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Abstract This paper presents a robust nonlinear flight control siyatsed on
results combining incremental control action and the bagsng design method-
ology for vehicles described by strict-feedback (cascadedlinear systems. The
approach, referred to as incremental backstepping, usdbdek of actuator states
and acceleration estimates to allow the design of incresnehtontrol action. In
combination with backstepping, the proposed approacthiligebor tracks outer-
loop control variables of the nonlinear systémsrementally accounting for large
model and parametric uncertainties, besides undesiréar$asuch as external per-
turbations and aerodynamic modeling errors. With this ltedependency on the
modeled aircraft system is greatly reduced, overcomingrthpr robustness flaw
of conventional model-based flight control strategiessTEhiggested methodology
implies a trade-off between accurate knowledge of the dymanodel and accu-
rate knowledge of the vehicle sensors and actuators, whadtesit more suitable
for practical application than identification or model bdis&laptive control archi-
tectures. Simulation results verify the tracking capabiind superior robustness
of the proposed controller under aerodynamic uncertairitly kespect to standard
backstepping methodologies for a simple flight control epiam
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2 Paul Acquatella B., Erik-Jan van Kampen, and Qi Ping Chu

1 Introduction

The design of a generic robust nonlinear flight control stygtis considered in this
paper. The strategy is based on recent results combiningnrental control action
and the backstepping design methodology for strict-feeklfeascaded) nonlinear
systems, called incremental backstepping. The main dessyre is dealing with
large model and parametric uncertainties present in flightrol systems, mainly
because of aerodynamic and unmodeled dynamics.

Incremental backstepping is presented by means of a mdilificeo the stan-
dard backstepping design methodology that reduces itsdepey on the baseline
aircraft model, through the use of actuator states and @@t&n estimates. These
considerations allow the design of increments of contrabacwvhich, in combina-
tion with backstepping, helps to stabilize or track outsd control variables of the
nonlinear system incrementally. In contrast to regulakbtepping, this method is
inherentlyimplicit in the sense that desired closed-loop dynamics do not raside
some explicit model to be cancelled, but which results wherféedback loops are
closed.

Theoretical development of increments of nonlinear cdracdion date back
from the late nineties and started with activities conaggriimplicit Dynamic In-
version’ for DI-based flight control [24, 4], where the arelgiures considered in
this paper were firstly described. Other designations fes¢tdevelopments found
in the literature are ‘Modified NDI' and ‘Simplified NDI’, buhe designation ‘In-
cremental NDI' is considered to describe the methodologyraature of these type
of control laws better [9, 10, 11, 21]. INDI has been elabedand applied theoret-
ically in the past decade for flight control and space apptica [21, 25, 4, 5, 6, 1].

The main motivation of this approach is to bring the impiieiés of such sensor-
based architectures with Lyapunov-based controller desigh as backstepping for
aerospace applications. This topic has been introducdrkititerature recently, but
from a singular pertubations approach, in [14]. The rewersiep-by-step procedure
of the backstepping methodology can be exploited for thégdesf a single and
generic control law for cascaded systems, retaining by idefinits stability and
convergence properties, and with the possibility to resaailizing nonlinearities
in the closed-loop system description.

The remainder of the paper is organized as follows. Sectipre&ents the main
results of this paper, namely the incremental backstepgipgoach. In Section 3 we
present the generic flight control law design with this mdthad for the particular
case of attitude control. Section 5 illustrates the desfgnavemental backstepping
control for an examplary longitudinal missile tracking trah, including simulations
of such control strategy. Conclusions are provided in $adi
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Incremental Backstepping for Robust Nonlinear Flight Control 3

2 Incremental Backstepping

This section presents the proposed incremental backs@g@pproach. Its de-
sign departure is from a stability and convergence viewpdire to control Lya-
punov functionaugmentations rather than forcing linear behaviour thinocon-
ventional feedback linearization. Because of its advantdgtabilizing or tracking
one or more loops within a single control command maintgrdesired proper-
ties, the motivation for this approach also stems to the ¢oeabflexibility of this
method over conventional approaches such as robust nanlitymamic inversion
(NDI) [2, 3,7, 12,13, 15, 22, 23, 26, 27], and its adaptivel[8, 20] and incremen-
tal counterparts [1, 4, 5, 6, 9, 21, 24, 25].

