Proceedings of the EuroGNC 2013, 2nd CEAS Specialist Conference FrAT2.2
on Guidance, Navigation & Control, Delft University of Technology,
Delft, The Netherlands, April 10-12, 2013
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Abstract This paper presents an hardware device and associatedlaigofor the
navigation of miniature rotorcraft-based Unmanned Aérélicles (UAVS). Unlike
many studies that focus on navigation solutions adaptedecsogle type of mis-
sion and environment, the proposed approach aims at simewitesly dealing with
indoor and outdoor missions, as well as being robust to sgness and/or faulty
measurements. An hardware device with low-cost sensorssepted as well as al-
gorithms that are used to estimate online the vehicle’s s@ainposed of its position,
attitude and velocities. This estimation architectureseloaon complementary and
Kalman filters, enables measurement selection and fussomdifferent sensors, de-
pending on the current environment (indoor or outdoor).ohithms are described
and simulation results are provided to illustrate and camnffze performance of the
proposed approach.

1 Introduction

Unmanned Aerial Vehicles (UAVs) have been used for the pisefi years, mainly
to the benefit of governmental entities (defence, law eefmient agencies, etc.).
While reconnaissance was and still is the prime purpose ofd)&wir outstanding
overall capabilities also make them premium candidatesifdian activities such

Frangois-Xavier Marmet
ENAC, 7 avenue Edouard-Belin CS 54005 - 31055 Toulouse Cederasce
e-mail: francois-xavier.marmet@eleve.enac.fr

Sylvain Bertrand and Bruno&tise
ONERA, The French Aerospace Lab, F-91761 Palaiseau, France
e-mail: sylvain.bertrand@onera.fr, bruno.herisse@onera.fr

Mathieu Carton
ONERA at the time of the project, The French Aerospace Lab, F691Palaiseau, France
e-mail: mathieu.carton@airbus.com

1205



2 Francois-Xavier Marmet, Sylvain Bertrand, Brunéri$€ and Mathieu Carton

as, but not limited to, aerial mapping or critical facilgisurveillance. Thanks to
technological breakthroughs over the past few years, muinzation and reduction
in costs, there has been growing interest in miniature,-&asige, cheap, fully au-
tonomous UAVs, able to operate indoors as well as outdoat®rBraft-based vehi-
cles are especially widely used thanks to their verticadtaff and landing (VTOL)
and stationary flight capabilities.

To control these vehicles and make them autonomous, infamsuch as attitude
angles, velocities (linear and angular), position, lazlon wrt environment, etc.,
are required during the flight. Such information can be camghby navigation algo-
rithms from measurements provided by on board sensors. Wkragnts provided
by IMU sensors are widely used to estimate attitude anglesl[3]. These can be
combined with GPS data in outdoor environments to recovepdsition and ve-
locities [8, 17, 18]. Artificial beacons such as external eeas have also been used
[14]. For indoor environments, information provided byeaxiceptive sensors can
be used to localize the vehicle. Visual methods such ash&uaM have been ex-
perimented successfully [2]. SLAM techniques have alsobeplemented using
a laser range finder sensor [1, 7]. External positioningesystbased on ultrasonic
sensors have also been developed for indoor localisatjon [4

Most of these work focus on navigation problems for UAVs areting to a given
application, or to a given type of mission in a given envir@mt However, minia-
ture UAVs can be used in very different and/or changing emritents during a
given mission. Depending on these conditions of use, measents provided by on
board sensors can be available or not during the flight foiga#éion. For example,
the beginning of the mission can take place in an outdoorenmient, where GPS
signal is available. During the mission, the vehicle careeatbuilding, where the
same signal would not be available any more, but where distareasurements to
indoor walls could be provided by on board telemeters. Ihésefore of interest to
develop a navigation solution that can handle differentasibns without compro-
mising the mission. Some recent work address this issuedpopmg vision-based
solutions [5, 15].

In this paper, the development of an hardware device bastmheoost sensors and
associated algorithms is presented for indoor and outdaaigation of miniature
rotorcraft UAVs without using vision-based solutions. Tdveposed approach aims
at enabling measurement selection and fusion from therdifteon-board sensors,
depending on the current environment (indoor or outdomd, lzeing robust to sen-
sors’ loss and/or faulty measurements. Test and simulagisults are provided to
illustrate the performance of the proposed approach inatiperal situations.

