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LFT model generation via /;-regularized least
squares

Harald Pfifer and Simon Hecker

Abstract The paper presents a general approach to approximate a nonlinear sys-
tem by a linear fractional representation (LFR), which is suitable for LFT-based
robust stability analysis and control design. In a first step, the nonlinear system will
be transformed into a quasi linear parameter varying (LPV) system. In the second
step, the nonlinear dependencies in the quasi-LPV, which are not rational in the pa-
rameters, are approximated using polynomial fitting based on ¢;-regularized least
squares. Using this approach an almost Pareto front between the accuracy and com-
plexity of the resulting LFR can be efficiently obtained. The effectiveness of the
proposed method is demonstrated by applying it to a nonlinear missile model of
industrial complexity.

1 Introduction

Linear fractional transformations (LFTs) can be considered a standard form for
many modern robust control methods. In literature, a plethora of algorithms based
on LFTs exist for analysis or synthesis, see e.g. [1]. In general, control problems are
dealing with nonlinear systems of the form

X = f(x,p,u)
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2 Harald Pfifer and Simon Hecker

where x € X C R'" is the state vector, y € R™ the output vector and u € R" the input
vector. In addition the system can depend on a parameter vector p € II. In order to
apply modern robust control methods on them, an efficient approach to approximate
(1) by a linear fractional representation (LFR) needs to be available.

As an intermediate step on the way of obtaining an LFR of (1), the system is first
transformed into an LPV system of the form

Xx=A(8)x+B(8)u )

y=C(8)x+D(6)u.
In (2), & can not only consist of the parameter vector p but also includes state-
dependent nonlinearities, i.e. § € (X x IT) C R"3, see [2]. In the latter case, the
system is called quasi-LPV. Various techniques have been proposed in literature to
perform the transformation of (1) into an quasi-LPV system (see for example [3, 4]).
If the quasi-LPV system (2) depends only rationally on &, the transformation into

a linear fractional representation (LFR) of the form

xX=Ax+Byw—+Byu
z=Cix+Dyyw+Djru

y=Cox+Dyyw+ Dypu 3)
w=A(8)z
A = diag(61;,,..., 5,1515,15)

is straightforward.

Many sophisticated methods have been proposed in literature to obtain low order
LFRs of a given LPV system, see [5] and the references therein. Usually, three
steps are applied in the transformation process. First, a symbolic preprocessing of
the LPV model is performed. Second, the actual transformation is conducted via
object oriented LFT realization. Finally, numerical order reduction can be utilized
to further reduce the order of the resulting LFR.

In several cases one may directly derive an analytic quasi-LPV (2) suitable for
transforming into an LFR from a nonlinear system (1) via symbolic calculations.
However, especially in aeronautical applications the models usually include highly
nonlinear functions (neural networks, tables) or may only be given for a discrete
set of conditions (linear aeroelastic models). In such cases the quasi-LPV model
obtained via function substitution cannot be directly transformed into an LFR. The
highly nonlinear functions or the discrete set of conditions have to be approximated
by rational functions first.

It is largely an open question, how a function approximation is obtained, which
is suitable for transformation of (2) into an LFR. Note that the minimal achievable
LFR order depends mainly on the complexity (order of rational or polynomial ap-
proximations) and the structure of (2). In [6], we proposed a method to generate
optimal LFT models achieving a good accuracy while keeping the complexity low.
It involves directly minimizing a weighted sum of the LFR order and some error
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LFT model generation via ¢;-regularized least squares 3

metric via a complex non-convex optimization. While this procedure provides good
results as shown in [7] and [8], it is rather cumbersome and time consuming. The
major contribution of this paper is a convex relaxation of the optimization of [6],
which allows to efficiently obtain an (almost) Pareto front representing the compro-
mise between the LFR order and accuracy.

In Section 2, the general problem formulation is stated. In Section 3, an overview
over {;-regularized least squares and its application to polynomial fitting will be
presented. Then the LFR generation problem is reformulated in the ¢;-regularized
least squares framework in Section 4. Finally, in Section 5 the proposed algorithms
are applied to a nonlinear missile model of industrial complexity with a nonlinear
dynamic inversion based controller. It is shown that the approach allows to transform
the highly nonlinear system into an LFR of sufficient accuracy, which still possesses
a complexity suitable for performing LFT based stability analysis.

2 Problem Statement

The starting point of the LFT model generation is a quasi-LPV model (2), which
can for instance be obtained via a function substitution technique as introduced by
[3]. It is assumed that (2) does not depend rationally on the parameter vector &.
More precisely, there are {s;(6)}{ elements in (2) which need to be approximated
by a rational/polynomial function, in order to transform (2) into an LFR. In a typical
aerospace application the set {s;(6)}} would contain for example the aerodynamic
forces and moments coefficients. In the present work due to its simplicity only poly-
nomial functions will be considered to approximate the original functions s;(5).