For the discussion, we will consider physical systems orcleldlynamics which
are represented by the following strict-feedback secoddrarascaded form:

E =h(&) +k(&)x (1a)
x=f(&,x)+G(&,x)u (1b)

We assume that Eq. (1a) may represent a kinematic equagqra relation between
(angular) velocities and positions (orientations), wikite (1b) may represent a dy-
namic equation relating forces and torques to the formegu(an) velocities, see
Figure 1. In flight control, Eq. (1a) may also have a contrguindependency,
if not always, but this term is ignored during the controligasof the kinematic
loop since the backstepping method can only handle nomlisyestems of lower-
triangular form (e.g., for attitude control the assumpi®made that the fin surface
is a pure moment generator). Although this method is preskefur second-order
strict feedback (cascaded) nonlinear systems, its extensihigher-order systems
by continuation of the backstepping design methodologyr&@ghtforward. This is
of particular interest, if for instance, several contraps are to be considered for
the control law design (e.g., position control, etc.).

———| x=1(&,0+G(&,x)u / & =h(&)+k(&)x N

Fig. 1 Cascade structure of the system in Egs. (1).

The closed-loop stability of the complete system for thiscealed interconnec-
tion will rely on the efficient design of a control law We start the discussion with
a brief review of the backstepping (denoted ‘BKS’) procedlr7, 18] for stabiliza-
tion, in this case as follows:
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4 Paul Acquatella B., Erik-Jan van Kampen, and Qi Ping Chu
Step 1
1. Promotingx as the virtual control in Eq. (1a), introduce the error state
Z=X—Xdes=X— (&)

wherea (&) is a stabilizing feedback that will be designed in the foilogy
sub-steps. Such intermediate control law is referred sibilizing function
Rewriting Eg. (1a) in terms of this error state results in:

&=h(&)+k(&)(z+a)

2. Construct any positive definite, radially unbounded fiomVy (€) : R3 — R*
as acontrol Lyapunov functioffCLF) for the system, treating it as a final stage,

e.g., 1
Vl(E) = EETE

This choice of a CLF may depend on the kinematic equationideresd and
may trade-off its complexity with the resulting control law

3. To find a stabilizing functiorr (&) for the virtual control in this stepxj, we
need to make the derivative ¥f (&) nonpositive wherx = a. Such continu-
ously differentiable feedback control law() hence need to satisfy:

. 0Vi(&)
V =

1 o0&
whereW : R" — R is positive semi-definite. Moreover, for the subsequemtsste

the following notation for the derivative of the currenttsitezing functiona (&)
is introduced:

h(&)+k(€)a(§)] <-W(E) <0, V§eR"

o6 - 2290

_ da(?)

O @)+ (z+ )|

Step 2

This step consists of calculating the final control laas follows.

1. With a(&) determined, the next step is to consider the subsequeatejag-
tion, the dynamics in Eq. (1b), in terms of the error state:

z=x—-a(&,x)=1(&,x)+ G, x)u—a(&,x)

2. Construct an augmented CLF for the system, treating itfesabstage:

1
Va(&,X) =Vi+ EZTZ
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3. To find the final control law in this step, we need to make the derivative of
V,(&,x) nonpositive wherg # o
Vz = \71 + 7'z
oVi(&)
73

If G(&,x) # 0 and invertible for alk and&, onepossible choice fou is:

M1(§)
ke @

with ¢; > 0, which yieldsVz < —W(&) — 12"z < 0. However, as we pointed
out before, many other, possibly better, choicesdarould be available, even
if G(&,x) =0 at some points.

