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Abstract This paper presents a robust nonlinear flight control strategy based on
results combining incremental control action and the backstepping design method-
ology for vehicles described by strict-feedback (cascaded) nonlinear systems. The
approach, referred to as incremental backstepping, uses feedback of actuator states
and acceleration estimates to allow the design of increments of control action. In
combination with backstepping, the proposed approach stabilizes or tracks outer-
loop control variables of the nonlinear systemincrementally, accounting for large
model and parametric uncertainties, besides undesired factors such as external per-
turbations and aerodynamic modeling errors. With this result, dependency on the
modeled aircraft system is greatly reduced, overcoming themajor robustness flaw
of conventional model-based flight control strategies. This suggested methodology
implies a trade-off between accurate knowledge of the dynamic model and accu-
rate knowledge of the vehicle sensors and actuators, which makes it more suitable
for practical application than identification or model based adaptive control archi-
tectures. Simulation results verify the tracking capability and superior robustness
of the proposed controller under aerodynamic uncertainty with respect to standard
backstepping methodologies for a simple flight control example.
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1 Introduction

The design of a generic robust nonlinear flight control strategy is considered in this
paper. The strategy is based on recent results combining incremental control action
and the backstepping design methodology for strict-feedback (cascaded) nonlinear
systems, called incremental backstepping. The main designissue is dealing with
large model and parametric uncertainties present in flight control systems, mainly
because of aerodynamic and unmodeled dynamics.

Incremental backstepping is presented by means of a modification to the stan-
dard backstepping design methodology that reduces its dependency on the baseline
aircraft model, through the use of actuator states and acceleration estimates. These
considerations allow the design of increments of control action which, in combina-
tion with backstepping, helps to stabilize or track outer-loop control variables of the
nonlinear system incrementally. In contrast to regular backstepping, this method is
inherentlyimplicit in the sense that desired closed-loop dynamics do not residein
some explicit model to be cancelled, but which results when the feedback loops are
closed.

Theoretical development of increments of nonlinear control action date back
from the late nineties and started with activities concerning ‘Implicit Dynamic In-
version’ for DI-based flight control [24, 4], where the architectures considered in
this paper were firstly described. Other designations for these developments found
in the literature are ‘Modified NDI’ and ‘Simplified NDI’, butthe designation ‘In-
cremental NDI’ is considered to describe the methodology and nature of these type
of control laws better [9, 10, 11, 21]. INDI has been elaborated and applied theoret-
ically in the past decade for flight control and space applications [21, 25, 4, 5, 6, 1].

The main motivation of this approach is to bring the implicitness of such sensor-
based architectures with Lyapunov-based controller design such as backstepping for
aerospace applications. This topic has been introduced in the literature recently, but
from a singular pertubations approach, in [14]. The recursive step-by-step procedure
of the backstepping methodology can be exploited for the design of a single and
generic control law for cascaded systems, retaining by definition its stability and
convergence properties, and with the possibility to retainstabilizing nonlinearities
in the closed-loop system description.

The remainder of the paper is organized as follows. Section 2presents the main
results of this paper, namely the incremental backsteppingapproach. In Section 3 we
present the generic flight control law design with this method and for the particular
case of attitude control. Section 5 illustrates the design of incremental backstepping
control for an examplary longitudinal missile tracking control, including simulations
of such control strategy. Conclusions are provided in Section 6.
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2 Incremental Backstepping

This section presents the proposed incremental backstepping approach. Its de-
sign departure is from a stability and convergence viewpoint due tocontrol Lya-
punov functionaugmentations rather than forcing linear behaviour through con-
ventional feedback linearization. Because of its advantage of stabilizing or tracking
one or more loops within a single control command maintaining desired proper-
ties, the motivation for this approach also stems to the combined flexibility of this
method over conventional approaches such as robust nonlinear dynamic inversion
(NDI) [2, 3, 7, 12, 13, 15, 22, 23, 26, 27], and its adaptive [8,19, 20] and incremen-
tal counterparts [1, 4, 5, 6, 9, 21, 24, 25].