The first step is to generate a grid of values s;; for each function s; at a set of
pre-specified parameter values. The value s;; represents the i function evaluated
at the k™ point and & is the corresponding parameter vector. For each index value
k an LTI system with transfer function Gy = Cy(s/ —Ak)_lBk + Dy, can be built by
evaluating the quasi-LPV model (2) at § = &.

The goal is now to calculate a polynomial approximation of the elements s;, such
that (2) can be transformed into an LFR of low complexity. It should, however,
still represent the original nonlinear system (1) adequately. The problem can be
conceptually described by

in  d(Gipr, {Gi}tY Gifr),
o, (Gipr {GHT) +w c(Gigr) o

where d(.,.) is the notation of distance or model error between the approximate
model G, which is restricted to the class of LFT-based LPV models ., see (3),
and the grid point LPV model {Gy}". In addition, c(.) describes the complexity of
the resulting LFR and w is a weighting factor to balance complexity and accuracy.
As a measurement of the LFR’s quality the v-gap metric, as specified by [9],
between the {Gy}|" and the LFR evaluated at {;}}" is applied. The v-gap metric
can take values between zero and one with zero meaning that two plants match
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closely and one that they are far apart. In general, any system norm can be used,
e.g. J4-norm. The v-gap metric has a decisive advantage over other system norms,
though, as an error measurement for LPV model generation: It is also defined for
unstable systems. Since in many practical cases the plant may be at least partially
unstable in the admissible parameter set, special care has to be taken when choosing
other system norms.

The complexity of the resulting LFR is estimated by the lower bound on its order
as defined in [5], which is computationally faster than using the actual achievable
order. For a given linear parametric model S(8) with § € R"s the lower bound can
be calculated as follows: Substitute all but one parameter §; with random values and
compute a minimal order, one parametric LFR with order m;. Note, that for sin-
gle parametric systems one can always calculate a minimal order LFR. Repeat this
procedure for all parameters. Finally, the lower bound is given by m;p = Z:ﬁl m;.

3 Polynomial Approximation by /;-Regularized Least Squares

The algorithm for finding polynomial approximations of the single matrix elements
is based on a regularized least squares fitting. In the following x; ; denotes the nu-
merical values of the j" parameter at the k™ grid point, y is a vector including the
m grid point values of an element s; and b is a vector including the polynomial co-
efficients. In a first step, a matrix X will be built, which considers all possible bases
for a multivariable polynomial of a given order evaluated at the m grid points.

In function approximation, it is often desired to choose from a set of potential
bases one subset, which offers the best approximation of all subsets of the same
cardinality, see [10]. The aim is to find a solution to the least squares problem with
a sparse coefficient vector b, i.e with a small cardinality card(b), which is defined
as the number of nonzero elements in the vector b. Considering a coefficient vector
b € R" and k < n, it can be described as

mbin||Xb —y3, s.t. card(b) < k. 5)

As shown in [10] this is a hard combinatorial problem. However, there exists a
good heuristics to approximate (5), which is called ¢;-regularized least squares. In
(6) |b]l1 = X} |bil is the ¢;-norm and A the regularization parameter.

rlgjnll?fb*yllﬁ+7L||b||1 (6)

For a given A this problem is actually convex and can be easily solved. By per-
forming a sweep over A a Pareto front is obtained, which presents the trade-off
between card(b) and the residual || Xb — y||». Various techniques exist in literature
to solve the convex problem (6), e.g. specialized interior-point methods as proposed
in[11].
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LFT model generation via ¢;-regularized least squares 5

4 Procedure for the Generation of LFT Models

A weighted form of (6) can be used to simultaneously approximate all {s;(8)}} by
polynomials.

p
mbinzwl,iHXBi_yi||%+)“wg|b|ﬂ O
=1

where b is a vector containing the polynomial coefficients over all elements that
should be approximated. The vectors {;}} consist of those coefficients which are
used in the approximation of the i/ element. The weightings w; and w, will be used
later on to bring (7) closer to the original problem of minimizing the LFR order and
an error metric between the LFR and the quasi-LPV.

Since all elements and especially all polynomial coefficients over all elements are
considered in the cost function, scaling them is important. In the presented approach,
the data is normalized so that each column of X and y has unit length and zero mean
[12].
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Note that making use of orthogonal polynomials as e.g. Chebyshev polynomi-
als and the standardization (8) results in X being orthonormal, i.e. X’ X = I. This
simplifies solving the ¢;-regularized problem (7).

