudinal
tire slips, and α f , αr are the tire slip angles. These quantities are defined as follows:

α f = δ − arctan
(

vy +b f ψ̇

vx

)
σr =

vx−ωr

vx
α f = arctan

(
−vy +brψ̇

vx

) (3)

The system is completely described by equations 1, 2, and 3. A road vehicle with
one steering axle and a given stable tire model only has two degrees of freedom. [5]
Therefore, xv and ψ̇ are taken as state variables along with the internal state ωr.

2.2 Feedback Linearizing controller

This well-known method, also called Nonlinear Dynamic Inversion (NDI), consists
in finding a diffeomorphic coordinate transformation of a nonlinear system such that
the inputs of the transformed system linearly map to the original outputs; this way,
the system can be inverted easily and linear methods can be applied for stabilization
and tracking. The approach for MIMO systems is described for example in [4] and
is briefly summarized here for completeness.

A nonlinear system with n and n outputs is given,

ẋ = f(x)+
n

∑
i=1

g j (x)ui

y j = h j (x) j = 1,2, . . . ,n
(4)

Using the Lie derivative notation L f h(x) = ∂h
∂x f (x), each y j is derived a number of

times r j with respect to time, which gives:
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y
(r j)
j = L

(r j)
f (h j)+

n

∑
i=1

LgiL
(r j−1)
f (h j)ui

until, for the r j-th derivative, Lgi

[
L

r j−1
f (h j)

]
6= 0 holds for some i while Lgi

[
Lk

f (h j)
]
=

0 ∀k ≤ r j−2 and for every i. The quantity r j is called relative degree of the output
y j. After this procedure, a non-singular decoupling matrix J is defined:

J(x) =

Lg1 [L
r1−1
f (h1)] . . . Lgn [L

r1−1
f (h1)]

. . . . . . . . .

Lg1 [L
rn−1
f (hn)] . . . Lgn [L

rn−1
f (hn)]


and, after introducing the vector

l(x) =

L(r1)
f (h1)

. . .

L(rn)
f (hn)


the following equation holds: y(r1)

1
. . .

y(rn)
n

= l(x)+J(x)u = v (5)

where v is the n×1 vector of transformed inputs that are equal to the r j-th derivative
of each output y j. If the system is inverted, i.e. if the inputs should be calculated that
make it possible for the output to follow an assigned ydes, this is accomplished by
calculating

vdes =

 y(r1)
1,des
. . .

y(rn)
n,des


which implies that each y j,des must be derivable r j times, and by inverting eq. 5:

u = J−1(x)(vdes− l(x)) (6)

The system has thus been linearized and decoupled, i.e. each output is controlled
separately by one transformed input. Finally, it is possible to apply standard linear
techniques to control the behavior of the system. For example, the closed-loop poles
of each v j − y j response may be changed by an appropriate choice of feedback
parameters:

K j(s) = ar j−1sr j−1 +ar j−2sr j−2 + · · ·+a0

which results in the following closed-loop transfer function:
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G j =
1

sr j +ar j−1sr j−1 +ar j−2sr j−2 + · · ·+a0

For the aircraft model showed in the previous chapter, the problem is to find the
necessary inputs [δ , Mr] in order to follow a given trajectory [vx,des, ψ̇des]. It can be
noted that the system in the form given by eq. 1 is not affine in control as required in
eq. 4 since δ appears as argument of trigonometric functions. This can be overcome
by considering δ̂ = δ a system state and using its derivative δ̇ as input. This is also
advantageous in reality because the command input of the steering system is the
hydraulic servo-valve control current that is a function of δ̇ [6]. With this operation
and after substituting eq. 2 and 3, the system becomes:

ẋ = f(x)+g(x)u
y = hx

x =
[
vx, ψ̇, ωr, δ̂

]T
, u =

[
δ̇ , Mr

]T

f(x) =


ψ̇vy− 1

m

[
ky f sin δ̂

(
δ̂ − arctan

(
vy+bvψ̇

vx

))
− kxr

vx−ωr
vx
−Fres(vx)

]
1
Jz

[
b f ky f cos δ̂

(
δ̂ − arctan

(
vy+bvψ̇

vx

))
−brkyr arctan

(
−vy+bhψ̇

vx

)]
−FxrRr

Jr
0

 (7)

g(x) =


0 0
0 0
0 1

Jr
1 0

 h(x) =
[

1 0 0 0
0 1 0 0

]

Model inversion involves differentiating the outputs as many times as necessary
for the inputs δ̇ and Mr to appear. This calculation may be lengthy and tedious if
performed manually on a complex model. The analytic result for this example will
be omitted, however, focusing on the first two rows of f(x) corresponding to v̇x and
ψ̈ , it can be intuitively noticed that deriving them once yields some terms multiplied
by δ̇ and some others multiplied by ω̇r which in turn is linearly dependent on Mr.
This means that both outputs vx and ψ̇ need to be differentiated twice in order for
the inputs to appear. Therefore the relative degree is 2 for both outputs.