For the discussion, we will consider physical systems or vehicle dynamics which
are represented by the following strict-feedback second order cascaded form:

ξ̇ = h(ξ )+k(ξ )x (1a)

ẋ = f(ξ ,x)+G(ξ ,x)u (1b)

We assume that Eq. (1a) may represent a kinematic equation, i.e., a relation between
(angular) velocities and positions (orientations), whileEq. (1b) may represent a dy-
namic equation relating forces and torques to the former (angular) velocities, see
Figure 1. In flight control, Eq. (1a) may also have a control input dependency,
if not always, but this term is ignored during the control design of the kinematic
loop since the backstepping method can only handle nonlinear systems of lower-
triangular form (e.g., for attitude control the assumptionis made that the fin surface
is a pure moment generator). Although this method is presented for second-order
strict feedback (cascaded) nonlinear systems, its extension to higher-order systems
by continuation of the backstepping design methodology is straightforward. This is
of particular interest, if for instance, several control loops are to be considered for
the control law design (e.g., position control, etc.).

u
ẋ = f(ξ ,x)+G(ξ ,x)u

x
ξ̇ = h(ξ )+k(ξ )x

ξẋ ξ̇ ∫∫

Fig. 1 Cascade structure of the system in Eqs. (1).

The closed-loop stability of the complete system for this cascaded interconnec-
tion will rely on the efficient design of a control lawu. We start the discussion with
a brief review of the backstepping (denoted ‘BKS’) procedure [17, 18] for stabiliza-
tion, in this case as follows:
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Step 1

1. Promotingx as the virtual control in Eq. (1a), introduce the error stateas:

z = x−xdes= x−α(ξ )

whereα(ξ ) is a stabilizing feedback that will be designed in the following
sub-steps. Such intermediate control law is referred as astabilizing function.
Rewriting Eq. (1a) in terms of this error state results in:

ξ̇ = h(ξ )+k(ξ )(z+α)

2. Construct any positive definite, radially unbounded function V1(ξ ) : R3 7→ R+

as acontrol Lyapunov function(CLF) for the system, treating it as a final stage,
e.g.,

V1(ξ ) =
1
2

ξ⊤ξ

This choice of a CLF may depend on the kinematic equation considered and
may trade-off its complexity with the resulting control law.

3. To find a stabilizing functionα(ξ ) for the virtual control in this step (x), we
need to make the derivative ofV1(ξ ) nonpositive whenx = α. Such continu-
ously differentiable feedback control lawα(ξ ) hence need to satisfy:

V̇1 =
∂V1(ξ )

∂ξ

[

h(ξ )+k(ξ )α(ξ )
]

≤−W(ξ )≤ 0, ∀ξ ∈ Rn

whereW : Rn 7→R is positive semi-definite. Moreover, for the subsequent steps,
the following notation for the derivative of the current stabilizing functionα(ξ )
is introduced:

α̇(ξ ,x) =
∂α(ξ )

∂ξ
ξ̇ =

∂α(ξ )
∂ξ

[

h(ξ )+k(ξ )
(

z+α(ξ )
)

]

Step 2

This step consists of calculating the final control lawu as follows.

1. With α(ξ ) determined, the next step is to consider the subsequent state equa-
tion, the dynamics in Eq. (1b), in terms of the error state:

ż = ẋ− α̇(ξ ,x) = f(ξ ,x)+G(ξ ,x)u− α̇(ξ ,x)

2. Construct an augmented CLF for the system, treating it as afinal stage:

V2(ξ ,x) =V1+
1
2

z⊤z
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3. To find the final control lawu in this step, we need to make the derivative of
V2(ξ ,x) nonpositive whenξ 6= α

V̇2 = V̇1+ z⊤ż

≤−W(ξ )+ z⊤
[

f(ξ ,x)+G(ξ ,x)u− α̇(ξ ,x)+
∂V1(ξ )

∂ξ
k(ξ )

]

If G(ξ ,x) 6= 0 and invertible for allx andξ , onepossible choice foru is:

u = G−1(ξ ,x)
[

−c1z− f(x)+ α̇(ξ ,x)−
∂V1(ξ )

∂ξ
k(ξ )

]

(2)

with c1 > 0, which yieldsV̇2 ≤ −W(ξ )− c1z⊤z ≤ 0. However, as we pointed
out before, many other, possibly better, choices forα could be available, even
if G(ξ ,x) = 0 at some points.

