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Abstract This paper presents an hardware device and associated algorithms for the
navigation of miniature rotorcraft-based Unmanned AerialVehicles (UAVs). Unlike
many studies that focus on navigation solutions adapted to one single type of mis-
sion and environment, the proposed approach aims at simultaneously dealing with
indoor and outdoor missions, as well as being robust to sensors’ loss and/or faulty
measurements. An hardware device with low-cost sensors is presented as well as al-
gorithms that are used to estimate online the vehicle’s state composed of its position,
attitude and velocities. This estimation architecture, based on complementary and
Kalman filters, enables measurement selection and fusion from different sensors, de-
pending on the current environment (indoor or outdoor). Algorithms are described
and simulation results are provided to illustrate and compare the performance of the
proposed approach.

1 Introduction

Unmanned Aerial Vehicles (UAVs) have been used for the past fifteen years, mainly
to the benefit of governmental entities (defence, law enforcement agencies, etc.).
While reconnaissance was and still is the prime purpose of UAVs, their outstanding
overall capabilities also make them premium candidates forcivilian activities such
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as, but not limited to, aerial mapping or critical facilities surveillance. Thanks to
technological breakthroughs over the past few years, miniaturization and reduction
in costs, there has been growing interest in miniature, easy-to-use, cheap, fully au-
tonomous UAVs, able to operate indoors as well as outdoors. Rotorcraft-based vehi-
cles are especially widely used thanks to their vertical take-off and landing (VTOL)
and stationary flight capabilities.
To control these vehicles and make them autonomous, information such as attitude
angles, velocities (linear and angular), position, localization wrt environment, etc.,
are required during the flight. Such information can be computed by navigation algo-
rithms from measurements provided by on board sensors. Measurements provided
by IMU sensors are widely used to estimate attitude angles [11, 13]. These can be
combined with GPS data in outdoor environments to recover for position and ve-
locities [8, 17, 18]. Artificial beacons such as external cameras have also been used
[14]. For indoor environments, information provided by exteroceptive sensors can
be used to localize the vehicle. Visual methods such as visual SLAM have been ex-
perimented successfully [2]. SLAM techniques have also been implemented using
a laser range finder sensor [1, 7]. External positioning systems based on ultrasonic
sensors have also been developed for indoor localisation [4].
Most of these work focus on navigation problems for UAVs, regarding to a given
application, or to a given type of mission in a given environment. However, minia-
ture UAVs can be used in very different and/or changing environments during a
given mission. Depending on these conditions of use, measurements provided by on
board sensors can be available or not during the flight for navigation. For example,
the beginning of the mission can take place in an outdoor environment, where GPS
signal is available. During the mission, the vehicle can enter a building, where the
same signal would not be available any more, but where distance measurements to
indoor walls could be provided by on board telemeters. It is therefore of interest to
develop a navigation solution that can handle different situations without compro-
mising the mission. Some recent work address this issue by proposing vision-based
solutions [5, 15].
In this paper, the development of an hardware device based onlow-cost sensors and
associated algorithms is presented for indoor and outdoor navigation of miniature
rotorcraft UAVs without using vision-based solutions. Theproposed approach aims
at enabling measurement selection and fusion from the different on-board sensors,
depending on the current environment (indoor or outdoor), and being robust to sen-
sors’ loss and/or faulty measurements. Test and simulationresults are provided to
illustrate the performance of the proposed approach in operational situations.
The paper is organized as follows: Section 2 presents the hardware device and gives
a high-level description of the state estimation architecture. Section 3 focuses on
the attitude estimation algorithm, based on a complementary filter. Section 4 deals
with position and velocity estimation using Kalman filtering and selection of mea-
surements provided by the sensors. Simulation results are provided in Section 5 and
concluding remarks as well as directions for future work areprovided in the last
section of the paper.
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Fig. 1 Hardware device. The
overall cost of the device
is about 2.5k Euros. Total
mass is 110g, dimensions are
11.5cm by 12.5 cm and cur-
rent consumption is 180mA.

