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Abstract This paper presents a flight state estimator which couples stereo vision,
inertial (INS), and global navigation satellite system (GNSS) data. The navigation
filter comes with different operation modes that allow loosely coupled GNSS/INS
positioning and, for difficult conditions, improvements using visual odometry and
a tighter coupling with GNSS pseudo-range (PSR) data. While camera systems are
typically used as an additional relative movement sensor to enable positioning with-
out GNSS for a certain amount of time, the PSR data filtering allows to use satellite
navigation also when less than four satellites are available. This makes the filter even
more robust against temporary dropouts of the full GNSS solution. The application
is the navigation of unmanned aircraft in disaster scenarios which includes flights
close to ground in urban or mountainous areas. The filter performance is evaluated
with sensor data from unmanned helicopter flight tests where different conditions
of the GNSS signal reception are simulated. It is shown that the use of PSR data
improves the positioning significantly compared to the dropout when the signals of
less than four satellites are available.

1 Introduction

Positioning and navigation with limited satellite reception is one of the current chal-
lenges for unmanned vehicles. Global satellite navigation has its known drawbacks
such as a varying accuracy due to the satellite constellation, atmospheric errors, or
possible signal interruption and reflection. Unmanned aircraft navigation becomes
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2 F. Andert et al.

problematic especially in the proximity of ground objects, for example in flights
through urban or natural canyons. Especially such scenarios require abilities to re-
duce the positioning uncertainty for safe flights without collisions. The combina-
tion of satellite navigation (GNSS), such as GPS or the upcoming Galileo system,
with inertial systems (INS) is quite common. But the ability to compensate longer
satellite signal dropouts depends on the accuracy and drift rates of the INS, and
the available technology for small and lightweight unmanned aircraft is presently
insufficient [6].

Fig. 1 DLR’s 13 kg helicopter with a stereo camera, onboard image processing and GNSS/INS
navigation filtering.

The application context of this paper is low-altitude outdoor exploration flights
in disaster scenarios with the unmanned helicopter shown in fig. 1. Since cameras
are often on board these vehicles for various applications and their motion can be
obtained from image sequences, it is straightforward to use them for improving the
navigation solution here as well. The developed solution should be able to be run un-
der difficult conditions and also in unknown areas, this is why the usage of a-priori
knowledge from maps as proposed in [11, 14] is not suitable here. With that, only
relative movements are determinable from the camera images so that the presented
solution will be influenced by accumulating errors as soon as satellite navigation be-
comes unavailable. Contrary to many other approaches, this paper does not address
scaling issues that come with monocular cameras being solved by integrating inertial
measurements into the motion estimator [22, 27] which determines the scale with
respect to the observed accelerations, or by using additional sensors like a barometer
[1] or distance sensors like laser scanners as proposed by [25]. Instead, this approach
uses a calibrated stereo camera to determine relative 3D movements and rotations.
Similar approaches are used in [10, 13, 16]. However, the developed filter might be
further improved by the mentioned related work so that laser scanners, monocular
cameras, barometers, and many other sensors can be combined with the presented
filter instead of the stereo camera.
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A Flight State Estimator with Stereo-Vision, INS, and GNSS Pseudo-Ranges 3

Beside the usage of a camera as an additional sensor for the GNSS/INS naviga-
tion filter, the paper addresses the problem of partial GNSS signal dropouts. This
concerns signal receptions of three or less satellites which do not give the com-
plete position information by themselves. In these cases, a classical loosely coupled
GNSS position support of drifting inertial data would fail. However, the PSR data
give some hints about the position (e.g. a line in the case of three satellites) which
can be matched with the information from the inertial and vision system [29]. If now
the position can be recovered, the proposed navigation filter reduces the chance of
positioning dropouts, especially in cluttered outdoor environments where the num-
ber of visible satellites may be often low.

2 Related Work

The idea of including visual information into a navigation filter to localize a vehicle
in obstacle-prone or indoor environments is very promising. Within the last years,
many technical advances have been evolved from the off-the-shelf availability of
small and easily manageable aircraft (like quadrotors) and lightweight cameras and
computers with sufficient performance. This section gives a brief overview of the
different ideas that act as a basis for the principles developed in this paper.

