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Abstract – For upcoming and future aircraft, one important challenge to tackle 

is the structural design optimization as it contributes to weight saving, which in 
turn helps improve aircraft performances (e.g. fuel consumption, noise, range) and 
consequently to decrease its environmental footprint. Jamming and runaway of a 
control surface could lead to significant structural loads and consequently must be 
considered in the aircraft structural design. A runaway is an untimely (or uncon-
trolled) deflection of a control surface which can go until its stops if it remains 
undetected. A jamming is a control surface stuck at its current position. In this pa-
per, a procedure for robust and early detection of such failures is presented and it 
is shown that it significantly contributes to the aforementioned challenges. Firstly, 
an appropriate parametric model of the control servo-loop is estimated, and se-
condly, a fault is detected by means of a suitable decision test in the parametric 
space. It is shown that a particular parametric direction can be identified which is 
sensitive to the occurrence of the investigated faults. The proposed approach satis-
fies technical requirements in terms of false alarm, detection time and computa-
tional burden for real implementation. Experimental results with in-flight recorded 
data sets provided by Airbus are presented to show the efficiency of the proposed 
technique. 

Nomenclature  

FCC = Flight Control Computer 
CR2 = Two confidence region  
RARX = Recursive Autoregressive Model with Exogenous Input 
FBY = Fly-by-Wire 
FDD = Fault Detection and Diagnosis 
RLS = Recursive least squares  
ARX = Autoregressive Exogenous Input 
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1 Introduction and problem setting 

Consider a typical Airbus structure of servo-loop control of aircraft moving 
surfaces (Fig. 1.1), where COM is the command channel and MON is the monitor-
ing channel in the Flight Control Computer (FCC) [9]. The COM channel pro-
vides the main functions allocated to the computer (flight control law computation 
and the servo-control of moving surfaces). The MON channel ensures (mainly) the 
permanent real-time monitoring of the COM channel and of all the components of 
the flight control system (sensors, actuators, other computers, probes, etc). Each 
channel receives a dedicated control surface or actuator position thanks to dedicat-
ed sensors. 
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Figure 1.1 : Simplified block diagram of control surface servo-loop  

 
This work deals with the faults located in the servo-loop of the moving surfac-

es, between the FCC and the control surface, including these two elements. It is 
assumed that faults impact only one control surface. Two fault cases are consi-
dered: runaway and jamming (Fig. 1.2). A runaway, or hard-over, is an untimely 
(or uncontrolled) control surface deflection, having very different dynamic beha-
viors, which can go until moving surface stops if it remains undetected [8, 9]. 
Runaway can have various speeds and are mainly due to electronic component 
failure, mechanical breakage or FCC malfunctions. A detected runaway will result 
in servo-control deactivation or computer passivation. After fault detection, the 
system is reconfigured and there is a hand-over between redundant computers and 
associated actuators in case of several actuators per control surface. A jamming 
(or lock in place failure) is a generic system-failure case which generates mechan-
ical control surface stuck at its current position. A well-known negative effect of 
surface jamming is the resulting increased drag, which leads to increased fuel con-
sumption. For example during a coordinated turn, if an elevator is jammed, the 
reaction of the aircraft is weaker and for compensating, more deflection will be 
demanded on the remaining elevator as well as on the Trimmable Horizontal Sta-
bilizer. Due to the coupling with the roll axis, an additional dissymmetrical deflec-
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tion of the aileron will be required. In case of landing with strong crosswind, the 
stuck rudder could generate additional drag. The two considered fault cases also 
lead to additional loads on the aircraft structure, correlated to the amplitude of the 
failure and must be taken into account in the structural system design.  
 

Reconfiguration

Detection Hand over

Surface position for runaway case Surface position for jamming case

 
Figure 1.2 : Control surface position during runaway and jamming cases 

 
The conventional techniques currently in use in aerospace systems ensure high-

est level of safety imposed by current certification process, provide sufficient fault 
coverage (all expected failures are anticipated and uncovered) and achieve a good 
robustness without false alarm [9, 16]. The current industrial practices for control 
surface runaway and jamming detection consist mainly in consistency checks be-
tween two redundant signals computed in the two FCC channels. If the difference 
between both signals is greater than a given threshold during a given time, the de-
tection is confirmed. In the case of runaway, when the system reconfiguration is 
triggered, the control surface has reached a given position (deflection measured in 
degrees), which depends on the fault dynamic. The expected benefit of this work 
is a smaller control surface deflection when the runaway is detected and control 
surface jamming detection at lowest amplitudes. Consequently, the improvement 
of the current state-of-practice monitoring techniques is a challenging issue, as 
earlier runaway detection and reduction of the minimal detectable control surface 
jamming position, while keeping a good level of robustness, mean less loads gen-
erated on the aircraft structure, thus weight saving and reduced fuel consumption. 
From loads point of view, aircraft certification is obtained when it is proven that 
the structure complies with the dedicated regulations [17]. 