2 Hardware and Estimation Architecture

2.1 Hardware Architecture

2.1.1 Hardware device

The hardware device developed in this study was designed under the following
guidelines: use of low-cost, commercial off-the-shelf components; overall mass and
volume must be kept low, to allow integration to UAVs whose size and mass are
respectively a few tens of centimetres and a kilogram or less; power consumption
must be kept low, otherwise jeopardizing endurance of the vehicle. Selected sen-
sors, fitted on the ad hoc PCB, are depicted in Figure 1. A dsPIChas been chosen,
and a wireless connexion can be used to allow data downlink toa ground station, if
required.

2.1.2 Description of sensors

The following sensors have been integrated on the developedhardware device:

Inertial Measurement Unit (IMU): Xsens MTi strapdown IMU with nine MEMS
sensors (three accelerometers, three rate gyros and three magnetometers) and 100Hz
measurement frequency. Measurements are mainly impaired by random, time-
dependent biases and noise.

GPS receiver: a LocoSys LS20031 GPS receiver has been chosen. 3D position,
DOP indicators, ground speed and heading relative to true North are delivered at
5Hz. No raw data are available. Measurements are mainly impaired by noise and a
bias.
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Ultrasonic sensors: Maxbotix ultrasonic sensors provide relative distance measure-
ments at 20Hz. Their range is limited (from 15cm to 6.5m). Up to six sensors can
be simultaneously used (eg. four sensors pointing to front-back-left-right directions
of the vehicle and two sensors pointing to top-down directions).

Baroaltimeter: a VTI SCP1000-D01 baroaltimeter provides pressure measure-
ments at 1.8Hz which are converted into altitude.

2.2 Estimation architecture

2.2.1 Estimation problem, notations and assumptions

The estimation problem consists in computing, from available sensor measurements,
the state of the vehicle composed of its position coordinates, orientation angles, and
velocities components (linear and angular). This set of data can be used for naviga-
tion (localisation and mission planning) as well as for guidance and control of the
vehicle. Therefore, it must be accurate and computed at a period smaller than the
time constant of the vehicle dynamics.
To introduce the architecture and algorithms used for solving this estimation prob-
lem, some notations are introduced.

Reference frames: The following reference frames are considered:

• Ri : Earth centred inertial frame,
• Re: Earth centred Earth fixed frame (ECEF),
• Rn: local navigation frame, of referenceO, associated with the vector basis

(eN,eE,eD) pointing to North, East and Downwards directions,
• Rb: body frame attached to the vehicle, of referenceG (centre of mass of the

vehicle), associated with the vector basis(eb
1,e

b
2,e

b
3) whereeb

1 is directed along
the longitudinal axis of the vehicle and pointing to its front, eb

2 is directed along
the lateral axis and pointing to its right, andeb

3 is directed along the vertical axis
of the vehicle and pointing to its bottom.

Kinematics: The position and the linear velocity of the vehicle inRn will be re-
spectively denoted byr = [rN rE rD]

T andv = [vN vE vD]
T . The rotation matrix

fromRb toRn will be denoted byR∈SO(3). It defines the orientation of the vehicle
which can also be parametrized by Euler’s anglesψ (yaw), θ (pitch) andφ (roll).
The notationω jk ∈ R

3 (with k, j ∈ {i,e,n,b}) will be used to denote the angular
velocity ofR j wrt Rk. For simplicity the notationω = ωnb will be used.

Measurements: The subscript·measwill be used to denote measured quantities. The
following models have been chosen to model measurements provided by the IMU
sensors. It has been assumed that errors due to scale factorsand misalignments can
be neglected, provided a precise positioning and calibration of the IMU and com-
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pensation of known manufacturing errors.

Accelerometers:
fmeas= f +bf +nf (1)

where f ∈R
3 is the specific force,bf ∈R

3 the accelerometer constant bias andnf ∈
R

3 a zero mean Gaussian white noise of covariance matrixQf = diag(σ2
f x,σ2

f y,σ2
f z).

Rate gyros:
ωmeas= ω +bω +nω (2)

with bω ∈ R
3 rate gyro the constant bias andnω ∈ R

3 a zero mean Gaussian white
noise of covariance matrixQω = diag(σ2

ωx,σ2
ωy,σ2

ωz).

Assumptions: The two following assumptions are considered for the estimation
problem and the design of the associated algorithms.

Assumption 1 The UAV is supposed to be used for missions within a kilometer
range.