The regularization parameter A in (7) is employed as a weighting between the ac-
curacy and the complexity of the polynomial approximation as described in Section
3. The Pareto front between card(b) and the polynomial fit serves as an approxima-
tion of the trade-off between the LFR order and the accuracy of the LFR model.

The starting value of A is is chosen in accordance with the following proposition.

Proposition 1 Setting A in (7) to

A():Zmlglx (wlﬁimjax <(XTyl)J|>> 9)

wa,j

yields a constant approximation, i.e. b = 0.

For the proof the reader is referred to [11]. Incrementally decreasing A will result
in steadily better fits with higher card(b).

An advantage of this approach is that a lot of computations can be done upfront
and reused at each iteration. Additionally, the solution of the last iteration is used
as the starting point of the new iteration. Hence, performing a sweep over A is
computationally comparably cheap.

To demonstrate the validity of the convex approximation some brief results of
the polynomial approximation used in the missile model with nonlinear dynamic
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inversion controller are presented (see Section 5 for more details). The elements that
require approximation in the missile model are the aerodynamic force and moment
coefficients.
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Fig. 1 Results of /;-Regularized Least Squares Problem for LFR Model Generation

In Fig. 1, the difference between the cost function of the convex problem (7) and
the lower bound of the LFR order as well as the maximum v-gap metric 8y juqy is
presented. As shown in the upper figure the number of polynomial coefficients and
the lower bound LFR order myp follow a similar trend. However, it can be seen that
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it is possible to increase the cardinality of the coefficient vector b without increasing
mip.

A likewise statement can be made about the relation between the sum of the resid-
uals Y;||Xb; — y;||3 and the maximum v-gap metric between the LFR and the grid-
point LPV model. Minimizing the residual in general seems to also lower Oy .
Still, it has to be kept in mind that this is only a heuristics and no direct relation
between the residual and some system metric can be established.

4.1 Weighting of the Elements

The quality of the LPV approximation is only accounted for in the weighted sum of
the polynomial approximation errors in a least squares sense. Since not all elements
s; have the same significance for the LPV model, equally weighting them would not
reflect the major aim to find an LFR of good accuracy and low order. Hence, for
each element s; a so-called influence coefficient IC; is determined.

An element s; has a low influence coefficient if its variation among the set of
grid point models does not significantly influence the transfer matrix of the frozen
models in terms of a specified error metric. For each s; a set of transfer matrices
{Gy, }]' is generated, which is equal to the set {G}]" except that for s; the mean
value of the m grid point values y; is chosen. Finally, the influence coefficient IC; of
s; is defined as

ICi:mI?X(5V(Gk7Gk,'))7 k=1,...,m, (10)

where 8, denotes the v-gap metric between Gy and Gy,

The IC can be directly used as weighting wy in the convex approach. Hence, the
algorithm is biased towards minimizing the approximation errors of elements with
ahigh IC.

In order to show the advantage of using the influence coefficient as weighting
w1, a comparison between a weighted sum and weighting each elements equally is
made. The example uses again the data from the missile model. In Fig. 2 the max-
imum error in terms of the v-gap metric Jy jqy is shown over the lower bound on
the LFR order for a sweep over the regularization parameter A. The case, where
each approximation error is weighted equally, is depicted by the circles. The crosses
represent the results of the approximation with using the influence coefficients of
the elements as weightings w; in (7). As can be seen in the figure, the weighted
£-regularized problem yields much better results for most A in comparison to the
unweighted problem. Note, that in both cases not each point is actually Pareto opti-
mal in terms of v-gap and LFR order.

In addition to its usage to weight the elements, the influence coefficients are
also used to determine which elements can be considered constant in the proposed
approach. Is the influence coefficient of an element below a specified threshold, the
respective element will be approximated by its constant mean value over all grid
points.
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Fig. 2 Effect of Using Influence Coefficients as Weightings in the Optimization

4.2 Weighting of the Polynomial Coefficients

Instead of minimizing the lower bound LFR order a weighted ¢;-norm over all pos-
sible polynomial coefficients is used. The weighting w, shall be chosen such as to
penalize polynomial bases which would lead to higher order LFRs. A good heuris-
tics for choosing wy is to set w» ; to the degree of the respective polynomial basis
g;(x). For instance considering the monomial basis g;(x) = x3x3, the corresponding
weighting factor w, ; would be four. This also coincides with the minimum achiev-
able LFR order of g;.