The paper is organized as follows: Section 2 presents tlunaae device and gives
a high-level description of the state estimation architextSection 3 focuses on
the attitude estimation algorithm, based on a complemefitger. Section 4 deals
with position and velocity estimation using Kalman filteyiand selection of mea-
surements provided by the sensors. Simulation resultsravéded in Section 5 and
concluding remarks as well as directions for future work pm@vided in the last
section of the paper.
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Fig. 1 Hardware device. The
overall cost of the device

is about 2.5k Euros. Total
mass is 110g, dimensions are
11.5cm by 12.5 cm and cur-
rent consumption is 180mA.

Ultrasonic
Sensors

baroaltimeter

2 Hardware and Estimation Architecture

2.1 Hardware Architecture

2.1.1 Hardware device

The hardware device developed in this study was designedrihé following
guidelines: use of low-cost, commercial off-the-shelf poments; overall mass and
volume must be kept low, to allow integration to UAVs whoseesand mass are
respectively a few tens of centimetres and a kilogram or, lg@&er consumption
must be kept low, otherwise jeopardizing endurance of thécle Selected sen-
sors, fitted on the ad hoc PCB, are depicted in Figure 1. A dsaEDbeen chosen,
and a wireless connexion can be used to allow data downliakgi@und station, if
required.

2.1.2 Description of sensors

The following sensors have been integrated on the develoaehivare device:
Inertial Measurement Unit (IMU): Xsens MTi strapdown IMU with nine MEMS
sensors (three accelerometers, three rate gyros and taggetometers) and 100Hz

measurement frequency. Measurements are mainly impayecdatdom, time-
dependent biases and noise.

GPS receiver: a LocoSys LS20031 GPS receiver has been chosen. 3D position

DOP indicators, ground speed and heading relative to tru¢hNwe delivered at
5Hz. No raw data are available. Measurements are mainlyifegbay noise and a
bias.
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Ultrasonic sensor s: Maxbotix ultrasonic sensors provide relative distancasoee-
ments at 20Hz. Their range is limited (from 15cm to 6.5m). Ogik sensors can
be simultaneously used (eg. four sensors pointing to fiback-left-right directions
of the vehicle and two sensors pointing to top-down direxst)o

Baroaltimeter: a VTI SCP1000-D01 baroaltimeter provides pressure measur
ments at 1.8Hz which are converted into altitude.

2.2 Estimation architecture

2.2.1 Estimation problem, notations and assumptions

The estimation problem consists in computing, from avéélabnsor measurements,
the state of the vehicle composed of its position coordg)ateentation angles, and
velocities components (linear and angular). This set ad dah be used for naviga-
tion (localisation and mission planning) as well as for guide and control of the
vehicle. Therefore, it must be accurate and computed atiadpemaller than the
time constant of the vehicle dynamics.

To introduce the architecture and algorithms used for egltiis estimation prob-
lem, some notations are introduced.

Reference frames: The following reference frames are considered:

o %;: Earth centred inertial frame,

e Ze: Earth centred Earth fixed frame (ECEF),

e Zn: local navigation frame, of referend®, associated with the vector basis
(en, ee,€ep) pointing to North, East and Downwards directions,

e %y body frame attached to the vehicle, of refere@écentre of mass of the
vehicle), associated with the vector bagi, €3, ) where€? is directed along
the longitudinal axis of the vehicle and pointing to its fros is directed along
the lateral axis and pointing to its right, aegiis directed along the vertical axis
of the vehicle and pointing to its bottom.

Kinematics: The position and the linear velocity of the vehicledfy, will be re-
spectively denoted by = [ry re rp]" andv=[w Ve vp|'. The rotation matrix
from %}, to %, will be denoted byR € SQ(3). It defines the orientation of the vehicle
which can also be parametrized by Euler's angle§/aw), 8 (pitch) ande (roll).
The notationwj, € R3 (with k, j € {i,e,n,b}) will be used to denote the angular
velocity of Z; wrt Zy. For simplicity the notatiomw = wh, will be used.