As a consequence, the Earth is considered to be flat and its rotation is neglected.
Therefore it can be assumed thatωie = 0 andωen = 0. In addition, the gravity
is assumed to be constant and is expressed byg = [0,0,−g0]

T in Rn, with g0 =
9.81 m.s−2.

Assumption 2 The UAV is supposed to be used in quasi-stationary flight condi-
tions.

This assumption is verified for rotorcraft-based miniatureUAVs flying at low speed
and not performing acrobatic manoeuvres.

2.2.2 Estimation architecture description

For miniature UAVs a strapdown IMU is typically used to provide measurements at
a high frequency that will be processed to estimate attitude, position and velocities
of the vehicle. Based on inertial navigation equations, an Inertial Navigation Sys-
tem (INS) can hence be developed to compute these estimates [6, 16]. Nevertheless,
components of low-cost IMUs suffer from important bias which, once integrated by
the INS, lead to significant drifts and even divergence in thecomputed estimates. It
is therefore necessary to correct the estimates by using additional sensors providing
“external” measurements. Such sensors are typically GPS and baro-altimeter [9].
External information can hence be added in the estimation process to correct posi-
tion and velocity components predicted by the INS.
Note that the estimation architecture of [9] has been used asstarting point for de-
velopments proposed in this paper and will be used as reference for performance
comparison. This estimation architecture is based on an INSalong with a Kalman
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Fig. 2 Estimation architecture

filter used in indirect integration form and direct feedback.
In this paper, measurements provided by ultrasonic sensorsare also considered. In
outdoor environments, ultrasonic sensors directed along the “vertical” axis of the
vehicle frame are used to provide altitude measurements, when flying at low alti-
tude. In indoor environments, where use of GPS can prove to bedifficult, ultra sonic
sensors along the “longitudinal” and “lateral” axes of the vehicle frame also provide
information on other components of the vehicle’s position in an environment which
geometry is known. In this latter case, it is assumed that thegeometry of the envi-
ronment is well known.
The estimation architecture proposed in this paper is presented in Figure 2. It is
composed of three main stages:

• a complementary filter estimates the attitude and angular velocity components of
the vehicle and rate gyros’ biases, based on measurements provided by IMU’s
sensors,

• an INS computes estimates of the position and linear velocity components, based
on attitude information provided by the complementary filter, and position and
velocity corrections provided by a Kalman filter,

• a Kalman filter computes corrections in position and linear velocity components
and estimation of accelerometers’ biases, based on estimates provided by the INS
and measurements from GPS, baroaltimeter and ultrasonic sensors.

The INS and Kalman filter part of the estimation architectureis designed as a
multi-rate, multi-sensor structure with an indirect integration form and direct feed-
back. This implies that the propagated states in the Kalman filter are position and
linear velocity errors, i.e. differences between values estimated by the INS and mea-
surements provided by “external” sensors. The state transition model is therefore
the model of inertial navigation equations’ errors, which can be assumed to remain
linear as long as the errors are small enough (which justifiesthe choice of direct
feedback, guaranteeing that the INS errors remain small andbounded). Since the
Kalman filter is used to compute corrections, it can operate at a much slower rate
than the IMU’s one, making it computationally reasonable.
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To add robustness with respect to erroneous and/or perturbed measurements, a fuzzy
logic approach has been adopted in both the complementary and Kalman filter stages
to select measurements to be considered from all the ones given as input. Sensors
used to provide the measurements given as inputs to the Kalman filter are chosen
previously depending on the environment.

The next sections of this paper are devoted to a more precise description of the
algorithms used in the estimation architecture.

3 Attitude estimation

The problem is to estimate the orientation matrixR of the vehicle from measure-
ments delivered by the IMU’s sensors: 3 axes rate gyros, 3 axes accelerometers
and 3 axes magnetometers. Under Assumption 2, accelerometers can be used as
inclinometers since the gravity component dominates the total acceleration vector.
Therefore, it can be assumed that accelerometers provide a measurementηa ∈ R

3

of the local vertical. The magnetometers provide a second reference vectorηm∈R
3

corresponding to Earth magnetic field. Since only the direction of these vectors is
used,ηa andηm are defined as unit vectors. These vectors can be written as follows:

ηa = R⊤ηa0+na (3)