2.1 Image Processing and Visual Odometry

Camera motion estimation is generally based on the motion visible in the image
sequences. This requires a scenery with mostly unmoved objects within the cam-
era’s field of view and some identifiable patterns to find homologous points in the
images representing the same stationary object points. Technically, this refers to
identifying a sparse set of homologous points determinable by feature detection and
tracking algorithms. In the stereo image case, corresponding points between two
image pairs are to be identified with the advantage that the absolute scale of motion
is determinable if the objects are within the usable range of stereo-based distance
measurements.

One common visual odometry principle breaks the camera positioning down to a
camera motion or relative orientation estimation between two images or image pairs.
For the stereo case that produces 3D image features, the transformation between
the two resulting point clouds can be determined by general registration algorithms
[5, 8] or those optimized for stereo vision [17]. The results are camera pose updates
that can be integrated into the camera trajectory. The easiest way would now be to
incrementally integrate all succeeding images, but due to the large amount of little
erroneous steps, the accumulation error will be rather large. Better results are to be
expected when keyframes are used. For each update step, this means to look back
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in the image and feature history and find the oldest point cloud with enough overlap
with the newest one so that a registration is still possible.

The other very common principle has its roots in photogrammetric triangulation
and resectioning as well as in simultaneous localization and mapping (SLAM), see
[25] for a recent overview within the aerial robotics domain. The idea is to project
the observed image points of all images into the same 3-D coordinate system, and
to get the current camera position by the registration between this map and the cur-
rent image points. The correspondences between map and image points are usually
known since all map points have been derived from the previous images. In addition
to this registration, the current image points are fused to the map, which means to
add new points and to reduce the statistical errors of the existing ones.

2.2 Vision-Based Navigation Filtering

Based on the different methods to measure the camera’s motion, there are a lot
of ways how vision data are integrated into INS or GNSS/INS navigation filters.
All presented approaches have in common that they are based on a constant and
known (but potentially biased) camera alignment on the vehicle. With that, camera
measurements can be transformed into the vehicle-relative system, yielding a sensor
that serves vehicle motion components.

An early approach for UAVs that is completely integrated into the navigation
and control system is presented in [18]. A monocular, downward-looking camera
is used, and image feature positions are directly integrated as measurements into
an Extended Kalman Filter (EKF) which estimates the flight state. This is simple
since no registration or other camera orientation estimation algorithms are applied,
but also effective since it is shown that GPS dropouts of more than one minute can
be handled including the stable control of an unmanned helicopter. However, the
approach only integrates in-plane translational movements from the camera images
and assumes a correct measurement of the ground distance.

The more complex image processing procedures such as the mentioned relative
motion estimation and SLAM methods are also promising to enhance existing flight
estimators. The main difference between both techniques is that relative motion con-
sists of translational and angular movements between two images and acts more as
a kind of speed sensor to be integrated into the flight state estimator [27]. Contrary
to that, SLAM directly returns the camera pose based on the current and all previ-
ous images, and especially the position seems to be integrable into the navigation
filter [1]. Both methods have been successfully integrated into aerial systems. How-
ever, all of these methods, including the direct use of image feature positions, are
all affected by accumulating errors over time. An exception is the case where longer
back-dated features are still visible in the current image so that a direct registration
is possible. This means for the practical use that accumulating errors can theoreti-
cally be eliminated as long as the vehicle is in hovering mode. For example, this is
confirmed by [3] where a vision-based and drift-free hover stabilization is presented.
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A Flight State Estimator with Stereo-Vision, INS, and GNSS Pseudo-Ranges 5

2.3 Positioning with a Low Number of Satellites

Navigation with three satellites would be easy if a precise, i.e. atomic clock is
present [23]. Since this is not an option for small unmanned aircraft and due to
the cost not even for most other applications, the data from other sensors are to be
brought in to get a plausible estimation of the current position. GNSS/INS naviga-
tion filters can generally handle dropouts of the GNSS signal by integrating inertial
data. For example, it is shown in [28] that the drift can be significantly reduced
when GNSS/INS raw data such as pseudo-ranges and phase information are tightly
coupled into the state estimator. Nevertheless, this is not free from drift given in-
complete satellite reception, which might still be insufficient for UAV navigation
where no tactical grade inertial measurement units are used.