M easurements: The subscriptneaswill be used to denote measured quantities. The
following models have been chosen to model measuremeniglptbby the IMU
sensors. It has been assumed that errors due to scale factbnsisalignments can
be neglected, provided a precise positioning and caliomatf the IMU and com-
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pensation of known manufacturing errors.

Accelerometers:
fmeas= T +bs +n¢ (1)

wheref € R3 is the specific forceys € R® the accelerometer constant bias and:
3 . . . . . . 2 2 2
R® a zero mean Gaussian white noise of covariance m@irix diag(os,, Oty o%,).

Rate gyros:
Wneas= W+ b+ Ng (2

with by, € R3 rate gyro the constant bias ang € R® a zero mean Gaussian white
noise of covariance matriQ, = diag(03y, 0gy. 95;)-

Assumptions: The two following assumptions are considered for the ediona
problem and the design of the associated algorithms.

Assumption 1 The UAV is supposed to be used for missions within a kilometer
range.

As a consequence, the Earth is considered to be flat and @Sorotis neglected.
Therefore it can be assumed thgt = 0 and w.y = 0. In addition, the gravity
is assumed to be constant and is expressed £y[0, 0,—90]T in %n, with go =
9.81 m.s?2.

Assumption 2 The UAV is supposed to be used in quasi-stationary flightieond
tions.

This assumption is verified for rotorcraft-based miniatu/y/s flying at low speed
and not performing acrobatic manoeuvres.

2.2.2 Estimation architecture description

For miniature UAVs a strapdown IMU is typically used to prdeimeasurements at
a high frequency that will be processed to estimate attjtpdsition and velocities
of the vehicle. Based on inertial navigation equations,reertial Navigation Sys-
tem (INS) can hence be developed to compute these estinati®] [ Nevertheless,
components of low-cost IMUs suffer from important bias whionce integrated by
the INS, lead to significant drifts and even divergence incthaputed estimates. It
is therefore necessary to correct the estimates by usingadd sensors providing
“external” measurements. Such sensors are typically GElSaro-altimeter [9].
External information can hence be added in the estimatioogss to correct posi-
tion and velocity components predicted by the INS.

Note that the estimation architecture of [9] has been usesfaaing point for de-
velopments proposed in this paper and will be used as referfam performance
comparison. This estimation architecture is based on anald&g with a Kalman
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Fig. 2 Estimation architecture

filter used in indirect integration form and direct feedhack

In this paper, measurements provided by ultrasonic seseralso considered. In
outdoor environments, ultrasonic sensors directed albad\ertical” axis of the
vehicle frame are used to provide altitude measurementsniing at low alti-
tude. In indoor environments, where use of GPS can prove diffieult, ultra sonic
sensors along the “longitudinal” and “lateral” axes of tiedicle frame also provide
information on other components of the vehicle’s positioamn environment which
geometry is known. In this latter case, it is assumed thag#dmnetry of the envi-
ronment is well known.

The estimation architecture proposed in this paper is pteden Figure 2. It is
composed of three main stages:

e acomplementary filter estimates the attitude and angulacite components of
the vehicle and rate gyros’ biases, based on measuremenigiga by IMU’s
sensors,

e an INS computes estimates of the position and linear vglaoinponents, based
on attitude information provided by the complementary ffilesd position and
velocity corrections provided by a Kalman filter,

e a Kalman filter computes corrections in position and linedogity components
and estimation of accelerometers’ biases, based on essipaivided by the INS
and measurements from GPS, baroaltimeter and ultrasamso e

The INS and Kalman filter part of the estimation architectigsrdesigned as a
multi-rate, multi-sensor structure with an indirect intggpn form and direct feed-
back. This implies that the propagated states in the Kalnitn &re position and
linear velocity errors, i.e. differences between valudisreged by the INS and mea-
surements provided by “external” sensors. The state tiransinodel is therefore
the model of inertial navigation equations’ errors, whieim®e assumed to remain
linear as long as the errors are small enough (which justifieschoice of direct
feedback, guaranteeing that the INS errors remain smalbandded). Since the
Kalman filter is used to compute corrections, it can operaterauch slower rate
than the IMU’s one, making it computationally reasonable.
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To add robustness with respect to erroneous and/or pedtanbasurements, a fuzzy
logic approach has been adopted in both the complementdigaiman filter stages
to select measurements to be considered from all the ones g& input. Sensors
used to provide the measurements given as inputs to the IKdiiter are chosen
previously depending on the environment.