<-W(&)+z" [f(f,x)—i‘e(f,x)u_d(fax)-i‘ k(rf)}

u=G1(&,x) [—ciz—f(x)+d(f,x) -

It should be clear that this result of backstepping for cdedasecond order sys-
tems is not the specific form of the control law (2), but rattier construction of a
stabilizing function for the kinematic equation that degieion the choice of a Lya-
punov function whose derivative can be made negative by a wadiety of family
of control laws. Also, the augmentation of this selecteddwrov function in the
second step may have other structure, which could resultdifferent family of
controllers. This flexibility in backstepping gives a grealvantage to the control
engineer, in which the complexity of the CLFs can be traded thie complexity of
the resulting controller structure. This backsteppingpture can be illustrated as
in Figure 2.

Nonlinear system

u K=f)+Gou  — [ X i@ ke ] ff
............... S USSP
|
............... o m o m e
} Xdes
if.e + a(é)
i z _ istabilizingfunctioni
final ! i I
control law

Backstepping control

Fig. 2 Backstepping control block diagram for second order cascadierag. Dashed arrows rep-
resent information required for control design. Notice thatfthal control law requires knowledge
of bothf andG.
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6 Paul Acquatella B., Erik-Jan van Kampen, and Qi Ping Chu

The incremental backstepping (denoted ‘IBKS’) is derivashf expressing or
approximating the dynamics into an incremental form. Thisemental form of the
dynamic equation is obtained as follows [4]. Consider a gerferm of an affine
nonlinear dynamical system:

x=f(x)+G(x)u (3)

wherex € R" is the state vector) € R™ is the control input vector, andh are
smooth vector fields oR", andG € R™™M is a matrix whose columns are smooth
vector fieldsg;. A standard Taylor series expansion provides the follovfirsy-
order approximation of for x andd in the neighborhood dkg, ug:

x = f(Xo) 4+ G(Xo)uo + % [f(X) +G(x)u] N (x—Xg) + G(xo) (u—ug) +H.O.T.
(4)

U=up
where the current state and contrgj,andug respectively, represent for each time
instance theeferencean incremental instance in time befor@ndu for the con-
struction of the first-order approximation ®f andH.O.T. the higher order terms
that can be neglected. By definition, the corresponding stativativex, satisfies:

%o = (o) + G(Xo)Uo )

Using this expression and the standard linear definition,

7]

Ag = x [f(X) +G(x)u] ézﬁg (6a)
7}

Bo= Fm [G(x)u] — = G(xo) (6b)

with Ag andBg being the partials evaluated at the current reference painig] on
the state/control trajectory; Equation (4), i.e., the agpnation ofx for x andu in
the neighborhood diko, ug] can be written as:

).(’E).(o—FAo(X—Xo)—‘rB()AU @)

whereAu = (u—ug) represents the incremental control command. This suggests

that in a small neighborhood of the reference state we carozippate the nonlin-
ear system (3) by its linearization about that referende sta

Considering this linear approximation in the second stephefbackstepping
procedure presented, we obtain the following control lamttie increments of non-
linear control:

oV1(€)
0&

Au =G Y(xg) |[—c1z— %o — Ao (X—X0) +a —

k(&) (8)
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Moreover, considering small time increments and a suffttidrigh control update
rate,x approachegy much faster than an incremental change of the dynamics due
to an incremental input, hence the incremental backstgpgontrol law becomes:

oV1(€)
0¢&

This control ensureg to be uniformly ultimately bounded. Note that this control
law results in increments of control commands; these clangest be added to the
current reference command to obtain the full new controlmamd input. Hence,
the total control command is obtained as:

Au=GY(xg) | —c1z— %o+ @ —

k(<) (9)

u=up+Au (10)

The incremental backstepping control law (10), as the apfiin of backstep-
ping to a system expressed in an incremental form, resudtsamtrol law that is not
depending on the plant dynamifix) explicitly. This results in @mplicit-control
approach where the dependencyf©f) of the closed-loop system under feedback
control is largely decreased, improving the system rolasstragainst model mis-
match and model uncertainties. Remaining dependency igadobanges irf(x)
that are reflected ixg, and since the control approach does require estimates of
Xo andug, the control strategy is more sensor/actuator dependesredier, apart
from the aspects considered, the control needs as well theleeontrol derivatives
G(xp). To make a clear difference with respect to standard (Jaoplinearization
overoperatingpoints, a graphical interpretation of the implicit natufénzrements
of control is depicted in Figure 3-(c). The incremental lsekping block diagram
is illustrated in Figure 4.