3 Image-Based Motion Estimation

This section describes the method to determine relative motion estimates from cam-
era image sequences. As the principles are widely known from the related literature,
the basics are only briefly introduced. Focus of this section are supplementary im-
plementations, explained in more detail.

3.1 Determining Optical Movements

Visible disparities of a set of selected image points {p : (x,y)>} are the basis for
camera movement determination, see fig. 2. Based on an initial point set {pL

t } for the
left camera from corner detection or the previous tracking step, a tracking over time
{pL

t } → {pL
t+1} is performed, here with the Lucas-Kanade algorithm [19]. Stereo

comparison for every time stamp {pL
t } → {pR

t } is done in an analogous way. Fol-
lowing stereoscopic math (e.g. [20]), this returns a point cloud with 3D features
{q : (x,y,z)>} in camera coordinates for every image frame time stamp t. For fur-
ther calculations, these point clouds are transformed to the vehicle coordinate frame
by using an initially measured camera alignment.

3.2 Ego-Motion Estimation

Generally, the relative motion is denoted as a 4× 4 transformation matrix T con-
taining the 3×3 rotation matrix R and the translation vector t in the form

T =

[
R3×3 t3×1
01×3 1

]
. (1)
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Fig. 2 Relationship between
the image sequence and the
optical movements. The cor-
respondence of points is
determined between different
images of the left camera
(temporal movement) and
between the two images from
the cameras (spatial dispari-
ties). The circles and the lines
show the feature points and
their movement vector.
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Let the matrix Tt1:t2 define the relative movements between the time stamps t1
and t2. From stereo image points, it is determined through the rigid transform of
the point clouds {qt1} and {qt2}. Several algorithms which do or do not require
initial correspondences have been tested to do this job, and it turned out that the
iterative closest point (ICP) algorithm with nonlinear optimization backend from
the Point Cloud Library [24] performs best if no other hints like inertial data are
given. Since the correspondence of points [qt1 ,qt2 ] is known from feature tracking,
the input point clouds are reduced to the corresponding elements that exist in both.
This avoids false convergence and improves the estimation results.

The fitness of the transformation is returned by the error covariance matrix
Cov({Tt1:t2qt1},{qt2}) based on point distances between the point clouds trans-
formed to the same coordinate system. Here, the sets {qt1} and {qt2} only include
the points that remain relevant for transformation estimation, i.e. outliers are not
included. The matrix elements are e.g.

covxy =
1
n

n

∑
i=1

(xt1,i− xt2,i)(yt1,i− yt2,i), (2)

the other matrix elements are calculated analogously. Since the centroids of both
transformed point clouds are equal after an ICP transform, the mean distance is zero
and omitted in the equation.

3.3 Using Key Frames

While classic visual odometry is based on incremental transformations Tt−1:t , the
usage of key frames means to estimate the transformation Tt−τ:t between the current
frame t and the oldest possible frame t− τ (i.e. τ frames older) from the image se-
quence. As already mentioned, this will presumably reduce the accumulating error.
Transformations are determinable as long as an overlap exists between an older im-
age and the current one. Practically, this refers to the availability of corresponding
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A Flight State Estimator with Stereo-Vision, INS, and GNSS Pseudo-Ranges 7

homologous points which were already detected in both images. Fortunately, this
does not mean that the image sequence has to be saved. It is sufficient to store the
features {qt} of the images. Because the probabilities of a successful transformation
determination between the current image and two older ones with the same feature
set are supposedly similar, it is further sufficient to store the features of those im-
ages where new features are added and mark them as a key frame. This results in a
reduced set of key frames with only the oldest frame from each sub-sequence where
the images have all the same tracked features.

Fig. 3 Using key frames
to determine camera move-
ments. Comparing every
new frame with the first one
(a), jumping to the next key
frames (b,c), using the last
frame as key if no other key
frame is available (d). The
curved arrows show which
frames are being compared
during the sequence.

t

t

t

t
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1 3 6

71 3 6
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Figure 3 illustrates how the key framing process works. In (a), the ideal case is
shown where the current image features are compared to the features from image 1.
Every time new features are added to the tracking list, a key frame (i.e. the list of
features) is stored. In the shown example, key frames from the time stamps 3 and 6
are saved. This does not mean that they are immediately used for comparison with
the next frames. Older key frames will still be used as long as the transformation
calculation is successful.