ηm = R⊤ηm0+nm (4)

whereηa0 ∈R
3 andηm0 ∈R

3 are the reference vectors expressed inRn andna ∈R
3

andnm ∈R
3 are noises. Rate gyros provide a measureωmeasof the angular velocity

ω expressed inRb by (2). Based on this model, the complementary filter presented
in [10] has been used:

˙̂R= R̂sk
((

ωmeas− b̂ω
)

+kxx̃
)

(5)
˙̂bω =−kbx̃ (6)

x̃= ka (ηa× η̂a)+km(ηm× η̂m) (7)

where sk(u) denotes the skew-symmetric matrix associated to the vectorcross prod-
uct sk(u)x= u×x for a givenu∈ R

3 and for anyx∈ R
3. R̂ andb̂ω denote the esti-

mates ofRandbω respectively,̂ηa = R̂⊤ηa0 andη̂m = R̂⊤ηm0.

According to the confidence in measuresηa andηm, the weightska andkm can be
tuned online. For instance, in the case of electromagnetic perturbations,km should
be chosen such thatkm ≪ ka. To deal with this problem, a method using fuzzy logic
is proposed in the next subsection.
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Fig. 3 Function F used for the tuning of gainska andkm, and evolution of weighting factorΛ wrt
ε j (see Section 4.3)

3.1 Robustness to perturbations

In this section, a fuzzy logic approach is used to modulate the weightska andkm ac-
cording to the degree of confidence in measurements. It consists in using a function
F which the value tends to 1 if measurements can be considered valid, and tends to
0 if they cannot. For example, the function can be defined as inFigure 3.

To determine whether a measure is valid or not, a quantitative criterion must be
defined:

• The accelerometers can be used as inclinometers if‖ fmeas‖ ≈ ‖g‖.Therefore,
one possible criterion isδa = |‖ fmeas‖−‖g‖|, and the weightka can be defined

by ka = ka0F
(

δa
δa0

)

whereδa0 is a threshold andka0 the maximum value ofka.

• Analogously to the accelerometers, the criterion for the magnetometers can
be chosen asδm = |‖Hmeas‖−‖He‖| where Hmeas is the measured magnetic
field andHe is the Earth’s magnetic field. The weightkm can be defined by

km = km0F
(

δm
δm0

)

whereδm0 is a threshold andkm0 the maximum value ofkm.

This approach was implemented and tested with the XSens IMU.In the experiment
depicted in Figure 4, the IMU sits motionless,θ andφ are null, andψ is equal to
48deg. Five seconds after the initial time, strong electromagnetic (E. M.) perturba-
tions are applied to the XSens IMU (magnetometers at saturation level). Note that
the yaw estimation relies solely on magnetometers data, contrary to roll and pitch
estimations. The yaw value provided by the complementary filter is compared to the
one provided by XSens embedded attitude estimator.

XSens solution errors reach up to 25deg, and takes some time to recover from E.M.
perturbations. On the contrary, the complementary filter solution is affected only at
the onset of E.M. perturbations, while estimation error never exceeds 2.5 deg (stan-
dard deviation of about 1deg).

Robustness to strong accelerations (e.g. caused by wind gust) was also asserted
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Fig. 4 Yaw estimation in presence of strong electromagnetic (E.M.) perturbations

Fig. 5 Pitch and roll estimation in presence of strong accelerations

in regard of validity of Assumption 2. The IMU was moved quitevigorously on
a horizontal plane, along itsy axis. Accelerations in this direction are expected to
cause the apparent vertical seen by accelerometers to rotate along thex axis in the
(y,z) plane, thus inducing a ”false roll”. Figure 5 depicts the roll and pitch angles’
estimates, along with the norm of the total acceleration seen by accelerometers. The
norm has a 1m/s2 p.t.p. variation, expressing an approximate 3m/s2 p.t.p. variation
along they axis. Pitch and roll errors never exceed 3.0deg (with standard deviation
≤1deg), thus proving good robustness to brutal accelerations.
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4 Position and velocity estimation

Position and linear velocity are first estimated by the INS using classical strapdown
equations for inertial navigation. As previously stated, these estimates are then cor-
rected by using information provided by external sensors.