The next sections of this paper are devoted to a more preesserigtion of the
algorithms used in the estimation architecture.

3 Attitude estimation

The problem is to estimate the orientation matxf the vehicle from measure-
ments delivered by the IMU’s sensors: 3 axes rate gyros, 8 ageelerometers
and 3 axes magnetometers. Under Assumption 2, accelenenuate be used as
inclinometers since the gravity component dominates tted &xceleration vector.
Therefore, it can be assumed that accelerometers providesaaurement), € R3
of the local vertical. The magnetometers provide a secdiedarce vecton, € R3
corresponding to Earth magnetic field. Since only the divecof these vectors is
usedn, andnm are defined as unit vectors. These vectors can be writtedlaw$o

Na= RT’7.510 + Ny (3

Nm= R Mo+ Nm ©)
whereny € R3 andng € R3 are the reference vectors expresse@jandn, € R3
andnm € R3 are noises. Rate gyros provide a measugasof the angular velocity

w expressed i, by (2). Based on this model, the complementary filter present
in [10] has been used:

R = Rsk( (@meas— bw) + keX) 5)
by = kX (6)
X = ka(Nax Na) +km (Nm < fm) (7

where sku) denotes the skew-symmetric matrix associated to the veates prod-
uct sku)x = u x x for a givenu € R3 and for anyx € Rf. R andb,, denote the esti-
mates ofR andby, respectivelyfja = R" a0 andim = R nmo.

According to the confidence in measurgsandnn, the weightsk, andk,, can be
tuned online. For instance, in the case of electromagnetitigationsky, should
be chosen such thif, < k,. To deal with this problem, a method using fuzzy logic
is proposed in the next subsection.

1211



FrAT2.2

8 Francois-Xavier Marmet, Sylvain Bertrand, Brunéri$€ and Mathieu Carton
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Fig. 3 Function F used for the tuning of gaikg andkq, and evolution of weighting factok wrt
£j (see Section 4.3)

3.1 Robustnessto perturbations

In this section, a fuzzy logic approach is used to modulagenthightsk, andky, ac-
cording to the degree of confidence in measurements. Itstsrigiusing a function
F which the value tends to 1 if measurements can be considatield and tends to
0 if they cannot. For example, the function can be defined &gjare 3.

To determine whether a measure is valid or not, a quangtatiterion must be
defined:

e The accelerometers can be used as inclinometel$niad| ~ ||g||.Therefore,
one possible criterion i&; = ||| fmead| — [|9]l|, and the weighk, can be defined

by ka = kao F (%) wheredy is a threshold ank;p the maximum value ofj,.

e Analogously to the accelerometers, the criterion for thegmetometers can
be chosen a®y = |||Hmead| — [|He||| Wwhere Hneas is the measured magnetic
field andHe is the Earth’s magnetic field. The weight, can be defined by

km=kmoF (%) wheredqy is a threshold anlyy the maximum value ofq,.

This approach was implemented and tested with the XSens IMthie experiment
depicted in Figure 4, the IMU sits motionlegsand ¢ are null, andy is equal to

48deg. Five seconds after the initial time, strong electgmetic (E. M.) perturba-
tions are applied to the XSens IMU (magnetometers at satarbgvel). Note that
the yaw estimation relies solely on magnetometers datdramgrio roll and pitch

estimations. The yaw value provided by the complementéagr f8 compared to the
one provided by XSens embedded attitude estimator.

XSens solution errors reach up to 25deg, and takes somedireedver from E.M.
perturbations. On the contrary, the complementary filtértgm is affected only at
the onset of E.M. perturbations, while estimation errorenexceeds 2.5 deg (stan-
dard deviation of about 1deg).