A key frame is not valid anymore and will be deleted if the number of feature
points having corresponding ones in the current frame becomes too low, or if the
attempt to estimate the relative transformation fails. In these cases, the next oldest
possible key frame will be used until a valid transformation returns. An example is
shown in (b) where frame 3 is used from now on as the oldest valid key frame. The
advantage of storing multiple key frames is shown in (c) where frame 6 is used as
the key frame for the time step 10 and 11, and after it becomes invalid, another rather
old frame 7 is available at time step 12. Beyond that, subfigure (d) shows the case
where no valid key frame is available at time step 13 and the last frame 12 will be
used as the new key from now on. Nevertheless, it remains the rather unlikely case
where no transformation to older frames is determinable at all. Resulting odometry
gaps are handled by the navigation filter.

WeAT1.3

42
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3.4 Using Feedback of the Predicted Flight State

In the presented setup illustrated in fig. 6, the predicted flight state is coupled back
to estimate relative motions. With the states corresponding to the images, the point
clouds are transformed to geodetic coordinates, and the ego-motion estimation di-
rectly returns the geodetic movement and rotation. In addition to that, the rotation
is already obtained from inertial data (i.e. both geodetic point clouds do not have
any rotation to each other in the ideal case), and it is sufficient to estimate the trans-
lational movement. This can easily be done by calculating the difference of the
point cloud centroids. Combined with an outlier filtering that removes correspond-
ing points with large distances remaining after transformation, this returns the cam-
era movement tt1:t2 . In the results section, it is shown from recorded image data that
this performs better than the estimation of all six degrees of freedom as described
before. Therefore, only the translational movement is being coupled with the flight
state estimation filter.

4 State Estimation

The flight state estimation follows the common principles described in [7, 9] which
is a part of the navigation research at the TU Braunschweig. The state x is denoted
as the vector

x = (p>,v>,q>,b>a ,b
>
ω )
> (3)

with WGS84 position vector p(3×1) (latitude φ , longitude λ , ellipsoidal height h),
velocity vector v(3×1), attitude quaternion q(4×1), and biases of acceleration ba(3×1)
and turn rates bω (3×1).

The Extended Kalman Filter (EKF) loop to estimate x contains the high-frequency
time update, i.e. the prediction step with inertial data

x̂−k = f (x̂k−1,uk)

P−k = Φk−1Pk−1Φ
>
k−1 +Q

(4)

with the predicted state x̂−k and its covariance P−k at step k based on the previous
estimation and the input vector from inertial data uk (see sec. 4.1). Lower-frequency
GNSS and vision data are measurement vectors zk (see sec. 4.2 and 4.3). If zk is
available, the correction step is

Kk = P−k H>k (HkP−k H>k +Rk)
−1

x̂k = x̂−k +Kk
(
zk−h(x̂−k )

)
Pk = (I−KkHk)P−k

(5)

yielding the estimator gain matrix Kk, the corrected estimation x̂k and its covariance
matrix Pk. The other symbols are: measurement matrix Hk, nonlinear measurement
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A Flight State Estimator with Stereo-Vision, INS, and GNSS Pseudo-Ranges 9

function h(x̂−k ), transition matrix Φk, process noise covariance matrix Q, and mea-
surement noise covariance matrix Rk. There are two different update steps based
on either vision or GNSS, which are run in succession if data from both are avail-
able. This means that the vision update step yields a new state prediction, which is
updated by GNSS data afterwards. Detailed explanations about the prediction and
update steps are given in the next subsections.

4.1 Prediction with Strapdown Calculation

The inertial system measures three-dimensional body-fixed accelerations and turn
rates. This defines the vector u = (a,ω). Based on this information, the earth’s grav-
ity and known initialization values for position, velocity, and attitude, the so-called
strapdown calculation f (x̂k−1,uk) returns new values for every time stamp. The cal-
culation consists of differential equations implemented in the navigation software.
Basically, it integrates the accelerations to velocities and twice to positions and the
turn rates to the attitude angles. Further details such as the compensation for the
earth’s rotation and equations are given in [7].