4.1 Inertial Navigation System

Classical inertial navigation equations can be found in [16] for strapdown IMUs.
Simplified equations will be used in this paper based on Assumption 1. The transla-
tional dynamics inRn are described by

ṙ = v (8)

v̇ = R f+g (9)

and orientation dynamics inRb by

Ṙ= Rsk(ωnb) (10)

Using angular velocity compositionωnb=ωne+ωei+ωib along with Assumption 1,
it can be deduced thatωnb = ωib = ω and equation (10) becomes:

Ṙ= Rsk(ω) (11)

A classical INS would implement these equations to compute estimated values of
the position, attitude and velocity of the vehicle. In this paper, attitude determina-
tion is achieved separately by the complementary filter as described in Section 3.
The implemented INS structure is therefore based on equations (8) and (9) where
the orientation matrixR is directly computed from the attitude estimated by the
complementary filter.
As previously stated, these estimates require corrections. Corrections on position
and on linear velocity are directly achieved in the INS, in a direct feedback ap-
proach as explained in Section 2.2.2. These corrections areestimated by a Kalman
filter, based on measurements provided by external sensors.The direct feedback
approach enables to ensure that the estimation of inertial errors remain small and
bounded, hence making possible the use of a linear filter as described in the next
section.
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4.2 Correction with Kalman Filtering and External Sensors

A filter is used to compute estimation errors due to the INS based on measurements
of external sensors. As previously stated, it can be assumedthat these errors remain
small enough to use a linear filter. Therefore, a Kalman filterhas been typically
chosen in this paper. Prediction state model represents theerror dynamics of the INS
estimates. Assuming that the complementary filter deliversprecise enough attitude
estimates, errors on the orientation are not taken into account in the filter design.
However, estimation of the accelerometers’ biases is considered.

4.2.1 Prediction model

Let us denote byδ r = r̂−r the position error and byδv= v̂−v the error on the linear
velocity. Assuming that estimation of the orientation matrix R and of the gravityg
are not affected by errors, the error dynamics is given by:

δ ṙ = δv (12)

δ v̇ = R ( fmeas− f ) (13)

Using (1) equation (13) becomes:

δ v̇= R bf +R nf (14)

Let us assume that the accelerometer bias can be described bya first order model [16]:

ḃf =−T−1
f bf +nbf (15)

with Tf ∈ R
3×3 a diagonal matrix of time constants.

Denoting byte the sampling period, let us define at timetk = kte the state vector

X(k)=
[

δ r(k)T δv(k)T bf (k)T
]T

and the noise vectorN(k)=
[

np(k)T nf (k)T nbf (k)
T
]T

.

A discrete-time model of the formX(k+1) = A(k)X(k)+B(k)N(k) equivalent to
(12)-(14)-(15) can be derived, whereA(k) andB(k) are computed using [12]. The
covariance matrix ofN(k) is given byQ= diag(σ2

px
,σ2

py
,σ2

pz
,σ2

fx,σ
2
fy,σ

2
fz,σ

2
bf x

,σ2
bf y

,σ2
bf z

)

and is considered to be time-invariant.

4.2.2 Measurement model

Let m(k) be the number of measurements available at timek. Define byY(k) =
[

Y1(k)...Ym(k)(k)
]T

∈ R
m(k) the vector composed of all available measurements

Yi(k)∈R (i = 1, ..,m(k)). The measurement equation is defined asY(k)=C(k)X(k)+
W(k) with
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C(k) =





C1(k)
...

Cm(k)(k)



 with Ci(k) ∈ R
1×9 (i = 1, ..,m(k)) (16)

and whereW(k)∈R
m(k) is a noise vector of covariance matrixR(k)= diag(R1(k), . . . ,Rm(k)(k))

whereRi(k) (i = 1, ..,m(k)) is the covariance matrix corresponding to measurement
Yi(k).
Up to ten measurements can be available at a given iteration:position measure-
ment provided by GPS, altitude measurement from baro-altimeter and ”pseudo-
measurements” in position from ultrasonic sensors.