(@)

Fig. 3 Graphical interpretation of three control strategies: (a) skomear controllers designed over
some operating points by standard (Jacobian) linearizatiomeo$ystem; (b) the concept of gain-
scheduling between these operating points, where stabilitycandergence are not guaranteed
overall; (c) the implicit nature of increments of control actj the current state represents a new
reference and the control strategy acts stabilizing or trackicrementally, and without the need
of scheduling or the design of multiple controllers.

The implementation of incremental-based controllers ictems the following as-
sumptions:
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(i) Itis assumed to have complete and accurate knowledget éwe state of the

(ii)

system. State derivatives (acceleration) sensors arédeved to be available
for this study as well. In the case of angular acceleratioasueements, they
may be measured directly or derived by diferentiation froertial measure-
ment unit (IMU) gyro measurements and filtered accordingly;

For small time increments, state derivatives evolvetda than the state upon
fast control action, which directly influences the dynanutshe rigid body.
In other words, the state only change by integrating statwat&es, hence
making the differencéx — xo) negligible for for small time increments as
compared to;

(i) Fastcontrol action is assumed. This assumption cemgints the previous one

in the sense that the dynamics of the actuators are conditteevolve much
faster than the states. For this study a linear second oythanaics for the ac-
tuators is assumed, and considering an actuator undampa@linfaequency
wn, Sufficiently high guarantees the fast actuator requireroéiricremental
control action.

Nonlinear system

X X i
x=f(x) +G(x)u J &=h(&) +k()x L J ,E
____________ T e
I
............ }
}G Xdes
! a(é)
|
Y z stabilizing functions
— a '
final
control law

actuator sensor/mod

Incremental backstepping control

Fig. 4 Incremental backstepping control block diagram for seconceromhscaded systems.
Dashed arrows represent information required for control dedigtice that the final control law
in this case requires knowledge @f but also ofk andup.

Regarding the actuator state requirement, Fig.5-(a}tlitsss a sensor-dependency
configuration, where the actuator state measurements addyrevailable (e.g.
known current surface deflection), and Fig.5-(b) illustsathe model-dependent
approach, where actuator state measurements are noyreegiable and a high-
fidelity model of actuator dynamics are to be included in thatwl architecture
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Incremental Backstepping for Robust Nonlinear Flight Control 9

as to supply the required control input referenge The mismatch of such mea-
surements with respect to reality must be studied in ordavedd wind-up effects.

Moreover, actuator state measurements may contain noased) and delays. Of
course, physical limitations exists and the attitude edrgystem will depend on
appropriate choice of sensors and actuators. In some ylartases, a combination
of these two approaches may be necessary.

X0, X Uemd
0701 IBKS actuator
sensor
,,,,,,,,,,,,,,,,,,,,,,, (@)
X0,Xo | dur_ u Uemd
—> IBKS actuator I

actuator Uo
model

(b)

Fig. 5 Actuator state measurement/estimation architectures for inatambackstepping: (a)
sensor-dependent. (b) model-dependent.