It should be clear that this result of backstepping for cascaded second order sys-
tems is not the specific form of the control law (2), but ratherthe construction of a
stabilizing function for the kinematic equation that depends on the choice of a Lya-
punov function whose derivative can be made negative by a wide variety of family
of control laws. Also, the augmentation of this selected Lyapunov function in the
second step may have other structure, which could result in adifferent family of
controllers. This flexibility in backstepping gives a greatadvantage to the control
engineer, in which the complexity of the CLFs can be traded with the complexity of
the resulting controller structure. This backstepping procedure can be illustrated as
in Figure 2.

u
ẋ = f(x)+G(x)u

x
ξ̇ = h(ξ )+k(ξ )x

ξẋ ξ̇ ∫∫

xdes
α(ξ )

stabilizing function

-

z

Backstepping control

Nonlinear system

final
control law

α̇

f,G +

Fig. 2 Backstepping control block diagram for second order cascaded systems. Dashed arrows rep-
resent information required for control design. Notice that the final control law requires knowledge
of bothf andG.
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The incremental backstepping (denoted ‘IBKS’) is derived from expressing or
approximating the dynamics into an incremental form. This incremental form of the
dynamic equation is obtained as follows [4]. Consider a generic form of an affine
nonlinear dynamical system:

ẋ = f(x)+G(x)u (3)

wherex ∈ Rn is the state vector,u ∈ Rm is the control input vector,f and h are
smooth vector fields onRn, andG ∈ Rn×m is a matrix whose columns are smooth
vector fieldsg j . A standard Taylor series expansion provides the followingfirst-
order approximation oḟx for x andδ in the neighborhood of[x0,u0]:

ẋ ∼= f(x0)+G(x0)u0+
∂

∂x
[f(x)+G(x)u]

∣

∣

∣

∣x=x0
u=u0

(x−x0)+G(x0)(u−u0)+H.O.T.

(4)

where the current state and control,x0 andu0 respectively, represent for each time
instance thereferencean incremental instance in time beforex andu for the con-
struction of the first-order approximation ofẋ, andH.O.T. the higher order terms
that can be neglected. By definition, the corresponding state derivativeẋ0 satisfies:

ẋ0 ≡ f(x0)+G(x0)u0 (5)

Using this expression and the standard linear definition,

A0 =
∂
∂x

[f(x)+G(x)u]

∣

∣

∣

∣x=x0
u=u0

(6a)

B0 =
∂

∂u
[G(x)u]

∣

∣

∣

∣x=x0
u=u0

= G(x0) (6b)

with A0 andB0 being the partials evaluated at the current reference point[x0,u0] on
the state/control trajectory; Equation (4), i.e., the approximation ofẋ for x andu in
the neighborhood of[x0,u0] can be written as:

ẋ ∼= ẋ0+A0 (x−x0)+B0∆u (7)

where∆u = (u−u0) represents the incremental control command. This suggests
that in a small neighborhood of the reference state we can approximate the nonlin-
ear system (3) by its linearization about that reference state.

Considering this linear approximation in the second step ofthe backstepping
procedure presented, we obtain the following control law for the increments of non-
linear control:

∆u = G−1(x0)

[

−c1z− ẋ0−A0 (x−x0)+ α̇ −
∂V1(ξ )

∂ξ
k(ξ )

]

(8)
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Incremental Backstepping for Robust Nonlinear Flight Control 7

Moreover, considering small time increments and a sufficiently high control update
rate,x approachesx0 much faster than an incremental change of the dynamics due
to an incremental input, hence the incremental backstepping control law becomes:

∆u = G−1(x0)

[

−c1z− ẋ0+ α̇ −
∂V1(ξ )

∂ξ
k(ξ )

]

(9)

This control ensuresz to be uniformly ultimately bounded. Note that this control
law results in increments of control commands; these changes must be added to the
current reference command to obtain the full new control command input. Hence,
the total control command is obtained as:

u = u0+∆u (10)

The incremental backstepping control law (10), as the application of backstep-
ping to a system expressed in an incremental form, results ina control law that is not
depending on the plant dynamicsf(x) explicitly. This results in aimplicit -control
approach where the dependency off(x) of the closed-loop system under feedback
control is largely decreased, improving the system robustness against model mis-
match and model uncertainties. Remaining dependency is dueto changes inf(x)
that are reflected iṅx0, and since the control approach does require estimates of
ẋ0 andu0, the control strategy is more sensor/actuator dependent. Moreover, apart
from the aspects considered, the control needs as well the vehicle control derivatives
G(x0). To make a clear difference with respect to standard (Jacobian) linearization
overoperatingpoints, a graphical interpretation of the implicit nature of increments
of control is depicted in Figure 3-(c). The incremental backstepping block diagram
is illustrated in Figure 4.