 
This work presents a parametric test for early detection of such failures, leading 

to early system reconfiguration, and to avoid significant unwanted structural loads. 
Other model-based control surface fault detection solutions, which preserve the 
structure of current and certificated detection techniques, are presented in [1, 2, 5]. 
 

The paper is organized as follows: a modified exponential forgetting algorithm 
for control surface servo-loop parameter estimation is formulated in section 2. 
Control surface servo-loop modeling is also presented in this section. A parametric 
test decision for on-line detection of abrupt changes is described in section 3. Sec-
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tion 4 is devoted to some simulation results based on real flight data. Finally, in 
section 5 some concluding remarks are given. 

2 An exponential forgetting algorithm for control surface servo-
loop parameter estimation 

The problem of fault detection is formulated as a control surface servo-loop 
parameter estimation combined with a decision test in the parametric space. The 
parameters are estimated via recursive least-squares (RLS) algorithm with expo-
nential forgetting modified for proper on-line implementation. We adopt black-
box modeling obtained by system identification process [6]. In the open literature, 
many studies can be found for FDD using parametric models. See, among others, 
[10, 11, 12, 13, 14]. Here, it is shown that one of the estimated parameters is an 
indicator of the control surface runaway or jamming occurrence.  

2.1 Parameter estimation method  

The first step of the proposed solution consists in recursive parameter estima-
tion of the above control surface servo-loop single-input (the commanded control 
surface deflection computed by the FCC according to the pilot order) single-
output (the control surface position) dynamic system (Fig. 1.1). Black-box model-
ing offers the advantage to use the method for different systems, i.e. for different 
actuator models, different moving surfaces or different aircraft families. 

 
Using all available measurements up to the current time, the input-output 

process dynamics can be described by the Recursive Autoregressive Model with 
Exogenous Input (RARX), written in a linear regression form: 

  (1) )()1()()( kkkky T εθϕ +−=

where  denotes the sampling index, is the output to be predicted and k )(ky )(kε  
is a term describing the noise effect on the system output.  contains input and 
output measurements available at time  and 

)(kϕ
k )(kθ  represents the unknown time-

varying parametric model :  
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where  and nb  are the order model structure and  is the time delay between 
the input  and the output .  

na
u

nk
)(k )(ky

 
The estimated  of the unknown time-varying parameters θ̂ θ  is obtained by 

minimizing the loss function:  

 
 (3)

 ∑
=

− −=
k

i

ik iyiyJ
1

2))(ˆ)((λ

where λ is the forgetting factor,  is known as least squares (LS)  estimate of θ̂ θ  
and  is the predicted value of the output :  ŷ

  (4) )1(ˆ)()(ˆ −= kkky T θϕ

Model (4) assumes that the predicted control surface position is a linear combi-
nation of past pilot order and control surface position measurements. A compari-
son between equations (1) and (4) shows that unknown parameter are estimated by 
minimizing the prediction error )(kε .   
 

The exponential forgetting algorithm consists of: 
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where  is the covariance matrix and  is the innovation gain. )(kP )(kK
 

The choice of λ is a trade-off between fast adaptation and long term quality of 
the estimates. With a small value of the forgetting factor the estimated parameters 
converge to their true value quickly but the sensitivity to noise is increased. Typi-
cal choices of λ are in the range between 0.95 and 0.999 [6]. For robust on-line 
implementation in the FCC, some modifications of (5) are made. Care must be 
taken to prevent covariance wind-up. In fact, exponential forgetting is a method to 
discount older samples of data equally in all directions, so the most recent receive 
the greatest weighting. The approach works well if the incoming information is 
uniformly distributed both in time and in space. Especially for the control surfac-
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es, when the major excitation comes from the variations of the command signal, 
this is seldom the case. Therefore, when the input is not persistent and the old data 
is discarded in the estimation procedure, the covariance matrix can grow exponen-
tially and the estimation algorithm can stop before the parameters convergence.  

 
One method to deal with wind-up is the well-known directional forgetting [14]. 