4.2 Update with Image Data

As already mentioned, it turned out that visual odometry performs best when the
estimated flight state is coupled back to the image processing, which will then esti-
mate only position differences between two images. Let the vector tt1:t2 (see eq. 1)
be the estimated motion, pt1 “plus” tt1:t2 would return the current position estimate.
Although the cameras are triggered by the navigation clock based on inertial and
GNSS data, the times t1 and t2 may differ slightly from the filter update time stamps.
Hence, the closest time stamps tk1 and tk2 of filter updates k1 and k2 are the basis for
the measurement

zk = p2w(tt1:t2 ·
tk2 − tk1

t2− t1
,pk1) (6)

of the image-based position. The function p2w(t,p0) denotes the function which
converts a Cartesian coordinate translation vector t relative to a fundamental point
p0 to the geodetic system [21]. Since the values of zk directly give the position, the
corresponding measurement matrix is constant

Hk =

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0

 (7)

and accordingly, h(x̂−k ) returns the first three values of the vector x̂−k .
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The matrix Rk is taken from the covariance matrix as described in sec. 3.2. Like
the motion, it is “stretched” slightly with the quotient of the different time durations.
It is

Rk =

(
tk2 − tk1

t2− t1

)2

Cov({Tt1:t2qt1},{qt2}). (8)

4.3 Update with GNSS Data

The update step uses GPS pseudo-range data and follows the principles presented
e.g. in [12, 15]. Details of this method are described in the literature, the basic ap-
proach is the following: For the i-th satellite (i = 1, . . . ,n), the used data include the
pseudo-range ρi, its standard deviation σi as well as the time errors and satellite po-
sitions from the ephemeris data. To include this into the state filter, the measurement
vector zk is built by the measured ranges, it is

zk = (z1,z2, . . . ,zn)
>
k (9)

containing the corrected pseudo-ranges from the n visible satellites. It is

zi = ρi− c0 (∆ t− tSat,i +∆ ttropo,i +∆ tiono,i) (10)

with the measured pseudo-ranges ρ1,ρ2, . . . ,ρn and the time differences from clock,
tropospheric, and ionospheric errors multiplied by the speed of light c0.

The observation matrix H for the k-th update is the Jacobian matrix

Hk =


∂ρ1

∂φ

∂ρ1

∂λ

∂ρ1

∂h
0 . . . 0

...
...

...
...

. . .
...

∂ρn

∂φ

∂ρn

∂λ

∂ρn

∂h
0 . . . 0

 (11)

of pseudo-range derivatives with respect to the geodetic position.
To map x̂−k onto a predicted measurement, the function h(x̂−k ) returns a vector

ẑ−k =
(
ẑ−1 , ẑ

−
2 , . . . , ẑ

−
n
)>

k with the predicted pseudo-ranges. It is the Euclidean dis-
tance

ẑ−i = ‖pSat,i−w2e(p̂−)‖2 (12)

between the cartesian earth-centered and earth-fixed (ECEF) i-th satellite position
pSat,i and the result of the function w2e(p̂−) which converts the predicted WGS84
position into the ECEF system [21].

The error covariance matrix Rk is defined by the standard deviations σi of the
pseudo-ranges, it is

Rk = diag(σ2
1 ,σ

2
2 , . . . ,σ

2
n )k. (13)
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5 Experimental Setup

Goal of this work is the implementation of a vision-aided navigation filter and its
evaluation during flight test. This section gives an overview about the hardware,
general software architecture, and the reference system for validation.

5.1 Flight Hardware

Testing vehicle (fig. 4) is the 13 kg helicopter ARTIS (Autonomous Rotorcraft
Testbed for Intelligent Systems) of the DLR Institute of Flight Systems [2]. The
navigation sensors are a ublox-6 GPS as the GNSS receiver and a custom-built IMU
with two 2-axis accelerometers (Bosch SMB 225) and and three 1-axis gyros (Bosch
SMG 074) including calibration and temperature compensation. Image sensors are

Fig. 4 ARTIS helicopter
with navigation and image
processing payload.

stereo
camera

vision
computer

navigation
module

LAN/WLAN
module

power
supply

1.5 kW
engine

Fig. 5 The navigation module
with its internal components.

IMU

GPS module

navigation computer 
with Intel ATOM 
processor
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two digital global shutter firewire cameras (AVT Marlin F131B, resolution: max.
1280×960 px, framerate: max. 30 Hz, lens/focal length: 1265 px) with a baseline
of 30 cm. Synchronous image exposures are triggered with a signal based on the
pulse per second output from the GPS receiver. The navigation module (fig. 5) com-
bines GPS, INS, and navigation computer in a single box, separated from the image
processing computer.