S5 Example: Missile Model

The example is based on a nonlinear model of a modern air defense missile. The
missile is in a cruciform configuration with four fins at the tail. It is axis symmetric
with a slender body. A controller based on nonlinear dynamic inversion has been
designed for the missile model within [13]. The aim of this work is to obtain an
LFR of the closed loop missile, which is suitable for modern LFT based robust
stability analysis.

The mathematical model has six states, namely the velocities in y- and z-direction
v and w respectively, the roll rate p, pitch rate g, yaw rate r and the bank angle around
the velocity vector @y . The inputs are the deflections angles in aileron &, elevator n
and rudder &. As outputs the accelerations in y- and z-direction a, and a;, Py and
the angular velocities Q = [p,q,r]” are available. The parameter vector § consists
of the Mach number Ma, the angle of attack o and the side slip angle 3.
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In the following, the general differential equations of momentum and angular
momentum are given in the body-fixed coordinate system. F and M represent the
external forces and moments respectively acting on the missile and /7 the inertial
tensor.

1 p u
=—YF—|q|x|v (11)
m
r w
D p p
q WY M- |q| x|Ir|q (12)
7 r r

Note that the acceleration in x-direction # has been neglected in the quasi-LPV
model, as the control has no influence on them.

In the following equations the C; are the aerodynamic coefficients which are non-
linear functions of &. In addition, p is the air density, V = Maa is the absolute ve-
locity with a being the speed of sound. The other parameters are the reference area
Ser, reference length [, ¢, mass m and moments of inertia /, /,, and I;. For the
sake of brevity the auxiliary variables K| = pV S,.r/(2m), K» = pVSyeflrer/2 and
K3 = pVSyesl7, /4 are introduced.

In the quasi-LPV model the forces and moments will be described by their re-
spective dimensionless coefficients, which is common practice in aerospace. These
aerodynamic coefficients are nonlinear functions of the parameter vector 6 and are
only available as discrete table data.

1] -y [ G010

Fz Cz0(8) +Czn(8)n

L Cro(8) +Cpe(6)& Crp(8)p (13)
M| =KV |Cpo(0)+Cun(8)n | +K3 |Cuy(S)g

N Cno(6) +Cng ()8 Cnr(8)r

The state equations are given in (16), where A;(6) is obtained via a function
substitution of the aerodynamic coefficients. The following substitutions have been
used:

_ 0 if =0
Co=14" Eh=0 icyN (14)
Cip/sinf3, otherwise

if «=0

0
Co=1 for i=Z M 15
0 {C,-o /(sinacos ), otherwise (13)
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v v
W w £
P _a) [P | +BS) |0 (16)
p P C
q q
P r
KiCyo 0 0 Vsinocos 3 0 —V cosacos 3
0 KiCz0 0 —Vsinf Vcosacosf 0
AS) = 0 0 0 cosacosf sin 3 sinccos 3
- KQ/IXXCL() 0 B 0 K3/IxxCLp 0 0
0 B Kz/IyyCM() 0 0 K; /IyyCMq 0
KZ/IZZCNO 0 0 0 0 K3/IzzCNr
(17)
0 0 KiVCye
0 K\VCzy 0
0 0 0
BO=\kvirce 0 0 (18)
0  KV/ICuy 0
0 0 KoV /L.Cy¢

Note that as a requirement for the application of the inversion based control
method, the system has to be minimum phase. This is not the case when consid-
ering the accelerations at the center of gravity. As a remedy, in [13], it has been
proposed to use accelerations ay and a; at a virtual point P instead. If the point P is
sufficiently far in front of the center of gravity the system is minimum phase. The
output equations for the accelerations at P can be written as

oS
ay = Treny + Fxgp a, = QTMCZ —qgxgp (19)

with xg, being the distance between P and the center of gravity. Using the same
function substitution (19) can be written in a suitable form to fit into the quasi-LPV
framework. The equations for the remaining outputs, namely @y and €, are easily
obtained, as both @y and Q are states of the system.

In addition to the quasi-LPV parameters defined above also uncertainties in the
aerodynamic data are considered in the model. For the moment and control surface
coefficients (6Cr, 8Cyy, §Cy and 6C,;,y) these are +20 percent and for the force
coefficients (6Cy and 6Cz) +5 percent.