3 Flight Control Law Design

The incremental backstepping methodology has remained general up to this
point. In the following, for flight control law design, we wilemonstrate this con-
cept considering attitude and rate control, outer and iho@p, respectively, by
applying the methodology as a single-loop control for bgstems simultaneously.
Extra outer loops, see Fig. 6, could be also considered ih santrol law design
with backstepping, but not shown here. Notice that in gdnstaictures for flight
control have at their core several blocks of dynamic ineergi’]. Such architec-
tures are difficult to study from the stability point of viewiel to the multi-loop
interconnection and time-scale separation, in contratst backstepping-based de-
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10 Paul Acquatella B., Erik-Jan van Kampen, and Qi Ping Chu
X.Y,z V.gy u.a.p

L, g p.a.r
Reference Position Fligh}; Path /anle Attitude o | “=W‘
Trajectory Control g’;nm')ffpee @aris] ate Control

Fig. 6 Four loop feedback design for flight control. Grey boxes repné the attitude and rate
control systems considered for flight control law design in thie¥ahg. Image credits: [28].

sign which starts from the subsystem farthest from the obirtput and steps back
through the integrators by considering augmented conyrapunov functions (and
hence from a stability view point) in a step-by-step fashiombtain control laws
for some desired motion with known stability and convergepioperties.

In this sense, we demonstrate the incremental backstepyicgnsidering Eu-
ler's equation of motion for the angular velocities of a \ain vector form:

Mg =lw+wxlw (11)

wherew € R® is the angular velocity vectorM € R? is the external (unknown)
moment vector in body axes, ahthe inertia matrix of the rigid body (witk—z a
plane of symmetry). We will be interested in the time histofyhe angular velocity
vector, hence the dynamics of the rotational motion of acletin Eq. (11) can be
rewritten as the following set of differential equations:

w=1"Mg-wxlw) (12)
where:
p Ixx O Iy L bG
w=|q I=| 0 Iy O Mg= |M | =SQ|cCn
r Ixz O 1z N bC,

with p, g, r, the body roll, pitch, and yaw rates, respectivelyM, N, the roll, pitch,
and yaw moments, respectively; aBdhe wing surface are® the dynamic pres-
sure,b the wing spant the mean aerodynamic chord, a8d Cy,, C,, the moment
coefficients for roll, pitch, and yaw, respectively. Furthere, l[etMg be the sum
of moments partially generated by the aerodynamics of ttieaaie (subscrip#),
moments generated by the control derivatives (subsc)iptnes the deflection of
control surfacesq), and external disturbance moments (subsdjpt

Mg=Mag+Mcd+ Mgy (13)
where:
L L O L
N a N c d N d
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and¢ corresponds to the control inputs: aileron, elevator, addier deflection an-
gles, respectively. Hence, the dynamic equation in consid® can be rewritten
as:

w="f(w,¢)+9(¢)d+d (14)

with:
fw¢)=1"Ma—wxlw) g¢)=1"Mc d=1"1Mgq
and¢ € RP a parameter vector. For the rotational motion, this equdiEcomes:
=1 Ma—wxlw)+1"Mc+1"Mq (15)

Without knowledge of the disturbances, and introducingMinial control input
V = (yes applying nonlinear dynamic inversion (NDI) to Eq. (15) ukts in an
expression for the control input of the vehicle as:

5=M:'(Ilv—Ma+wxlw) (16)

This resulting NDI control law depends on accurate (fullpkttedge of the aero-
dynamic model contained in botl; and M¢, and hence depends on the model
uncertainties contained therein. Furthermore it also dép@n parametric uncer-
tainties regarding inertia parameters, center of grawifigalignment, etc. Such a
dynamic inversion control law is intended to linearize ardaliple the (inner loop)
rotational dynamics in order to obtain an explicit desirézbed loop dynamics to
be followed. Notice that this result does not consider tlfiecef the external dis-
turbanced, and hence does not reject it properly. In the following, weiaterested
to go further using the result from backstepping for a mordbile and augmented
design.