5.2 Processing Software Architecture

As navigation and image processing are separated by the hardware, the tightly cou-
pled filter is based on two software frameworks with bidirectional data exchange.
Fig. 6 shows the core components.

Feature 
Identification

Tracking
over Time

3D Stereo
Matching

Relative Motion
Estimation

3D Stereo
Matching

System Clock/
Trigger

IMU

State Prediction State Correction

GNSS
Navigation
Computer

Vision
Computer

Fig. 6 Navigation and image processing software components.

The flight state estimator follows Extended Kalman Filter (EKF) principles with
a state prediction based on high-frequency inertial measurements (here: 100 Hz up-
date) and a state correction with measurements from sensors with lower update rates.
These are the GPS pseudo-range (PSR) data and the camera-based relative motion.
Relative motions are estimated with six degrees of freedom (DoF) onboard the im-
age processing computer from homologous image points that are identified with a
feature tracking algorithm. The relative motion estimation is additionally supported
by the predicted flight state.

5.3 Reference Measuring

The computed solution with full and simulated limited GNSS reception is refer-
enced to an augmented high-precision positioning based on the raw satellite data
and post-processing corrections from state survey services [26]. The reference po-
sition has an accuracy of few centimeters when the availability of satellite data is
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sufficient as in the flight tests on a model aircraft flight field. As anticipation for
future flights in urban environments with real signal dropouts, laser-based track-
ing and measuring was also established as a reference independently from GNSS
signals [4].

6 Flight Testing and Evaluation

The presented methods are tested with data recorded during remotely controlled
helicopter flights over a model airfield with a grass runway, some vegetation, and a
small house at one side where the ground control station car is parked. The cameras
are looking downward, example images are shown in fig. 7. In the following section,
the development steps are tested constructively. First, it is shown whether the usage
of key frames from sec. 3.3 is a useful procedure within visual odometry. Second,
the visual relative movement calculation is improved with the feedback from the
flight state prediction from sec. 3.4. And finally, these movements are forwarded to
the state estimator from sec. 4.

Fig. 7 Examples of the analyzed image sequence. Images of the left camera of the stereo rig at the
edge of the airfield (left) and over the ground control station car next to the house (right).

6.1 Visual Odometry without and with Key Frames

In this pre-test, the relative movements Tt1:t2 are integrated to absolute cartesian
vehicle orientations Xt2 (position and rotation). Analogous to eq. 1, X are 4× 4
matrices describing the vehicle position and attitude (direction cosine matrix) at
the indexed time. This integration can be done if an initial X0 is available. The
values of X0 are taken from the GNSS/INS flight state at the beginning of the image
sequence. The set {Xt : t = 1, . . . , tmax} denotes now the path calculated only from
accumulating image data.
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In the incremental version, Xt is recursively

Xt = Tt ·Tt−1 · . . . ·T1 ·X0

Xt = Tt ·Xt−1,
(14)

which means to accumulate a number of t relative movement steps. Contrary to that,
the version with key frames calculates

Xt = Tt−τ:t ·Xt−τ . (15)

Depending of the size of τ−1 skipped frames within every accumulation step, much
fewer relative movements have to be accumulated. This means theoretically, that the
accumulation error is reduced and theoretically dissolved when the first frame can
be kept as a key frame. This is the case when the current image is still overlapping
with the first one, for example in hovering flight. However, the benefit from key
frames should be decreasing when flying faster.