The controller is a standard nonlinear dynamic inversion based one. It is sepa-
rated into three parts: the inversion of the rotational dynamics €2, the inversion of the
outer dynamics a;, a, and Py and a reference model, which is only used in the feed
forward path. A classical PI-controller has been developed for the inverted plant. A
detailed description of the controller is found in [13].
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5.1 Generation of the LFR Model

In order to transform (16) into an LFR the aerodynamic coefficients need to be
approximated by polynomials. The results of this ¢|-regularized least squares fitting
are shown in Fig. 3. An approximate Pareto front between the lower bound of the
LFR order and the approximation error in terms of the v-gap metric for the plant can
be seen. Both the maximum error (dashed red line) and the mean error (solid blue
line) over all grid points are provided. The black vertical line designates the chosen
iteration for the LFR generation. This iteration has a maximum error Sy jqr = 0.11,
a mean error Oy yeqn = 0.054 and a lower bound of LFR order of mz = 35.

045 : : 60
N = = =max error
‘e mean error -
---- N ‘== LB LFR order
~
0.3} S 150

v—-gap metric [-]
o
N

LB LFR-order [-]

e
=

0 10 20 30 40 50 60 70 80
Iteration [-]

Fig. 3 Results of the ¢ -regularized Least Squares Fitting

The nonlinear dynamic inversion controller is already in LPV form. The same
polynomial approximations for the aerodynamic coefficients can be used for it. The
trigonometric functions in (17) can simply be approximated by a Taylor series ex-
pansion and truncation after a sufficient high order.

At this point, the closed loop of the missile benchmark is available as a symbolic
description of an LPV model in its general form (2). It only depends rationally on
the parameter vector 8. This is a requirement for transforming the system into an
LFR. By employing the sophisticated techniques of [14] the resulting closed loop
LFR has a dimension of 65, with the A-Block having the following structure:

A = diag(Mabsx2s, 0l19x19, Bl11x11,8Cy, 8C;, 8C;, 6Cp, 6Cp, 6Cpirilsxs)  (20)
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5.2 Model Assessment

In order to show that the closed loop LFT system still closely matches the original
nonlinear system, a Monte-Carlo simulation is conducted. To estimate the error,
which has been introduced due to the various approximation steps, the LFT system
is run in a parallel setup with the fully nonlinear model. The error is then measured
in terms of the maximum of a relative .%-norm over a finite time horizon, which is
defined as

" ) 0.5
(f,o (Vnis,i = Yifri)“dt )
error = max 21

05
i 11
(fzo yimd[)

with Ynls = [(pV,nlsaaz,nlsyay,nls]T and Yifr = [(pVJfrvazAlfraay,lfr

Simultaneous sinusoidal sweeps in all three command channels are applied as
input signals for the nonlinear simulation. The amplitude of the signals are 10°,
20m/s> and 10m/s” for the ®y-, a.- and ay-channel respectively. The frequencies
from the sinusoidal sweeps range from 0.1 Hz to 10 Hz.

"

Sample size: 1000

0 0.02 0.04 0.06 0.08 0.1 0.12
Relative Error [-]

Fig. 4 Statistical Results of the Monte-Carlo Simulation

The only parameters considered in the Monte-Carlo simulation are Ma, o and f3.
All parameters corresponding to model uncertainty are set to their respective max-
imum values. The results of the Monte-Carlo run with 1000 samples are shown in
Fig. 4 in form of the cumulative distribution function (CDF). The CDF gives the per-
centage of simulation runs which are less than a specified error. The samples are uni-
formly distributed over the considered flight envelope spanned by Ma = [0.9,4.4],
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o = [0,25]° and B = [0,10]°. In the CDEF, it is seen that in 90 percent of the cases
the error is less than 5 percent. The worst case found in the Monte-Carlo run is 10.2
percent.

The time history of the worst case found in the Monte-Carlo simulation is shown
in Fig. 5, i.e. the error is 10.2 percent. It can be seen in the figure that the LFR model
still matches the original nonlinear model well.

Nonlinear
- ==LFR

15 2 25 3 35 4 4.5 5

Fig. 5 Comparison Simulation between Nonlinear Model and LFR

6 Conclusion

A very general algorithm for generating LFT models has been developed, which
can be applied to arbitrary nonlinear systems, as long as the system behavior can
be accurately described/approximated with polynomial or rational parametric state-
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space systems. In order to efficiently generate LFT models, a convex relaxation has
been proposed. It is very time efficient and can compute an almost Pareto front
between the LFR order and accuracy.

In the present work, this algorithm has been successfully applied to an industrial
benchmark problem. LFRs of high accuracy and reasonable order could be gener-
ated for a highly nonlinear missile model. The quality of the LFRs has been assessed
using Monte-Carlo simulations.

In the future, it is contemplated incorporating the approximation error made dur-
ing the polynomial fitting as a dynamic unstructured uncertainty. Methods as the
ones described in [15] can likely be adopted for this purpose. Such mixed para-
metric dynamic uncertainty models might be better suited for controller synthesis

purpose.
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