Robustness to strong accelerations (e.g. caused by wirt)l \gas also asserted
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Fig. 5 Pitch and roll estimation in presence of strong accelerations

in regard of validity of Assumption 2. The IMU was moved quiigorously on

a horizontal plane, along itgaxis. Accelerations in this direction are expected to

cause the apparent vertical seen by accelerometers te adtatg thex axis in the

(v,2) plane, thus inducing a "false roll”. Figure 5 depicts th# amd pitch angles’
estimates, along with the norm of the total acceleration bgeaccelerometers. The
norm has a 1mfsp.t.p. variation, expressing an approximate 3np/s.p. variation

along they axis. Pitch and roll errors never exceed 3.0deg (with stahdaviation
<1deg), thus proving good robustness to brutal accelemation
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4 Position and velocity estimation

Position and linear velocity are first estimated by the INBagislassical strapdown
equations for inertial navigation. As previously statéese estimates are then cor-
rected by using information provided by external sensors.

4.1 Inertial Navigation System

Classical inertial navigation equations can be found ir] b6 strapdown IMUs.
Simplified equations will be used in this paper based on Aggiom 1. The transla-
tional dynamics inz,, are described by

F=v (8)
v=Rf+g 9)

and orientation dynamics iy, by
R = R sk(whp) (10)

Using angular velocity compositiai,, = the+ Wi+ Wiy @long with Assumption 1,
it can be deduced that,, = wp = w and equation (10) becomes:

R = Rsk(w) (11)

A classical INS would implement these equations to compstienated values of
the position, attitude and velocity of the vehicle. In thagppr, attitude determina-
tion is achieved separately by the complementary filter asriged in Section 3.
The implemented INS structure is therefore based on eqsa{®) and (9) where
the orientation matrixR is directly computed from the attitude estimated by the
complementary filter.

As previously stated, these estimates require correctibogections on position
and on linear velocity are directly achieved in the INS, inieect feedback ap-
proach as explained in Section 2.2.2. These correctionsstimated by a Kalman
filter, based on measurements provided by external seriBbesdirect feedback
approach enables to ensure that the estimation of inertiaseremain small and
bounded, hence making possible the use of a linear filter sarided in the next
section.
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4.2 Correction with Kalman Filtering and External Sensors

A filter is used to compute estimation errors due to the IN®@basm measurements
of external sensors. As previously stated, it can be asstima¢these errors remain
small enough to use a linear filter. Therefore, a Kalman fi@s been typically
chosen in this paper. Prediction state model represengsithiedynamics of the INS
estimates. Assuming that the complementary filter delipegsise enough attitude
estimates, errors on the orientation are not taken intowatda the filter design.
However, estimation of the accelerometers’ biases is densdl.

4.2.1 Prediction model

Let us denote byr = —r the position error and byv = V—vthe error on the linear
velocity. Assuming that estimation of the orientation maR and of the gravityg
are not affected by errors, the error dynamics is given by:

5t = ov (12)
5V = R (fmeas— ) (13)

Using (1) equation (13) becomes:
ov=Rb +Rny (14)
Let us assume that the accelerometer bias can be descrilbditdtyrder model [16]:
by = —T; tbs +ny, (15)
with T¢ € R3*® a diagonal matrix of time constants.

Denoting byte the sampling period, let us define at tifge= kt. the state vector

X(K) = [or(k)T dv(k)T bf(k)T}Tandthe noise vectoi (k) = {np(k)T ne (k)T Ny, (k)T '

A discrete-time model of the fori{ (k+ 1) = A(k)X (k) + B(k)N(k) equivalent to

(12)-(14)-(15) can be derived, whefék) andB(k) are computed using [12]. The

; ; - i 2 2 52 42 52 42 52 o2 o2
covariance matrix ol (k) is given byQ = diag(ay, Opys Oy 01, 0%, 01,5 Oy Oy s abfz)

and is considered to be time-invariant.

4.2.2 Measurement model

Let m(k) be the number of measurements available at kmBefine byY (k) =

[Yl(k)...Ym(k)(k)}T e R™KX the vector composed of all available measurements
Yi(k) €R (i =1,..,m(k)). The measurement equation is defined @g = C(k)X (k) +
W(k) with
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Ca(k)
C(k) = with G;(k) € RY® (i =1,..,m(k)) (16)
Ciniio (K)

and wherdV (k) € R™® is a noise vector of covariance matdi(k) = diag(R(K). ..., Ry (K))
whereR; (k) (i = 1,..,m(k)) is the covariance matrix corresponding to measurement
Yi(K).

Up to ten measurements can be available at a given itergimsition measure-

ment provided by GPS, altitude measurement from baro-elémand "pseudo-
measurements” in position from ultrasonic sensors.