Fig. 8 Trajectory Xt by accu-
mulating relative orientations
from the Iterative Closest
Point (ICP) algorithm, x-
position coordinate. The black
graph shows a successive ac-
cumulation of 150 image
relations within 15 seconds.
The blue graph shows the
accumulation with key frames
and fewer steps. Reference
(red): GNSS/INS position. -40
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m
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GNSS/INS
Successive ICP rotation/translation
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As a result from a recorded image sequence, fig. 8 shows the integrated positions
calculated from successive frames and with the use of key frames. Several trials
have suggested that the optical flow of 150 to 250 features should be measured
by the tracker for suitable results. The vision-based position starts without relative
error to the GNSS/INS path and drifts due to translational and rotational errors with
every update. The differences between both curves can be interpreted as follows: In
the successive accumulation, the relative steps are quite small, and thus the errors
(e.g. large jump at 13.5 s) are directly transferred to the next step (blue graph).
Contrary to that, the relative steps are larger when referring to older key frames
(black graph) and since the current step can cause a jump from one key frame to the
next, some more fluctuation is transferred to the resulting positions. A positive effect
is that erroneous steps are not integrated in every case, which is visible through the
(removable) peaks (at 1 s, 4 s, 11 s) in the position coordinate. And the overall
accumulation error is as expected lower than with successive relative accumulation.
However, both methods accumulate errors so that a camera should not be used as
the only sensor for navigation.
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6.2 Visual Position Estimation with State Feedback

This next evaluation takes a longer image sequence and couples the flight state back
to the visual motion estimation. Here, the GNSS/INS flight state is coupled back so
that the resulting absolute position by visual relative measurements is not accumu-
lating errors with regard to the GNSS/INS path. (Of course it is eventually drifting
when the state estimator drifts in cases where no satellite signals are available.) This
test only uses the key frame version of visual relative measurements. The relative
transformation Tt−τ:t is calculated by the transformed image point clouds into the
geodetic system, i.e. the sets {qg

t−τ} and {qg
t } with

qg
t−τ = X̂t−τ ·qt−τ ,and

qg
t = X̂−t ·qt

(16)

by using the transformation matrices containing the position and rotation of the
corrected old state X̂t−τ or the predicted current state X̂−t .

Results from flight tests are shown in the figures 9–11. The plots show excerpts
from a 15-minute flight. It is examined whether a visual estimation of Tt−τ:t with
only three translational degrees of freedom (sec. 3.4) with the help of inertial ro-
tations gives additional performance compared to the previous visual estimation of
Tt−τ:t with the full six degrees of freedom by using the ICP algorithm. Contrary to
the vision-only method above, only 50 to 100 tracked features are required to get the
viable results that are presented here. This decreases the computation time for image
processing. For a better visualization where the state is fed back, a curve based on
null transforms Tt−τ:t = I4×4 is drawn into the plots. This results in horizontal lines
with jumps to the GNSS/INS comparison plot every time a new key frame is used.

Fig. 9 Visual trajectory Xt by
back-coupling the estimated
state, x-coordinate. The plot
includes visual 6-DoF estima-
tion (black), 3-DoF estimation
(blue), null transform (green),
and GNSS/INS reference
(red). -50
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In fact, the figures do not prove a drift-free state estimation with only the visual
odometry, but they indicate its behavior when used in combination with state feed-
back. The curves can be interpreted as the input of the vision-based positions into
the navigation filter. The plots show that the visual 3-DoF estimation performs sig-
nificantly better than the 6-DoF estimation, especially when the time between two
key frames is large such as in the time between 48880 s and 48885 s, or 48885 s and
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Fig. 10 Visual trajectory
Xt by back-coupling the
estimated state, y-coordinate. -40
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Fig. 11 Visual trajectory
Xt by back-coupling the
estimated state, z-coordinate. -30
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48893 s. The higher performance of the 3-DoF estimation (translation only) is visi-
ble for all three axes. The most obvious reasons are scene geometry and texturing,
and the rather narrow field of view of the cameras: The aircraft flies over a mostly
planar scenery while looking downward, and therefore it is hard to distinguish be-
tween forward movements and pitch rotations, or between sideward movements and
roll rotations from vision only. Here, the INS-based image feature point cloud trans-
formation helps, and the 3-DoF estimation does not have to deal with these ambi-
guities. Beside that, it was observed that the highest uncertainty and errors are with
the visual z-direction. This is mainly caused by the nature of stereo geometry with
increasing range errors.

6.3 Integration of Visual Movements into the Flight State
Estimator

The forward integration of stereo-based movements into the Kalman filter closes the
loop between the navigation and image processing components. The following re-
sults are again based on the recorded data presented in the previous section. Here, the
navigation EKF directly combines GPS pseudo-ranges, inertial data, and the visual
3-DoF movements that were improved with state predictions. With full satellite data
reception, it was observed that the GNSS/INS trajectory is only slightly changed
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when visual data are included. This is due to the state estimator that weights satel-
lite data with a higher confidence.