4.3 Selection of measurements

If an erroneous measurement is provided by one sensor, the estimation accuracy can
be strongly affected. One simple way to prevent the use of erroneous observations
is to take advantage of the statistical properties of the Kalman filter’s innovation.
Let us denote byιi(k) the innovation associated to a subsetj of measurements at
iterationk, and byε j(k) = ι j(k)TS−1

j (k)ι j(k) the corresponding normalized innova-
tion squared, whereSj(k) =Cj(k)Pk|k−1Cj(k)T +Rj(k) is the innovation covariance
matrix andPk|k−1 the covariance matrix of the predicted state at timek provided
by the Kalman filter. The quantityε j(k) follows aχ2 distribution whose number of
degrees of freedom is the dimension ofι j(k) [3]. A χ2 table can hence be used to
determine a validity domain for this subset of measurements, for a given confidence
level (a value of 95% has been considered). Ifε j(k) is beyond the boundaryχb of
this domain, the subset of measurement should hence be rejected and not taken into
account in the Kalman filter. Note that this approach assumesa good validity of the
prediction model.
This method is particularly useful in the case of GPS multipath or mask effects for
which measurements should not be taken into account.

Rejecting the subsetj of measurements can be achieved by setting their associ-
ated covariances to infinity. Instead of using a binary logicapproach consisting in
completely rejecting the considered subset of measurements, a fuzzy logic approach
has been chosen. Covariances of the subsetj of measurements are therefore divided
by a weighting factorΛ2 which value is defined according to Figure 3.

4.4 Position Pseudo-Measurements with Ultrasonic Sensors

Distance measurements are given by ultrasonic sensors and thus require processing
to compute “pseudo measurements” in position components tobe provided to the
Kalman filter.
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Using Assumption 2, one can consider that attitude angle will be small enough to
make the two “vertical” ultrasonic sensors pointing to the ground and to the ceiling
for indoor use, and the four “horizontal” ultrasonic sensors pointing to walls for
indoor use. Therefore altitude determination is separatedfrom computation of the
position’s horizontal components.

4.4.1 Geometrical description

Les us denote byCi the ultrasonic sensori. The subscripti is used to refer to sensors
respectively pointing to the front (i = f ), to the back (i = b), to the left (i = l ), to the
right (i = r), “upwards” (i = u) and “downwards” (i = d) of the vehicle. The position
of each sensorci in Rb will be denoted byrCi ∈ R

3. It is assumed to be perfectly
known, as well as the unit vectornCi ∈R

3 defining the measurement direction of the
sensor inRb. The distance measurement provided by a sensorCi will be denoted by
dmeas

i .

4.4.2 Altitude

From distance measurementdmeas
d of sensorCd pointing “downwards”, the altitude

rD of the vehicle can be computed by:

rD =−dmeas
d

[

nCd

]

Rn
·eD −

[

rCd

]

Rn
·eD −h (17)

whereh is equal to the altitude of the local ground with respect toRn (altitude of
the room in the case of indoor flight, zero in the case of outdoor flight), assumed to
be known.

For indoor use, assume that the UAV flies in a room which ceiling is at an heightH
above the ground. In that case, the altituderD can also be computed from distance
measurementdmeas

u of the sensor pointing “upwards”:

rD =−dmeas
u [nCu]Rn

·eD − [rCu]Rn
·eD −h−H (18)

Note that in (17) and (18) coordinates ofnCd , nCu, rCd andrCu in Rn (denoted by
[.]

Rn
) are computed using attitude angles provided by the complementary filter.

If measurementsdmeas
d anddmeas

u are both available, coherence of the two values
computed from (17) and (18) is verified, and an average altitude value is provided
to the Kalman filter.
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Fig. 6 Three types of configurations of ultrasonic sensors wrt walls (quadrotor vehicle example)

4.4.3 Horizontal components of position

For indoor flights, “horizontal” ultrasonic sensors can be used to compute therN and
rE components of the position, assuming the vehicle is in a roomwhich dimensions
are known. Depending on the position and orientation of the vehicle in the room,
twenty four measurement configurations could be listed, divided into three types
as presented on Figure 6. Assuming that the orientation of the vehicle with respect
to the room is known, this list of twenty four possible configurations is reduced to
seven. Note that for configurations of type 3, a singularity arises and only one of the
two horizontal components of the position can be computed.