This algorithm is able to track fast parameter changes and is similar in complexity 
to the standard LS algorithm. The main difference with the classical LS method is 
how the covariance matrix and the innovative gain are updated. Contrary to the 
standard algorithm where old data are uniformly discarded and replaced by new 
data, for the directional forgetting, the covariance matrix and gain are updated on-
ly in the direction where new excited information is obtained. System (5) be-
comes: 
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To avoid numerical instability and estimated parameters deviation, one of the 
most efficient and low computational load method is the Bierman factorization 
[7]. The main advantage of the method is that it requires no square roots, which is 
often time consuming compared with other arithmetic operations. The U-D Bier-
man decomposition factorizes the covariance matrix  into a set of matrices as 
follows:  

)(kP

  (7) )()()()( kUkDkUkP T=

where  is a unit upper triangular matrix, i.e. an upper triangular matrix with 
a unity diagonal and  is a diagonal matrix. Instead of updating the 

)(kU
)(kD P  matrix, 

 and  can then be updated in order to ensure method stability, numerical ac-
curacy and to guarantee non-negativity of the computed covariance matrix.  
U D
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2.2 Control surface servo-loop modeling   

Using past control surface position and pilot order measurements, control sur-
face servo-loop dynamics can be described by model (1). The modeling and iden-
tification process makes use of physical knowledge of the servo-loop behavior for 
choosing the model structure. Because one of the industrial constraints is to devel-
op a method with reasonable computational burden, a second order model struc-
ture is chosen:  

  (8) )1()1()()1()(ˆ 11 −−−−−= kykankkukbky

where  and  are the unknown time-varying parameters to estimate and the 
time delay  between the control surface servo-loop input and output is chosen 
according to in-flight recorded data sets.  

1a 1b
nk

 
For fault detection, when a runaway or a jamming occurs, the measured surface 

position is not consistent with the commanded control surface deflection. In the 
predicted output equation (8), the measured control surface position receives then 
the greatest weighting and almost no weight is put on the pilot order. Thus, one of 
the estimated parameter converges towards zero. That means that the change of 
estimated value  to zero is an indicator of the control surface runaway or jam-
ming case. Consequently, a decision test in the parametric space and not in the 
output space is used. The test will be detailed in section 3.  

1b

 
For a second order model structure, the unit upper triangular matrix  and 

the diagonal matrix  are:   
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Final equations to implement in the FCC for control surface runaway and jam-
ming detection are obtained according to (6), where the decomposition (11) is in-
troduced in the expressions of the innovation gain and the covariance matrix.  

3 Two confidence regions (CR2) parametric decision test 

The second step of the proposed solution consists in a parametric decision test. 
The CR2 test, developed in [3, 4], appears to be well situated for this application. 
The test is used here to detect an abrupt change of the estimated parameter. The 
method does not call for any optimization procedure and so offers the advantage 
of low computational expenditure. For more details about the CR2 test, the inter-
ested reader can refer to [3, 4]. In [3], it is shown that while in mono-dimensional 
case the CR2 test is equivalent to the well-known Chi2 test, their generalization in 
multi-dimensional case leads to different mechanization equations. The CR2 test 
is based on the overlap between the confidence regions associated with two esti-
mates: one on-line estimate obtained via a modified exponential forgetting algo-
rithm and another estimate which is computed from a priori information only.  

 
Let be: 

)(ˆ
2 kθ  : on-line estimated parameter  1b

1̂θ  : a priori nominal value of , performed off-line by using a classical identifi-
cation method  

1b

)(2 kC  : on-line estimated covariance matrix relative to  ; at each step,  
matches with  in (11)  

1b )(2 kC
)(22 kp

1C  : nominal covariance matrix relative to b  1

α  : detection threshold   
 
The estimate  reflects the on-line estimations, which indicate the actual con-

trol surface behaviour, with respect to the “fault” or “fault-free” hypothesis. The 
estimate  reflects only a priori information and assumes the fault-free hypothe-
sis. We assume that under fault-free hypothesis and using an appropriate forget-
ting factor, estimated parameter variations are relatively weak. Therefore, an ab-

2θ̂

1̂θ
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rupt change of the behavior of the parameter estimated is associated with a control 
surface runaway or jamming occurrence. Nominal parameter and covariance ma-
trix are estimated off-line using a real data set. The estimates and their associated 
covariance matrix define two confidence ellipsoids centered on 1̂θ  and 2θ̂  in the 
parametric space (Fig. 3.1). The two confidence regions reflect all expected sys-
tem behaviour. The fault detection procedure is used to decide if the observed 
changes can be explained satisfactorily in terms of the effect of noise and/or mod-
el uncertainties. If not, then we may conclude that a control surface fault has oc-
curred. Specifically, as long as the two confidence regions overlap, the true para-
meter vector may be in both regions and it is reasonable to conclude that no 
failures have occurred. If the two confidence regions do not overlap, the true pa-
ram ter vector cannot be in both regions simultaneously and a  is declared.  

 
e failure

Nominal confidence region

On-line confidence region
t1: Two confidence 

ellipsoids overlapping

t2: Two confidence
ellipsoids not 
overlapping

 
Figure 3.1 : Evolution of confidence regions when a o
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algorithm are summarized below (see [3] for the general case):  

a) First verify that: 
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)ˆ)(ˆ( 12 k .  

 does not hold, the procedure stops (t confide ce re-
gions o erlap).  

r case), the unique negative root 
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b) Find with the dichotomy method (or using a 2nd order polynomial for 
one-dimensional particula 0λ  of  F(λ), 
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If α>test  then the two confidence regions do not overlap and a fault is 
detected.   