4.3 Selection of measurements

If an erroneous measurement is provided by one sensor,tiheaéien accuracy can
be strongly affected. One simple way to prevent the use ohenus observations
is to take advantage of the statistical properties of thert@alfilter’s innovation.

Let us denote by; (k) the innovation associated to a subgetf measurements at
iterationk, and bye; (k) = 1] (k)TSJ-“l(k)l,- (k) the corresponding normalized innova-
tion squared, wher; (k) = C;j(k)R¢k_1C; (k)" + Rj(k) is the innovation covariance
matrix andP_1 the covariance matrix of the predicted state at tkmgrovided
by the Kalman filter. The quantitg; (k) follows a x? distribution whose number of
degrees of freedom is the dimensionigk) [3]. A X2 table can hence be used to
determine a validity domain for this subset of measureménmts given confidence
level (a value of 95% has been consideredk;(k) is beyond the boundaryy of
this domain, the subset of measurement should hence béegtpnd not taken into
account in the Kalman filter. Note that this approach assunged validity of the
prediction model.

This method is particularly useful in the case of GPS muitipa mask effects for
which measurements should not be taken into account.

Rejecting the subset of measurements can be achieved by setting their associ-
ated covariances to infinity. Instead of using a binary l@gproach consisting in
completely rejecting the considered subset of measurerehizzy logic approach
has been chosen. Covariances of the supseeasurements are therefore divided
by a weighting factor\? which value is defined according to Figure 3.

4.4 Position Pseudo-Measurements with Ultrasonic Sensors

Distance measurements are given by ultrasonic sensorhasdequire processing
to compute “pseudo measurements” in position componertg farovided to the
Kalman filter.
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Using Assumption 2, one can consider that attitude anglebsikmall enough to
make the two “vertical” ultrasonic sensors pointing to theund and to the ceiling
for indoor use, and the four “horizontal” ultrasonic semsspointing to walls for
indoor use. Therefore altitude determination is separfited computation of the
position’s horizontal components.

4.4.1 Geometrical description

Les us denote bg; the ultrasonic sensaor The subscriptis used to refer to sensors
respectively pointing to the front £ f), to the backi(= b), to the left { =1), to the
right (i =r), “upwards” { = u) and “downwards”i(= d) of the vehicle. The position
of each sensot; in %y will be denoted by, € R3. It is assumed to be perfectly
known, as well as the unit vectog, € RR3 defining the measurement direction of the

sensor iny,. The distance measurement provided by a seGseill be denoted by
ameas

4.4.2 Altitude

From distance measuremetif®®**of sensoiCq pointing “downwards”, the altitude
rp of the vehicle can be computed by:

o =—0d§**[ncy] ;, -&0 — [rc] 5, @0 —h @0

whereh is equal to the altitude of the local ground with respectp(altitude of
the room in the case of indoor flight, zero in the case of outflgght), assumed to
be known.

For indoor use, assume that the UAV flies in a room which ogiknat an heighH
above the ground. In that case, the altitugecan also be computed from distance
measuremerd'*?%of the sensor pointing “upwards”:

D= _leeaS[ncu}t%n “€p — [rCu]%n -ep —h—H (18)

Note that in (17) and (18) coordinates mf,, nc,, rc, andrc, in %, (denoted by
[.]#,) are computed using attitude angles provided by the congiéary filter.

If measurementsly"**and d{***are both available, coherence of the two values
computed from (17) and (18) is verified, and an average déittalue is provided
to the Kalman filter.
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Fig. 6 Three types of configurations of ultrasonic sensors wrt walladgotor vehicle example)

4.4.3 Horizontal components of position

For indoor flights, “horizontal” ultrasonic sensors can bedito compute thg, and
re components of the position, assuming the vehicle is in a nebinh dimensions
are known. Depending on the position and orientation of #igale in the room,
twenty four measurement configurations could be listedddiV into three types
as presented on Figure 6. Assuming that the orientationeo¥ehicle with respect
to the room is known, this list of twenty four possible configfions is reduced to
seven. Note that for configurations of type 3, a singularnityess and only one of the
two horizontal components of the position can be computed.