To show the filter capabilities in the case of satellite signal dropouts, the path is
calculated again from the raw data but with partly and fully disabled satellite data.
Results are shown in the figures 12 to 14 where a visibility of less than four satellites
is simulated. The evaluation is based on two (seconds 48850 to 48870) or three
satellites (seconds 48870 to 48900). A further distinction between the reception of
zero and incomplete satellite signals allows to show the effects of the GNSS raw data
handling. Thus, the presented results give an idea how the filter handles incomplete
satellite constellations.

Fig. 12 Trajectory Xt from
full flight state estimation,
x-coordinate. GNSS sig-
nal dropout from 48850 s
to 48900 s. Data from full
dropout (0 satellites) with
GNSS/INS only (red), full
and partial dropout with vi-
sual 3-DoF estimation (dark
and light blue), and complete
data availability (black). -100
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Fig. 13 Trajectory Xt from
full flight state estimation,
y-coordinate. -75
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Fig. 14 Trajectory Xt from
full flight state estimation,
z-coordinate. -300
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First of all, the results show that the inertial solution (red curves) has a high
drift rate in all axes, its quadratic behavior is especially visible for the x- and the
z-coordinates. After the 50 second dropout, errors of roughly 150 m (north), 50 m
(east), and 250 m (down value) are observed with respect to a full satellite constel-
lation (black curve). If now the visual odometry is switched on (dark blue curves),
the errors can be reduced, but still remain large at 50 m (north), 25 m (east), and
200 m (down value). Especially the down value has the largest error, probably due
to the nature of stereo cameras where the highest uncertainty is with the camera
z-coordinate along the optical axis.

For partial satellite dropouts, large improvements are produced by the usage of
GNSS pseudo-range data. The light blue curves show the estimated position in such
a case. If at least two satellites are visible (seconds 48850 to 48870), the error is
slightly reduced but still too large to navigate correctly. If three satellites are avail-
able (seconds 48870 to 48900), the error can be significantly reduced compared to
the plot without satellites (dark blue), and no typical drift or other error accumula-
tions are observed. With that, both visual odometry and satellite pseudo-range data
evaluation improve the state estimation under these conditions. In these tests, at least
three satellites are required to get a suitable state estimation.

7 Conclusion

Topic of this paper is the improvement of unmanned aircraft state estimation with
the help of cameras. Satellite navigation and inertial data fusion is quite common,
but comes with a lot of disadvantages like satellite signal errors especially in the
proximity of obstacles and the high drift rates of small inertial measurement units
which do not allow long integration times. However, this is the basis for the pre-
sented developments which use an extended Kalman filter solution for data fusion.
The paper analyzes a variety of approaches how to measure the ego-motion with
cameras by processing the image sequences. The presented option uses a stereo
camera to handle the metric scaling issue that comes with monocular vision and
computes the visible 3D movements within a sequence of such image pairs. The
ego-motion can now be extracted from the characteristics of such visible move-
ments, but it is often hard to decide whether the movements visible in the images
are caused by the camera’s rotation or by its displacement. To solve this ambiguity,
the presented approach estimates the rotation by the inertial measurements so that
the image processing part does only have to estimate the translational movement. It
is shown with the tests that this easier estimation of only three degrees of freedom
is significantly increasing the overall performance.

Similar to inertial data, visual information will accumulate errors over time be-
cause they are relative between two time stamps. Such errors can be reduced when
the current image is still overlapping with a rather old one that has been stored as
a key frame for movement determination, meaning a theoretical elimination of the
accumulation error during hovering mode. In the presented tests, this is drifting also
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at slower movements, and it has to be tested whether this will drift in hover as well.
However, the combination of visual and inertial information is going to reduce the
accumulation error when no satellite data is available, being an option for navigation
with small unmanned vehicles.

Another aspect affects the absolute positioning with satellite data whose errors
and dropout times should be reduced. Since many robotic applications directly use
the position or velocity outputs from the receiver, no information is given when
less than four satellites are visible. On the other hand, the known coupling methods
of satellite pseudo-range with inertial data show that the positioning accuracy can
be highly improved in cases where no full satellite solution is possible. Based on
that, the presented filter also integrates the range data directly instead of using the
pre-computed positions, being able to improve the overall performance in partly
occluded areas.
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