(a) (b) (c)

Ki

KaKa

KbKb

KcKc

Fig. 3 Graphical interpretation of three control strategies: (a) somelinear controllers designed over
some operating points by standard (Jacobian) linearization of the system; (b) the concept of gain-
scheduling between these operating points, where stability andconvergence are not guaranteed
overall; (c) the implicit nature of increments of control action, the current state represents a new
reference and the control strategy acts stabilizing or tracking incrementally, and without the need
of scheduling or the design of multiple controllers.

The implementation of incremental-based controllers considers the following as-
sumptions:
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(i) It is assumed to have complete and accurate knowledge about the state of the
system. State derivatives (acceleration) sensors are considered to be available
for this study as well. In the case of angular acceleration measurements, they
may be measured directly or derived by diferentiation from inertial measure-
ment unit (IMU) gyro measurements and filtered accordingly;

(ii) For small time increments, state derivatives evolve faster than the state upon
fast control action, which directly influences the dynamicsof the rigid body.
In other words, the state only change by integrating state derivatives, hence
making the difference(x − x0) negligible for for small time increments as
compared tȯx;

(iii) Fast control action is assumed. This assumption complements the previous one
in the sense that the dynamics of the actuators are considered to evolve much
faster than the states. For this study a linear second order dynamics for the ac-
tuators is assumed, and considering an actuator undamped natural frequency
ωnc sufficiently high guarantees the fast actuator requirementof incremental
control action.

u
ẋ = f(x)+G(x)u

x
ξ̇ = h(ξ )+k(ξ )x

ξẋ ξ̇ ∫∫

xdes
α(ξ )

stabilizing function

-

z

Incremental backstepping control

Nonlinear system

final
control law

α̇

G +

actuator sensor/model

Fig. 4 Incremental backstepping control block diagram for second order cascaded systems.
Dashed arrows represent information required for control design. Notice that the final control law
in this case requires knowledge ofG, but also ofẋ andu0.

Regarding the actuator state requirement, Fig.5-(a) illustrates a sensor-dependency
configuration, where the actuator state measurements are readily available (e.g.
known current surface deflection), and Fig.5-(b) illustrates the model-dependent
approach, where actuator state measurements are not readily available and a high-
fidelity model of actuator dynamics are to be included in the control architecture
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Incremental Backstepping for Robust Nonlinear Flight Control 9

as to supply the required control input referenceu0. The mismatch of such mea-
surements with respect to reality must be studied in order toavoid wind-up effects.
Moreover, actuator state measurements may contain noise, biases, and delays. Of
course, physical limitations exists and the attitude control system will depend on
appropriate choice of sensors and actuators. In some particular cases, a combination
of these two approaches may be necessary.

actuator

actuator

IBKS

IBKS

x0, ẋ0

x0, ẋ0

ucmd

ucmd

u

u

u0

u0

δu

δu

(a)

(b)

+

+

+

+

model
actuator

sensor

Fig. 5 Actuator state measurement/estimation architectures for incremental backstepping: (a)
sensor-dependent. (b) model-dependent.

3 Flight Control Law Design

The incremental backstepping methodology has remained quite general up to this
point. In the following, for flight control law design, we will demonstrate this con-
cept considering attitude and rate control, outer and innerloop, respectively, by
applying the methodology as a single-loop control for both systems simultaneously.
Extra outer loops, see Fig. 6, could be also considered in such control law design
with backstepping, but not shown here. Notice that in general, structures for flight
control have at their core several blocks of dynamic inversion [7]. Such architec-
tures are difficult to study from the stability point of view due to the multi-loop
interconnection and time-scale separation, in contrast with backstepping-based de-
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Reference
Trajectory

Position
Control

Flight Path Angle
and Airspeed
Control

Attitude
Control Rate Control

X,Y,Z V,ψ ,γ µ ,α,β p,q, r

Fig. 6 Four loop feedback design for flight control. Grey boxes represent the attitude and rate
control systems considered for flight control law design in the following. Image credits: [28].

sign which starts from the subsystem farthest from the control input and steps back
through the integrators by considering augmented control Lyapunov functions (and
hence from a stability view point) in a step-by-step fashionto obtain control laws
for some desired motion with known stability and convergence properties.