 
A test for the occurrence of a failure consists of comparing the overlap test to a 

constant threshold α . The threshold ensures the balance between detection delay 
and false alarm rate which are compliant with the structural design requirements 
and the operational constraints. A higher level of α  to which the overlap test is 
compared, corresponds to larger confidence regions and so higher degree of ro-
bustness (low false alarm rate) with respect to unknown inputs such as uncertain-
ties in the nominal model, system and measurement noise. However, an important 
threshold leads to a greater fault detection delay.  

 
For Gaussian distributed prediction error  and , the threshold can 

be determined from tables of the Chi-squared distribution [15], depending on the 
confidence level, i.e. the probability that the true parameter vector lies within the 
confidence regions. In this work, the Chi-squared table is just used to establish an 
initial range of variations for 

1̂θθ − 2θ̂θ −

α . The design parameter α  is then chosen by in-
jecting runaways and jammings on a real data set. With various thresholds within 
the operating range, different simulations are made in order to test the fault detec-
tion delay and the false alarm rate.  

4 Experimental results  

In order to check the robustness and the detection performances of the method, 
simulations are performed using a real data set recorded during flight tests. Fig. 
4.1 illustrates the evolution of the control surface position when a 60°/s dynamic 
runaway is artificially introduced at t=600s.  
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Figure 4.1 : Pilot order and control surface position for runaway case  

 
Fig. 4.2 shows the behavior of the on-line estimated parameter via a modified 

exponential forgetting algorithm, with an appropriate forgetting factor. As already 
mentioned, the parameter is sensitive to an abnormal aircraft control surface posi-
tion. It converges towards zero when a fault occurs. 

 

 
Figure 4.2 : On-line parameter estimate for runaway case 

 
For the CR2 failure detection procedure, a nominal estimate and covariance 

matrix are set. The covariance matrix characterizes the confidence region about 
the reference estimate. As it can be seen from Fig. 4.3, the method indicates the 
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runaway after a very short delay. It can be noted that when the inequality de-
scribed in step a) does not hold, the criterion value is set to zero.  

 

 
Figure 4.3 : CR2 overlap test for runaway case 

 
For jamming case, simulation results confirm that the proposed method allows 

control surface jamming detection at small amplitudes and even jamming detec-
tion around 0. An example of real elevator position artificially stuck around 0° is 
given in Fig. 4.4. 

 
Figure 4.4 : Pilot order and control surface position for jamming case  
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Figure 4.5 suggests that the estimated parameter is sensitive to control surface 
jamming case. According to the theoretical section,  converges towards zero 
when a jamming occurs. The abrupt change of the estimated parameter behaviour 
is detected by the CR2 decision test. Control surface stuck around 0 is then de-
tected by the new strategy, without degrading the robustness.  

1b

 

 
Figure 4.5 : On-line parameter estimate for jamming case 

 
 

 
Figure 4.6 : CR2 overlap test for jamming case 
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5 Concluding remarks     

In this paper, a method for fast and robust detection of abnormal control sur-
face position is presented. The detection procedure is based on estimated parame-
tric models followed by a decision test on a carefully chosen direction in the pa-
rametric space. That means that some parameters deviations are caused by the 
occurrence of the researched faults. Firstly, an RLS algorithm with exponential 
forgetting is used for estimation of a black box model of the control surface servo-
loop. The basic algorithm is modified for proper on-line implementation in the 
FCC, i.e. to prevent covariance wind-up and numerical instability. The directional 
forgetting is then chosen, where a U-D decomposition of the covariance matrix is 
used. Secondly, a decision test in the parametric space is applied for fast fault de-
tection. The test checks the agreement of two estimates, one based on on-line es-
timation via an updated exponential forgetting algorithm and another based on a 
priori information. The technique offers the advantage of low computational load 
for on-line implementation and a fast response to runaway and jamming cases. 
Furthermore, the approach is easy to set up and does not require many detailed in-
formation about the system to be modeled. Another advantage is the possibility to 
reuse the method for a new system, i.e. for different actuator models, different 
moving surfaces or different aircraft families. 
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