The following approach has been developed to compute the horizontal components
of position from these seven possible configurations:

• Step 1:For each configuration where measurement of each sensori corresponds
to a different wallj of the room:

– The horizontal componentsrN andrE of the position are computed by solving
a set of equations of the form (19) using a least square approach, assumingrD

is known.
(r +[rCi ]Rn

) ·nw j = kw j −dmeas
i [nCi ]Rn

·nw j (19)

wherenw j is the normal unit vector of wallj expressed inRn and where
kw j defines the plane equation representing wallj in Rn coordinates by
[ξ ]

Rn
·nw j = kw j for anyξ ∈ R

3.
– Consistency of each solution is then verified by checking the validity of “mea-

surements” computed from the position components of the solution wrt the
true measurements.

– Consistent solutions are kept.

• Step 2:For each configuration where measurements of two sensorsi correspond
to a same wallj of the room:

– The horizontal componentrN (respectivelyrE) is computed as an average
value of the solutions of two equations similar to Step 1, assumingrE (respec-
tively rN) andrD are known.
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Fig. 7 Simulated trajectory of
a quadrotor vehicle (position
coordinates inRn)

– Consistency of the solution is checked as in Step 1.
– Consistent solutions are kept.

Due to sensor low precision and measurement errors, severalconfigurations can
provide consistent solutions. In that case, the two configurations that produce the
closest solutions are considered. If they prove to be consistent with the position of
the UAV computed at the previous time step, an average position is computed and
is provided to the Kalman filter.

5 Numerical results

Simulation results for a quadrotor vehicle are presented toillustrate the performance
of the proposed approach. These results have been obtained using a simulation tool
developed for this study and based on a precise emulation of the quadrotor UAV dy-
namics (electro-mechanical and aerodynamic models), the environment (geographi-
cal position, local magnetic deviation, buildings) and theon-board sensors (accurate
models with identification of the parameters based on experiments performed on the
sensors of Section 2.1.2).

5.1 Flight setup

Figure 7 presents the simulated flight trajectory. Simulation begins at take-off (ref-
erence position of coordinates[0 0 0]T ), and lasts 20 sec. Take-off is set at the center
of a location surrounded by walls (no ceiling). These walls form a square (each side
having a length of 100m) and are 15m high. Ultrasonic sensorscan therefore get out
of or in range (max. range is 6.5m), while GPS signals are assumed to be always
available (but possibly from a reduced set of visible satellites). The only magnetic
perturbations considered come from the running UAV engines.
Estimation results are provided at 100Hz.
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5.2 Estimation results

Simulation results are provided for the proposed estimation architecture and are
compared to three other architectures. The following notations will be used to refer
to these estimation architectures:

• ” INS”: classical INS system using only inertial measurements,
• ” INS+KAL”: estimation architecture of [9] based on INS and Kalman filtering

using GPS and baroaltimeter measurements,
• ”UP.INS+KAL”: upgraded version of the estimation architecture of [9] taking

into account measurements of ultrasonic sensors,
• ”PEA”: proposed estimation architecture as described in Sections 2.2.2, 3 and 4.

For each estimation architecture, the following quantities are presented: position es-
timation error, linear velocity estimation error, attitude estimation errors, accelerom-
eters biases estimates (PEAonly) and rate gyro biases estimates (PEAonly).

5.2.1 Position, linear velocity and attitude

Position estimation errors are presented in Figure 8. TheINSsolution is mostly non-
sensical, due to the quick and strong divergence of integrated measurements from
such low-cost inertial components. The same remark appliesfor both velocity and
attitude estimations.
TheUP.INS+KALsolution shows marginal improvements compared to the original
architectureINS+KAL. The main benefit of ultrasonic sensors integration is to avoid
divergent behaviors, like the one starting at 14 sec for Eastcomponent of the posi-
tion estimation error. ThePEAsolution is clearly the best, with a maximum position
error of±3m on any axis. This is mainly explained by the way measurements are
used in the estimation process, but also by the very good attitude estimation (see
Figure 10). The attitude estimation indeed directly impacts the way IMU’s acceler-
ation values are projected alongRn axes.

Comments about velocity estimation errors presented in Figure 9 are quite simi-
lar to the ones regarding estimation of position. The linearvelocity estimation error
provided by thePEAsolution never exceeds±0.5m/s (i.e. 5% of maximum velocity
in this simulation).