In this sense, we demonstrate the incremental backsteppingby considering Eu-
ler’s equation of motion for the angular velocities of a vehicle in vector form:

MB = Iω̇ +ω × Iω (11)

whereω ∈ R3 is the angular velocity vector,MB ∈ R3 is the external (unknown)
moment vector in body axes, andI the inertia matrix of the rigid body (withx−z a
plane of symmetry). We will be interested in the time historyof the angular velocity
vector, hence the dynamics of the rotational motion of a vehicle in Eq. (11) can be
rewritten as the following set of differential equations:

ω̇ = I−1( MB−ω × Iω
)

(12)

where:

ω =





p
q
r



 I =





Ixx 0 Ixz

0 Iyy 0
Ixz 0 Izz



 MB =





L
M
N



= SQ





bCl

cCm

bCn





with p,q, r, the body roll, pitch, and yaw rates, respectively;L,M,N, the roll, pitch,
and yaw moments, respectively; andS the wing surface area,Q the dynamic pres-
sure,b the wing span,c the mean aerodynamic chord, andCl ,Cm,Cn the moment
coefficients for roll, pitch, and yaw, respectively. Furthermore, letMB be the sum
of moments partially generated by the aerodynamics of the airframe (subscripta),
moments generated by the control derivatives (subscriptc) times the deflection of
control surfaces (δ ), and external disturbance moments (subscriptd):

MB = Ma+Mcδ +Md (13)

where:

Ma =





L
M
N





a

Mc =





L
M
N





c

δ =





δa

δe

δr



 Md =





L
M
N





d
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andδ corresponds to the control inputs: aileron, elevator, and rudder deflection an-
gles, respectively. Hence, the dynamic equation in consideration can be rewritten
as:

ω̇ = f(ω,ς)+g(ς)δ +d (14)

with:

f(ω,ς) = I−1(Ma−ω × Iω
)

g(ς) = I−1Mc d = I−1Md

andς ∈ Rp a parameter vector. For the rotational motion, this equation becomes:

ω̇ = I−1(Ma−ω × Iω
)

+ I−1Mcδ + I−1Md (15)

Without knowledge of the disturbances, and introducing thevirtual control input
ν = ω̇des, applying nonlinear dynamic inversion (NDI) to Eq. (15) results in an
expression for the control input of the vehicle as:

δ = M−1
c

(

Iν −Ma+ω × Iω
)

(16)

This resulting NDI control law depends on accurate (full) knowledge of the aero-
dynamic model contained in bothMa and Mc, and hence depends on the model
uncertainties contained therein. Furthermore it also depends on parametric uncer-
tainties regarding inertia parameters, center of gravity,misalignment, etc. Such a
dynamic inversion control law is intended to linearize and decouple the (inner loop)
rotational dynamics in order to obtain an explicit desired closed loop dynamics to
be followed. Notice that this result does not consider the effect of the external dis-
turbanced, and hence does not reject it properly. In the following, we are interested
to go further using the result from backstepping for a more flexible and augmented
design.

For the sake of simplicity, we will depart the study fromStep 2of the backstep-
ping design procedure explained before, assuming that outer-subsystem’s stabilizing
control laws are already obtained and stepped back up to the dynamic equation in
consideration. In this sense, we depart from the final error-dynamics equation:

ż = ω̇ − α̇(σ ,ω) = f(ω,ς)+g(ς)δ − α̇(σ ,ω) (17)

whereσ may represent a kinematic variable or a state stepped back from the outer-
subsystems. For flight control law design, the goal is to stabilize the complete system
described by the following augmented equation:

ż = I−1(Ma−ω × Iω
)