For the sake of simplicity, we will depart the study fr@tep 2of the backstep-
ping design procedure explained before, assuming that-sutesystem’s stabilizing
control laws are already obtained and stepped back up toythentic equation in
consideration. In this sense, we depart from the final efyoramics equation:

2= - a(0,0) = f(w,6) +9(¢)5 — & (0, w) (17)

whereo may represent a kinematic variable or a state stepped backifre outer-
subsystems. For flight control law design, the goal is toiktatihe complete system
described by the following augmented equation:

z=1"Ma—wxlw)+1"Mcd+1 My — (0, w) (18)

and with partial knowledge of the disturbance (full knowgdeds practically im-
possible), and applying backstepping to Eqg. (18) in contlmnawith a nonlinear
damping termly [17, 18, 29] to handle the disturbance effect and controltinp
uncertainty, a plaussible expression for the control irgftihe vehicle results in:
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5:|v|gl|[—sz—rl(Ma—wx|w)+ix(a,w)+rd} (19)

with K, > 03,3. This control ensuresto be uniformly ultimately bounded, mean-
ing that the complete system is stabilized, and the flexybdf the method allows

to consider several families of control laws apart from aegdinmearizing one. More-
over, the flexibility due to CLF augmentation and redesidovads the inclusion of

a nonlinear damping teriy to reject external disturbance effect and possible input
uncertainty. Again, the resulting control law depends ocueate (full) knowledge

of the aerodynamic model contained in bdth andM¢, and hence also depends
on the model uncertainties contained therein. For thiorgage complete the study
by improving the robustness of such backstepping desigmtiogducing its incre-
mental counterpart, using the implicit approach with thraursive control law:

5=080+M M| —Kyz—cn+a(o,w)+Iy (20)

Which results in a stabilizing control law for outer-loop iednles that is not depend-
ing on the aerodynamic modkl,, hence it will not be affected by its uncertainties.
In this case, the aerodynamic (control input) uncertainggent inVl ¢, the paramet-
ric uncertainty, and the effect of external disturbance,captured by the vehicle’s
accelerations and by the implicit architecture of the adek®p system. Moreover,
the extra nonlinear damping term may be suitable to alleviis problem even
further, but its contribution to the closed-loop robussissnot studied here.

4 Robustness

Apart from the robustness properties already discusseaatdaehe present section
shows briefly closed-loop forms of the systems in considmratnder feedback
control for particular uncertainty structures. Ignoritg texternal disturbance for
this analysis (and hence the nonlinear damping term), thécagion of the back-
stepping control law in Eq. (19) on the nominal system (18lts in the following
stable closed-loop error-dynamics:

Instead, if we consider the uncertain system with the faatttie error-dynamics (17)
may contain uncertainties from the original dynamics asirfstance:

z="f(w,¢)+Af(w,¢) + [9(¢) +49(¢)]6 — a(0, w) (22)

the application of the backstepping control law in Eq. (18¢s not robustify the
closed-loop dynamics against model and parametric uniogrtpresent in both
Af(w, ¢) andAg(¢), besides from the aerodynamic uncertainty containeditnere
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: Ag(c)} A9(9) :
z=—|Il+ —>|Kpz+Af(w,¢) — —= |f(w,¢)+a(o,w (23)
e e a0 - f @0 raow

unless considering the robustification with a better n&airdamping design or via
robust backstepping, which will make the control law moresavative, see [18,
29].

As a matter of fact, we are interested on robustness prepdrom incremen-
tal backstepping. For thpartly-linearized nonlinear system, recall we assume in
this case angular accelerations to be known accuratelggtiém, ¢) representsw
and notI*l(Ma— W X Iw). Such difference is important since it not only repre-
sents a measurement versus an explicit model containirggla@amic terms and
parameters, but also because the téftw, ¢) is no longer present in such case
since such measurement uncertainty is considered ndglidtbr this reason, the
uncertain system is rewritten as:

2=+ [9(¢) +49(¢)] A8 - a(0, w) (24)
and applying the incremental backstepping control law tthsuncertain system

results in: Ag(c) 2g(0)
o g(¢ _A9(Q) | . .
o= |1+ e Ko e [ ato.] (29)

which only contains uncertainties in the control derivesiand moments of inertia.

5 Example: longitudinal missile control

In this section the advantage of incremental backstepirpimonstrated with an
example consisting on the tracking control design for aitonal missile model.
This example is adapted from [28]. A second order nonlineadehof a generic
surface-to-air missile as obtained from [16] is considefda model consists of the
longitudinal force and moment equations representativerofssile traveling at an
altitude of approximately 6000 meters, with aerodynamiefiicients represented
as third order polynomials in angle of attagkand Mach numbeM.