The following approach has been developed to compute thedmbal components
of position from these seven possible configurations:

e Step 1:For each configuration where measurement of each sensaresponds
to a different wallj of the room:

— The horizontal componentg andrg of the position are computed by solving
a set of equations of the form (19) using a least square apipraasumingp
is known.
(r+[rcilz,) - My = ke —d™ e - My (19)

whereny, is the normal unit vector of wal| expressed i, and where
kw; defines the plane equation representing walh %, coordinates by
(€], - Pw; = k; forany& e RS,

— Consistency of each solution is then verified by checkieg/#lidity of “mea-
surements” computed from the position components of thetisol wrt the
true measurements.

— Consistent solutions are kept.

e Step 2:For each configuration where measurements of two sensorsespond
to a same walj of the room:

— The horizontal componenmty (respectivelyrg) is computed as an average
value of the solutions of two equations similar to Step 1yassgrg (respec-
tively ry) andrp are known.
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Fig. 7 Simulated trajectory of start

a quadrotor vehicle (position

coordinates i) 0 Finish

Up [m]

==\

North[m] %

— Consistency of the solution is checked as in Step 1.
— Consistent solutions are kept.

Due to sensor low precision and measurement errors, sea@rgurations can
provide consistent solutions. In that case, the two corditioms that produce the
closest solutions are considered. If they prove to be ctamdisvith the position of
the UAV computed at the previous time step, an average pasiicomputed and
is provided to the Kalman filter.

5 Numerical results

Simulation results for a quadrotor vehicle are presentdtlisirate the performance
of the proposed approach. These results have been obtaimgdausimulation tool
developed for this study and based on a precise emulatidgre@fiadrotor UAV dy-
namics (electro-mechanical and aerodynamic models) nivieomment (geographi-
cal position, local magnetic deviation, buildings) andaheboard sensors (accurate
models with identification of the parameters based on ewpmris performed on the
sensors of Section 2.1.2).

5.1 Flight setup

Figure 7 presents the simulated flight trajectory. Simalabegins at take-off (ref-
erence position of coordinaté®&0 ), and lasts 20 sec. Take-off is set at the center
of a location surrounded by walls (no ceiling). These wallsf a square (each side
having a length of 100m) and are 15m high. Ultrasonic sercorsherefore get out
of or in range (max. range is 6.5m), while GPS signals arenasduo be always
available (but possibly from a reduced set of visible si#sl). The only magnetic
perturbations considered come from the running UAV engines

Estimation results are provided at 100Hz.
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5.2 Estimation results

Simulation results are provided for the proposed estimadichitecture and are
compared to three other architectures. The following immiatwill be used to refer
to these estimation architectures:

e "INS' classical INS system using only inertial measurements,

e "INS+KAL": estimation architecture of [9] based on INS and Kalmarefiitg
using GPS and baroaltimeter measurements,

e "UP.INS+KAL": upgraded version of the estimation architecture of [¥jirig
into account measurements of ultrasonic sensors,

e "PEA’ proposed estimation architecture as described in Ses@a2.2, 3 and 4.

For each estimation architecture, the following quarttitiee presented: position es-
timation error, linear velocity estimation error, attimidstimation errors, accelerom-
eters biases estimatd23KAonly) and rate gyro biases estimate&EAonly).

5.2.1 Position, linear velocity and attitude

Position estimation errors are presented in Figure 8.IN&solution is mostly non-
sensical, due to the quick and strong divergence of intedrateasurements from
such low-cost inertial components. The same remark apfdidsoth velocity and
attitude estimations.

The UP.INS+KALsolution shows marginal improvements compared to theralgi
architecturdNS+KAL The main benefit of ultrasonic sensors integration is tédavo
divergent behaviors, like the one starting at 14 sec for E@stponent of the posi-
tion estimation error. ThBEASsolution is clearly the best, with a maximum position
error of £3m on any axis. This is mainly explained by the way measuré¢sree
used in the estimation process, but also by the very goami@gtiestimation (see
Figure 10). The attitude estimation indeed directly impdbe way IMU’s acceler-
ation values are projected alogg, axes.

Comments about velocity estimation errors presented inrEi§ are quite simi-
lar to the ones regarding estimation of position. The linedwcity estimation error
provided by thé?EAsolution never exceeds0.5m/s (i.e. 5% of maximum velocity
in this simulation).