Attitude estimation results of Figure 10 call for some interesting conclusions. The
INS+KAL andUP.INS+KALsolutions perform even worse than theINS solution.
This stems from the facts that in these two solutions the Kalman filter tries to es-
timate attitude corrections (see [9] for more details) without being helped by any
direct attitude measurement.
On the contrary,PEAattitude is determined by the complementary filter with bias
estimation, showing excellent results. Estimation errorson attitude angles never ex-
ceed±0.5deg.
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Fig. 8 Position estimation errors (coordinates inRn)

Fig. 9 Linear velocity estimation errors (coordinates inRn)

5.2.2 Rate gyros’ and accelerometers’ biases

The estimates of rate gyros’ biases computed by the complementary filter are plot-
ted in Figure 11. Estimation error never exceeds±5e-3 rad/s when steady state is
reached, hence showing good accuracy. Note that whereas transient state lasts for
about 2 to 4 sec on pitch and roll axes, it lasts for about 20 secfor the yaw axis.
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Fig. 10 Estimation errors on attitude angles

Fig. 11 Estimation of gyros’ and acceleros’ biases

This is an expected behaviour, as the UAV’s yaw angle does notchange much in
this specific simulated trajectory. Indeed it can be shown that estimated parameters
reach the true values only if the vertical direction “measured” by accelerometers and
the horizontal direction “measured” by magnetometers change with time. Moreover,
yaw axis gyro’s bias estimation convergence takes more timeif no second direction
is provided (e.g. if magnetometers are subjected to strong perturbations).
Estimates of accelerometers’ biases provided by the Kalmanfilter also prove to be
accurate (see Figure 11), the estimation error never exceeding ±3e-3 m/s2 when
steady state is reached.
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5.3 Other results

In order to fully assess the performance of the proposed approach, several other sim-
ulations have been run. Three different trajectories have been considered: trajectory
with small vertical and horizontal moves but with high increase in yaw angle, quasi-
stationary flight with 360deg variation of yaw angle, trajectory with high variations
of vertical and horizontal position components and small attitude angles. Each tra-
jectory has been combined with the three following environment:

• Rural environment: free space, no close obstacles (hence noultrasonic sensor is
in reach, except for the vertical one for suitable altitudes), GPS fully available.

• Light urban environment: buildings along trajectory, GPS perturbed.
• Indoor environment: close obstacles including a roof, GPS unavailable.

Conclusions on the proposed approach performance are the following:

• Light urban type environment allows a quite nominal use of the whole set of
sensors, and therefore leads to a state estimation quite insensitive to sensors’
loss.

• Indoor environment is extremely sensitive to ultrasonic sensors loss, as they are
the only way to get external position estimates (excepted from altitude provided
by the baroaltimeter). In addition, perturbations on or loss of magnetometers’
inputs lead to a coarsely estimated yaw angle, thus impacting horizontal position
determination from ultrasonic sensors.

• In rural environment, unavailability of reliable GPS data (jamming, spoofing, )
is damageable, as this sensor is the only one providing Northand East positions,
along with North, East and Down velocities. The altitude canstill be coarsely
estimated from baroaltimeter and/or vertical ultrasonic sensor when in range.

6 Conclusions

In this paper, an integrated system has been proposed for navigation of miniature
rotorcraft-based UAVs in indoor and outdoor environments.Based on low-cost sen-
sors, an hardware device has been developed for this study integrating IMU, baroal-
timeter, GPS and ultrasonic sensors. An estimation architecture has been proposed
to process the measurements provided by the sensors and estimate online the state
of the vehicle (composed of its position, attitude and velocities). This architecture is
based on a complementary filter for attitude estimation, andan INS and Kalman fil-
ter for position and linear velocity estimation from available measurements of sev-
eral sensors. Procedures have been presented for selectionof measurements. Pro-
cessing of measurements provided by ultrasonic sensors hasalso been addressed,
depending on the situation. Simulations results have been provided to illustrate the
good performance of the proposed approach and its adaptability to various envi-
ronments and robustness to perturbations and/or loss of sensors. Further work will

FrAT2.2

1223



20 François-Xavier Marmet, Sylvain Bertrand, Bruno Hérisśe and Mathieu Carton

focus on real time implementation for flight experiments on avehicle, and handling
other perturbations such as mechanical vibrations.
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