3 Automated Object-Oriented Model Inversion

Object-oriented modeling is a technique that is becoming more and more widespread
in various engineering fields. Basic components of a system and relevant phenomena
are modeled as classes containing sets of algebraic and differential equations inter-
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relating the states, the inputs, and the outputs of each component or phenomenon.
The classes are connected together to build the whole system by means of appro-
priate interfaces exchanging signal flows and states as needed. This method offers a
number of advantages over other, currently still very common modeling techniques,
e.g. signal flow modeling environments such as Simulink. Notably, the modular
structure allows a more realistic modeling of real components and sub-assemblies;
it allows a better understanding of the model parts; it makes it easier to modify or
expand a system without major modifications of the model; and it is very suitable
for building discipline-specific libraries.

The particular feature that is exploited in this work is that the causality of the
system model is not determined in the modeling phase; inputs and outputs are spec-
ified only in the code generation phase and the executable simulation code will be
generated accordingly in an automated way by a compiler. This improves the model
flexibility dramatically, since a direct model and an inverse model can be generated
easily from the very same system model with only minor modifications. This work
used the open-source modeling language Modelica [3] and the simulation environ-
ment Dymola [1], which is based on Modelica and also features, along with a com-
mand layer, a graphic layer that allows to work with classes represented as blocks
and to connect them in a signal-flow-like fashion. In model compilation, this soft-
ware is capable of transforming the set of Differential Algebraic Equations (DAE)
contained in the model into a state-space representation of Ordinary Differential
Equations (ODE) that will be simulated afterwards. This transformation generally
involves symbolic algorithms for index reduction (e.g. the Pantelides algorithm [2])
and selection of states (e.g. Mattson and Söderlind’s ”Dummy Derivative Method”
[2], [9]).

With regard to the basic example in the previous chapter, a model class can be
created containing the system equations (1), (2), and (3) and specifying the needed
parameters (mass, inertia, tire stiffnesses, geometry). This model can now be com-
piled and simulated as a direct model by assigning the inputs δ and Mr. To compile
an inverse model, vx and ψ̇ should be declared as inputs. This can be done in the
command layer, or alternatively in the graphic layer by using the connectors Real-
Input and RealOutput, which already contain the necessary commands. Upon DAE
reduction, the compiler differentiates the equations containing states; in this simple
example, two states are directly assigned as inputs and no derivatives are available,
hence the DAE cannot be transformed, and an error message similar to Fig. 3 is out-
put. This informs the user that additional derivatives of the inputs are needed - in this
example, two for vx and two for ψ̇ . If the inputs are available as analytic functions,
additional inputs for the needed input derivatives can be added and connected to
the analytic derivatives available. Alternatively the needed derivatives of the highest
order (in this example, the second derivatives) can be declared as inputs, and an ap-
propriate number of integrators should be added to the system model. If the analytic
derivatives are not available, a solution consists in using filters of the appropriate
order to obtain the needed derivatives through a combination of the filter states. [11]
In the real system, this equates to treating the commands so as to ensure that they
are sufficiently smooth (i.e. derivable the necessary number of times). The filter dy-
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Fig. 3 Dymola message in-
forming about missing input
derivatives

namics should be chosen fast enough to be negligible compared to the dynamics of
the whole system.

For the inversion-based FBL controller, the states appearing in the inverse model
must be fed back from the system. The Dymola command

Advanced.TurnStatesIntoInputs = true

instructs the compiler to consider the states as system inputs. Afterwards, the model
is compiled and simulation code is generated that may be simulated in Dymola or
exported to other environments for convenience, e.g. to Simulink where a Dymo-
laBlock exists for this purpose.

3.1 Challenges and Difficulties

Two important issues need to be addressed when applying the proposed method.
Firstly, nonlinearities are only canceled out if the inverse model exactly matches
the real plant. This is often difficult to achieve in reality mainly because of param-
eter uncertainties or approximate system modeling. While the controlled linearized
system should perform adequately in theory, unsuppressed nonlinearities may re-
sult in poor performance and even instability of the real controlled plant. For this
reason, along with a precise enough system model in the inversion-based part, the
controller must be made robust against uncertainties. This is usually addressed in
the linear, outer-loop part of the controller by applying well-known robust synthesis
techniques.

Secondly, in the general case, if the system order n is greater than the sum of
relative degrees r j, then there exists some unobservable internal dynamics whose
stability needs to be verified. A sufficient condition for local asymptotic stability of
closed-loop MIMO systems is that the zero dynamics are asymptotically stable [4].
For the specific one-track model example considered, n = ∑r j = 4, hence there is
no internal dynamics.
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If the model should become more complex, e.g. if more realistic, nonlinear tyre
models were to be considered, then effects like actuator or tire saturation should be
also taken into account in the control system. Generally speaking, for an efficient
inversion it is expedient to proceed as follows with the system modeling [8]:

• The actuator dynamics are neglected within the inverse model. As a consequence,
the actuator commands are calculated that correspond to the necessary actuator
action once its dynamics has reached the steady state in the real plant;

• The actuator saturation limits are neglected; also, regarding the tire models, the
force must be a strictly monotonic function of the slip. If this were not the case,
there would be no, or no unique solution for certain system states and controller
inputs, causing the inverse model simulation to crash.