+ I−1Mcδ + I−1Md − α̇(σ ,ω) (18)

and with partial knowledge of the disturbance (full knowledge is practically im-
possible), and applying backstepping to Eq. (18) in combination with a nonlinear
damping termΓd [17, 18, 29] to handle the disturbance effect and control input
uncertainty, a plaussible expression for the control inputof the vehicle results in:
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12 Paul Acquatella B., Erik-Jan van Kampen, and Qi Ping Chu

δ = M−1
c I

[

−Kω z− I−1(Ma−ω × Iω
)

+ α̇(σ ,ω)+Γd

]

(19)

with Kω > 03×3. This control ensuresz to be uniformly ultimately bounded, mean-
ing that the complete system is stabilized, and the flexibility of the method allows
to consider several families of control laws apart from a pure linearizing one. More-
over, the flexibility due to CLF augmentation and redesign allowes the inclusion of
a nonlinear damping termΓd to reject external disturbance effect and possible input
uncertainty. Again, the resulting control law depends on accurate (full) knowledge
of the aerodynamic model contained in bothMa andMc, and hence also depends
on the model uncertainties contained therein. For this reason, we complete the study
by improving the robustness of such backstepping design by introducing its incre-
mental counterpart, using the implicit approach with the recursive control law:

δ = δ 0+M−1
c I

[

−Kω z− ω̇0+ α̇(σ ,ω)+Γd

]

(20)

Which results in a stabilizing control law for outer-loop variables that is not depend-
ing on the aerodynamic modelMa, hence it will not be affected by its uncertainties.
In this case, the aerodynamic (control input) uncertainty present inMc, the paramet-
ric uncertainty, and the effect of external disturbance, are captured by the vehicle’s
accelerations and by the implicit architecture of the closed-loop system. Moreover,
the extra nonlinear damping term may be suitable to alleviate this problem even
further, but its contribution to the closed-loop robustness is not studied here.

4 Robustness

Apart from the robustness properties already discussed before, the present section
shows briefly closed-loop forms of the systems in consideration under feedback
control for particular uncertainty structures. Ignoring the external disturbance for
this analysis (and hence the nonlinear damping term), the application of the back-
stepping control law in Eq. (19) on the nominal system (18) results in the following
stable closed-loop error-dynamics:

ż =−Kω z (21)

Instead, if we consider the uncertain system with the fact that the error-dynamics (17)
may contain uncertainties from the original dynamics as, for instance:

ż = f(ω,ς)+∆ f(ω,ς)+
[

g(ς)+∆g(ς)
]

δ − α̇(σ ,ω) (22)

the application of the backstepping control law in Eq. (19) does not robustify the
closed-loop dynamics against model and parametric uncertainty present in both
∆ f(ω,ς) and∆g(ς), besides from the aerodynamic uncertainty contained therein,
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ż =−

[

I+
∆g(ς)
g(ς)

]

Kω z+∆ f(ω,ς)−
∆g(ς)
g(ς)

[

f(ω,ς)+ α̇(σ ,ω)

]

(23)

unless considering the robustification with a better nonlinear damping design or via
robust backstepping, which will make the control law more conservative, see [18,
29].

As a matter of fact, we are interested on robustness properties from incremen-
tal backstepping. For thepartly-linearized nonlinear system, recall we assume in
this case angular accelerations to be known accurately, hencef(ω,ς) representṡω0

and notI−1
(

Ma −ω × Iω
)

. Such difference is important since it not only repre-
sents a measurement versus an explicit model containing aerodynamic terms and
parameters, but also because the term∆ f(ω,ς) is no longer present in such case
since such measurement uncertainty is considered negligible. For this reason, the
uncertain system is rewritten as:

ż = ω̇0+
[

g(ς)+∆g(ς)
]

∆δ − α̇(σ ,ω) (24)

and applying the incremental backstepping control law to such uncertain system
results in:

ż =−

[

I+
∆g(ς)
g(ς)

]

Kω z−
∆g(ς)
g(ς)

[

ω̇0+ α̇(σ ,ω)

]

(25)

which only contains uncertainties in the control derivatives and moments of inertia.

5 Example: longitudinal missile control

In this section the advantage of incremental backstepping is demonstrated with an
example consisting on the tracking control design for a longitudinal missile model.
This example is adapted from [28]. A second order nonlinear model of a generic
surface-to-air missile as obtained from [16] is considered. The model consists of the
longitudinal force and moment equations representative ofa missile traveling at an
altitude of approximately 6000 meters, with aerodynamic coefficients represented
as third order polynomials in angle of attackα and Mach numberM.