Attitude estimation results of Figure 10 call for some ietting conclusions. The
INS+KAL and UP.INS+KAL solutions perform even worse than ti¢S solution.
This stems from the facts that in these two solutions the lKalffiiter tries to es-
timate attitude corrections (see [9] for more details) withbeing helped by any
direct attitude measurement.

On the contraryPEA attitude is determined by the complementary filter with bias
estimation, showing excellent results. Estimation eroorattitude angles never ex-
ceed+0.5deg.
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Position estimation errors
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Fig. 9 Linear velocity estimation errors (coordinates#h)

5.2.2 Rategyros and accelerometers’ biases

The estimates of rate gyros’ biases computed by the compiamfilter are plot-
ted in Figure 11. Estimation error never exceéte-3 rad/s when steady state is
reached, hence showing good accuracy. Note that whereesseina state lasts for
about 2 to 4 sec on pitch and roll axes, it lasts for about 20f@ethe yaw axis.
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Attitude estimation errors
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Fig. 10 Estimation errors on attitude angles
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Fig. 11 Estimation of gyros’ and acceleros’ biases

This is an expected behaviour, as the UAV's yaw angle doesimange much in
this specific simulated trajectory. Indeed it can be shovan éstimated parameters
reach the true values only if the vertical direction “measliby accelerometers and
the horizontal direction “measured” by magnetometers ghavith time. Moreover,
yaw axis gyro’s bias estimation convergence takes moreifimesecond direction
is provided (e.qg. if magnetometers are subjected to strengiations).

Estimates of accelerometers’ biases provided by the Kalittanalso prove to be
accurate (see Figure 11), the estimation error never ekupetBe-3 m/$ when
steady state is reached.
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5.3 Other results

In order to fully assess the performance of the proposedaphr several other sim-
ulations have been run. Three different trajectories haenlrtonsidered: trajectory
with small vertical and horizontal moves but with high irase in yaw angle, quasi-
stationary flight with 360deg variation of yaw angle, trageg with high variations
of vertical and horizontal position components and sméiliuate angles. Each tra-
jectory has been combined with the three following envirentn

e Rural environment: free space, no close obstacles (hena#rasonic sensor is
in reach, except for the vertical one for suitable altityd&dS fully available.

e Light urban environment: buildings along trajectory, GRStprbed.

e Indoor environment: close obstacles including a roof, GR&vailable.

Conclusions on the proposed approach performance areltbwifay:

e Light urban type environment allows a quite nominal use &f whole set of
sensors, and therefore leads to a state estimation quiesitise to sensors’
loss.

e Indoor environment is extremely sensitive to ultrasonitsses loss, as they are
the only way to get external position estimates (excepteh faltitude provided
by the baroaltimeter). In addition, perturbations on oislo$ magnetometers’
inputs lead to a coarsely estimated yaw angle, thus imgahtinzontal position
determination from ultrasonic sensors.

e In rural environment, unavailability of reliable GPS daj@{ming, spoofing, )
is damageable, as this sensor is the only one providing NoidHEast positions,
along with North, East and Down velocities. The altitude s#th be coarsely
estimated from baroaltimeter and/or vertical ultrasoeits®r when in range.

6 Conclusions

In this paper, an integrated system has been proposed fagatiamn of miniature
rotorcraft-based UAVs in indoor and outdoor environmeBtssed on low-cost sen-
sors, an hardware device has been developed for this sttegyating IMU, baroal-
timeter, GPS and ultrasonic sensors. An estimation athite has been proposed
to process the measurements provided by the sensors amatestinline the state
of the vehicle (composed of its position, attitude and viéikes). This architecture is
based on a complementary filter for attitude estimation,aaniNS and Kalman fil-
ter for position and linear velocity estimation from avallameasurements of sev-
eral sensors. Procedures have been presented for selettioeasurements. Pro-
cessing of measurements provided by ultrasonic sensoral$mbeen addressed,
depending on the situation. Simulations results have bemrnded to illustrate the
good performance of the proposed approach and its adaptabilvarious envi-
ronments and robustness to perturbations and/or loss ebserFurther work will
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focus on real time implementation for flight experiments arehicle, and handling
other perturbations such as mechanical vibrations.
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