Controlling these aspects must be a task of the outer control loop. So for example,
actuator saturations and rate limitations can be detected and corrected for through
methods like Pseudo-Control Hedging [7].

4 Application Example

An example of application of this technique for generation of controls is given. The
on-ground aircraft system described in eq. (1) is modeled in the Modelica language
in the Dymola environment and then compiled as a ”direct” system (with δ , Mr as
inputs and vx, ψ̇ as outputs) and exported into Simulink. Additional outputs are the
full system states. The quantities v̇x and ψ̈ are chosen as more suitable controller in-
puts than the second derivatives that were shown to be needed in section 2.2, mainly
because controlling accelerations is more intuitive and less sensitive to disturbance
than controlling jerks. This means the inputs given to the controller need to be deriv-
able in time once. For this reason, the aircraft model is inverted by declaring v̇x and
ψ̈ as inputs, and these are connected to two analytic first-order, 50 Hz lowpass filters
that will provide the compiler with the state equations needed to differentiate the in-
puts. This model is also compiled and exported to Simulink. Additionally, saturation
blocks and first-order, 1.59 Hz lowpass filters are added before the system inputs δ

and Mr to model actuator saturations (maximum driving/braking torque, maximum
steering rate) and actuator delays; finally, δ̇ is integrated into δ before going into
the system input. The outer loop consists in one PD and one PID linear controller
for closed-loop control of vx resp. ψ̇ . The Simulink model is shown in fig. 4. The
parameters m, Jz, b f , br, kxr, ky f , kyr used in the Modelica models correspond to a
narrow-body airliner.

To test the controller, the input profiles have been chosen as follows: a deceler-
ation ramp from the initial vx = 10 m/s to 5 m/s in 1 s, followed by a sharp left
turn bringing ψ̇ from zero to 0.2 rad/s in 0.25 s, which results in a cornering radius
of 25 m. The corresponding steering radius for the aircraft type considered is in a
range around 30 degrees, hence this is a maneuver where linear approximations (e.g.
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Fig. 4 Simulink Model of the controlled system

small-angle approximations) cannot hold. The closed-loop system response to the
input signals is shown in fig. 5.

As stated previously, one important issue is to assess the controller robustness
against parameter uncertainties. While robustness has not yet been investigated thor-
oughly for this work and will be addressed in a next stage, three simulations have
been carried out with different parameters for a preliminary robustness test. A reli-
able estimation of the aircraft mass is usually available online in the flight computer,
and moment of inertia as well as the position of the center of gravity can be also es-
timated. However, the tire parameters related to the tire-ground grip are critical for

Fig. 5 Ramp response of the controlled system without parameter uncertainty (equal parameters
in inverse and direct model). Dashed lines: Commanded outputs. Solid lines: actual outputs
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Fig. 6 Ramp response of three different simulations with parameter uncertainty. The parameters
changed in each simulation are described above the respective diagrams. Dashed lines: Com-
manded outputs. Solid lines: actual outputs

WeAT3.1

128



12 Fabrizio Re

correct tracking and stability itself and their estimation is not straightforward. There-
fore, the controller must be robust against their variation within a certain range. For
these tests, the parameters in the controller (inverse model) are left at their nominal
value, whereas they are changed in the plant model (direct model). The outputs of
these different simulations and the parameters used in each simulation are shown
in fig. 6. The response remains stable even in low-grip situations and with incorrect
mass or moment of inertia, although with a degraded performance e.g. in reaching
the steady-state yaw rate, as well as in slowing down the aircraft in the last simu-
lation due to the physically limited tire grip. The results suggest that the control is
robust over a wide parameter range and may be further optimized, for example by
tuning the PID parameters with multi-objective optimization algorithms or by using
appropriate robust synthesis methods for linear systems.

5 Conclusion and Outlook

A method has been presented to obtain automatic inverse models of an on-ground
aircraft for use in a ground controller based on Feedback Linearization. As an exam-
ple, a simple one-track aircraft model has been written in an object-oriented model-
ing language, then automatically inverted and used as inner loop of the control sys-
tem; the outer loop consisted in linear PID controllers. The functionality has been
shown through simulation examples, as well as robustness in selected conditions.
With this method, the study and development of automatic ground propulsion sys-
tems can be quickened because control laws can be obtained in a partially automatic
way for different architectures and different aircraft starting from the respective dy-
namic models. More complex models can be used for inversion, including more
realistic aerodynamics, actuator models and tire models, as long as the contained
functions are invertible (e.g. the actuators in the inverse model do not saturate and
their effect is monotonically dependent on their input). Multiple actuators can also
be included in the inverse model as long as a control allocation strategy is provided.
Robustness of the proposed controller structure is key in all controllers based on
feedback linearization because of parameter uncertainties. In future stages of this
work, the controller parameters may be optimized for robustness over a wide range
of working conditions and parameter intervals; also, robust synthesis techniques
may be applied. More generally, once a control architecture has been defined for
an on-ground propulsion system, optimization algorithms may be investigated that
would automate the entire control synthesis process, thus allowing a quick adapta-
tion of the system to different aircraft platforms.
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