The nonlinear equations of motion in the pitch plane are given by

α̇ = q+
q̄S

mVT

[

Cz(α,M)+bz(M)δ
]

(26a)

q̇=
q̄Sd
Iyy

[

Cm(α,M)+bm(M)δ
]

(26b)

where:

Cz(α,M) = ϕz1(α)+ϕz2(α)M bz(M) = 1.6238M−6.7240

Cm(α,M) = ϕm1(α)+ϕm2(α)M bm(M) = 12.0393M−48.2246
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and:

ϕz1(α) =−288.7α3+50.32α |α|−23.89α ϕz2(α) =−13.53α |α|+4.185α

ϕm1(α) = 303.1α3−246.3α |α|−37.56α ϕm2(α) = 71.51α |α|+10.01α

These approximations are valid for the flight envelope−10◦ ≤ α ≤ 10◦ and 1.8≤
M ≤ 2.6. To facilitate the control design, the nonlinear missile model is rewritten in
the more general state-space form as:

ẋ1 = x2+ f1(x1)+g1u (27a)

ẋ2 = f2(x1)+g2u (27b)

where:

x1 = α x2 = q

f1(x1) =C1
[

ϕz1(x1)+ϕz2(x1)M
]

f2(x1) =C2
[

ϕm1(x1)+ϕm2(x1)M
]

g1 =C1bz g2 =C2bm

C1 =
q̄S

mVT
C2 =

q̄Sd
Iyy

The control objective considered here is to design an autopilot with the incremental
backstepping method that tracks a command referenceyr (all derivatives known and
bounded) with the angle of attackx1. It is assummed that the aerodynamic force
and moment functions arenot exactly known and the Mach number M is treated
as a parameter available for measurement. Furthermore, thecontribution of the fin
deflection on the right-hand side of the force equation (27a)is ignored during the
control design, since the backstepping method can only handle nonlinear systems
of lower-triangular form, i.e. the assumption is made that the fin surface is a pure
moment generator. This is a valid assumption for most types of aircraft and aerody-
namically controlled missiles, often made in flight controlsystems design [28].

We begin the control design procedure with standard backstepping for illustra-
tion purposes and further comparisons.

Step 1: First, introduce the tracking errors as:

z1 = x1−yr (28a)

z2 = x2−α1 (28b)

whereα1 is the stabilizing function to be designed as a first design step (and not to
be confused withα, the angle of attack). Thez1−dynamics satisfy:

ż1 = x2+ f1− ẏr = z2+α1+ f1− ẏr (29)

Consider a candidate CLFV1 for thez1−subsystem defined as:
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V1(z1) =
1
2

(

z2
1+k1λ 2

1

)

(30)

where the gaink1 > 0 and the integrator termλ1 =
∫ t

0 z1dt are introduced to robustify
the control design against the effect of the neglected control term. The derivative of
V1 along the solutions of (29) is given by:

V̇1 = z1ż1+k1λz1 = z1 (z2+α1+ f1− ẏr +k1λ1) (31)

The stabilizing functionα1 is selected as:

α1 =−c1z1−k1λ1− f1+ ẏr , c1 > 0 (32)

to render the derivative
V̇1 =−c1z2

1+z1z2 (33)

The cross termz1z2 will be dealt with in the second design step.

Step 2: Second, thez2−dynamics are given by:

ż2 = f2+g2u− α̇1 (34)

whereα̇1 = −c1(x2+ f1− ẏr)− k1z1− ḟ1+ ÿr . The CLFV1 is augmented with an
additional term to penalizez2:

V2(z1,z2) =V1+
1
2

z2
2 (35)

The derivative ofV2 along the solutions of (29) and (34) satisfies

V̇2 =−c1z2
1+z1z2+z2

(

f2+g2u− α̇1
)

=−c1z2
1+z2

(

z1+ f2+g2u− α̇1
)

(36)

Notice that the first term in the right-hand of the last expression is already negative
semi-definite. Hence, a control law foru can now be defined to cancel all indefinite
terms, and the most straightforward choice is given by:

u=
1
g2

(

−c2z2−z1− f2+ α̇1
)