The nonlinear equations of motion in the pitch plane arergve

@ =+ o Cala. M) + (M) (262)
4= 95d m(a,M)+bm(M)5] (26b)
lyy
where:
Ca,M) = da(a)+ dpp(a)M b,(M) = 1.6238Vl — 6.7240

Cin(a,M) = b (@) + Prrz(a)M bm(M) = 12.0393V1 — 48.2246
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14 Paul Acquatella B., Erik-Jan van Kampen, and Qi Ping Chu
and:

¢n(a) = —2887a%+5032a |a| —2389%  ¢p(a)=—1353a|a|+4.185
¢mu(a) =3031a° —2463a|a| —37.56a  ¢np(a) = 7151a |a|+ 10.01a
These approximations are valid for the flight envelepe)® < o < 10° and 18 <

M < 2.6. To facilitate the control design, the nonlinear missiled®l is rewritten in
the more general state-space form as:

X1 = X2+ fl(Xl) +01u (27a)
X2 = fa(X1) +gou (27b)
where:
X1=a X2=q
f1(x1) = C1[pz (1) + ¢2(x1)M] fa(x1) = Ca [ (1) + Prz(X1)M]
g1 = Cib; g2 = Cobm
qs asd
Ci= > c,= ¢
1= v 2=,

The control objective considered here is to design an aotopith the incremental
backstepping method that tracks a command refergn@dl derivatives known and
bounded) with the angle of attacl. It is assummed that the aerodynamic force
and moment functions amot exactly known and the Mach number M is treated
as a parameter available for measurement. Furthermoreptitabution of the fin
deflection on the right-hand side of the force equation (2¥#&nored during the
control design, since the backstepping method can onlylearahlinear systems
of lower-triangular form, i.e. the assumption is made that fin surface is a pure
moment generator. This is a valid assumption for most typagcraft and aerody-
namically controlled missiles, often made in flight consgstems design [28].

We begin the control design procedure with standard baggstg for illustra-
tion purposes and further comparisons.

Step 1: First, introduce the tracking errors as:

Zp = X2 — 01 (28b)

whereas is the stabilizing function to be designed as a first desigp &nd not to
be confused witlw, the angle of attack). Thg —dynamics satisfy:

n=x+h-Yr=z+a1+f1—y (29)

Consider a candidate CL\R for the z; —subsystem defined as:

1457

FrBT1.3



Incremental Backstepping for Robust Nonlinear Flight Control 15
1 2
Vi(z) = 5 (Z+kiAf) (30)

where the gailk; > 0 and the integrator tersky = fé 2 dt are introduced to robustify
the control design against the effect of the neglected obtdrm. The derivative of
V; along the solutions of (29) is given by:

Vl =znan+tkidzn=z7 (22+al+ fl—yr +k1)\1) (31)
The stabilizing functiorry is selected as:
01 =—Cz1 —kiAr—f1+¥%, ¢>0 (32)

to render the derivative _
Vi=-aZ+uzn (33)

The cross ternzy z, will be dealt with in the second design step.
Step 2: Second, the,—dynamics are given by:
22 = f2+gguf dl (34)

whered; = —c1(Xo+ f1 — W) —kizg — f1 +Vr. The CLFV; is augmented with an
additional term to penalize:

1
Va(z1,22) = V1 + éz% (35)
The derivative of/; along the solutions of (29) and (34) satisfies
Vo= —CiZ+2z+2(f2+gu—01) = —CiZ +2(z+ fa+Qu—a1)  (36)

Notice that the first term in the right-hand of the last expi@s is already negative

semi-definite. Hence, a control law forcan now be defined to cancel all indefinite

terms, and the most straightforward choice is given by:

1 .
u=—(—cz—z-f+mn) (37)
92
According to the results previously outlined, the incretaébackstepping con-
trol law design follows from considering the approximateasnics around the cur-
rent reference state for the dynamic equation of the pitteh ra
. . 0gsd
6= o+ T—-Dn(M)A5 (38)
yy
assuming that pitch acceleration is available for measen¢rand which is rewriten
in our formulation as:
)'(2 = XZO + 92AU (39)
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From there, the design procedure is the same as beforefittesufo consider the
new f, = X, noticing that we are replacing the accurate knowledge b a mea-
surement (or an estimate) instead, and this trade-off teegula robustified back-
stepping control law which is not entirely dependent on a ehod

The incremental backstepping control law is hence obta@sed

1 . )
u:u0+g—(fczzzlefx20+al) (40)
2

Simulation results for the backstepping controller in BY)(@nd the incremental
backstepping controller in Eq. (40) are now presented. TAreuver simply con-
sists on a smooth doublet angle-of-attack trajectory fenttissile. Figure 7 shows
the tracking control numerical simulation at Mach 2.0 of tlwminal (idealized)
longitudinal missile model for the two control laws derivaidthe same gain selec-
tions ofk; = ¢; = ¢ = 10, showing relatively the same performance and closepl-loo
response as expected with no uncertainty and model mismatch

Now we introduce aerodynamic uncertainties modeled agpaametric uncer-
tainty of the coefficients present@, b, C,, bm. The coefficients are perturbed from
their nominal value within a&20% range. Figure 8 shows tracking control numeri-
cal simulation of the uncertain longitudinal missile mofielthe backstepping con-
troller in Eq. (37) and with the same gain selection. As eigdcthis conventional
backstepping alone is robust but not quite much over largeuaiyc uncertainties,
and hence the nominal performance is lost and/or degraded.

For this particular example, the tracking capability angegior robustness at
Mach 2.0 of the uncertain longitudinal missile model ardfiest, showing a great
benefit of the incremental version over conventional bagksing designs since the
new structure is able to cope very well with relatively laeggodynamic uncertainty,
and hence the nominal performance is not lost and/or dedsigaificantly.

6 Conclusion

This paper presented a robust nonlinear flight controlegjsabased on results com-
bining incremental control action with the backsteppingige methodology, called
incremental backstepping. Such approach is aimed to erhiwecrobustness of
flight control systems in the presence of large model andhpetiric uncertainties.
The incremental feature enhances robustness capabilitiesducing feedback
control dependency on accurate knowledge of the baselineattiimodel, where
only information on control derivatives is required. Chas@n aerodynamics causes
forces and moments which affect the vehicle dynamics, wimi¢hrn may be cap-
tured or measured by accelerometers. Hence, vehicle'stigsgndo its baseline
model is reduced in favor of obtaining a robust measure oiclegk acceleration.
The use of this type of control action, which requires infation of actuator
states and accelerations, make these sensor-based typeatdillers efficient in
terms of performance, and robust in terms of handling uag#ies. Unlike con-
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Fig. 7 Backstepping (37) and incremental backstepping (40) tracdaongol numerical simulation
of the nominal longitudinal missile model for a gain selectiokpf c; = ¢, = 10.

ventional backstepping, this control design techniqueniglicit in the sense that
desired closed-loop dynamics do not reside in some exptiodel to be cancelled
but result when the feedback loops are closed.

The potential of incremental backstepping was evidencéukicontext of an ex-
ample for the longitudinal tracking of a conventional missnodel, which showed
that performance was not severely degraded upon relatizegg variations in the
missile aerodynamic model.

In practice, however, incremental backstepping-basedraorely on accurate
actuator state and acceleration measurements which mégmeadily available or
which may contain noise, biases, and delays, hence a disad)aof this type of
architectures which may be further studied on.
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Fig. 8 Backstepping (37) tracking control numerical simulation ofuheertain longitudinal mis-
sile model for a gain selection &f = c; = ¢, = 10. Aerodynamic uncertainties are modeled as real
parametric uncertainty of the coefficients presentirb,,Cn, bm. The coefficients are perturbed
from their nominal value within &20% range.
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