(37)

According to the results previously outlined, the incremental backstepping con-
trol law design follows from considering the approximate dynamics around the cur-
rent reference state for the dynamic equation of the pitch rate:

q̇∼= q̇0+
q̄Sd
Iyy

bm(M)∆δ (38)

assuming that pitch acceleration is available for measurement, and which is rewriten
in our formulation as:

ẋ2
∼= ẋ20 +g2∆u (39)
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From there, the design procedure is the same as before. It suffices to consider the
new f2 = ẋ20, noticing that we are replacing the accurate knowledge off2 by a mea-
surement (or an estimate) instead, and this trade-off results in a robustified back-
stepping control law which is not entirely dependent on a model.

The incremental backstepping control law is hence obtainedas:

u= u0+
1
g2

(

−c2z2−z1− ẋ20 + α̇1
)

(40)

Simulation results for the backstepping controller in Eq. (37) and the incremental
backstepping controller in Eq. (40) are now presented. The maneuver simply con-
sists on a smooth doublet angle-of-attack trajectory for the missile. Figure 7 shows
the tracking control numerical simulation at Mach 2.0 of thenominal (idealized)
longitudinal missile model for the two control laws derivedat the same gain selec-
tions ofk1 = c1 = c2 = 10, showing relatively the same performance and closed-loop
response as expected with no uncertainty and model mismatch.

Now we introduce aerodynamic uncertainties modeled as realparametric uncer-
tainty of the coefficients present inCz,bz,Cm,bm. The coefficients are perturbed from
their nominal value within a±20% range. Figure 8 shows tracking control numeri-
cal simulation of the uncertain longitudinal missile modelfor the backstepping con-
troller in Eq. (37) and with the same gain selection. As expected, this conventional
backstepping alone is robust but not quite much over large dynamic uncertainties,
and hence the nominal performance is lost and/or degraded.

For this particular example, the tracking capability and superior robustness at
Mach 2.0 of the uncertain longitudinal missile model are verified, showing a great
benefit of the incremental version over conventional backstepping designs since the
new structure is able to cope very well with relatively largeaerodynamic uncertainty,
and hence the nominal performance is not lost and/or degraded significantly.

6 Conclusion

This paper presented a robust nonlinear flight control strategy based on results com-
bining incremental control action with the backstepping design methodology, called
incremental backstepping. Such approach is aimed to enhance the robustness of
flight control systems in the presence of large model and parametric uncertainties.

The incremental feature enhances robustness capabilitiesby reducing feedback
control dependency on accurate knowledge of the baseline aircraft model, where
only information on control derivatives is required. Changes in aerodynamics causes
forces and moments which affect the vehicle dynamics, whichin turn may be cap-
tured or measured by accelerometers. Hence, vehicle’s sensitivity to its baseline
model is reduced in favor of obtaining a robust measure of vehicle’s acceleration.

The use of this type of control action, which requires information of actuator
states and accelerations, make these sensor-based type of controllers efficient in
terms of performance, and robust in terms of handling uncertainties. Unlike con-
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Fig. 7 Backstepping (37) and incremental backstepping (40) trackingcontrol numerical simulation
of the nominal longitudinal missile model for a gain selection ofk1 = c1 = c2 = 10.

ventional backstepping, this control design technique is implicit in the sense that
desired closed-loop dynamics do not reside in some explicitmodel to be cancelled
but result when the feedback loops are closed.

The potential of incremental backstepping was evidenced inthe context of an ex-
ample for the longitudinal tracking of a conventional missile model, which showed
that performance was not severely degraded upon relativelylarge variations in the
missile aerodynamic model.

In practice, however, incremental backstepping-based control rely on accurate
actuator state and acceleration measurements which may notbe readily available or
which may contain noise, biases, and delays, hence a disadvantage of this type of
architectures which may be further studied on.
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Fig. 8 Backstepping (37) tracking control numerical simulation of theuncertain longitudinal mis-
sile model for a gain selection ofk1 = c1 = c2 = 10. Aerodynamic uncertainties are modeled as real
parametric uncertainty of the coefficients present inCz,bz,Cm,bm. The coefficients are perturbed
from their nominal value within a±20% range.
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