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Abstract This paper presents a stochastic state feedbackL1 adaptive control for sys-
tems with matched disturbances. The proposed approach is characterized through
the introduction of a Kalman type fixed gain in the predictor. The main contri-
bution of this work is that closed loop system analysis is demonstrated through a
deterministic-like approach that uses the stochastic Laplace transform. The control
is designed to accommodate and to be robust to unknown input gain as well as to
system uncertainties. Simulation results show good results for the pitch angle con-
trol of a small fixed wing UAV.

1 Introduction

L1 adaptive control was developed for various classes of uncertain systems [1] and
has shown good performance with uncertainties in the plant and external determin-
istic disturbances. However, in many real situations, disturbances and unmodeled
dynamics in physical systems are stochastic. Systems with such random dynamics
cannot be handled by deterministic analysis and design approaches. Consequently,
dedicated tools are required to treat this problem.

In this paper, is considered a L1 adaptive control method for systems with
matched random disturbances, i. e. systems corrupted by stochastic disturbance
which acts in the same direction as the control variable. A Kalman type gain is
introduced in the predictor architecture and it is shown that the estimation error is
exponentially ultimately bounded in the mean square. A deterministic-like approach
based on the stochastic Laplace transform [2, 3] is used to analyze the performance
bounds of the system.
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In order to show the application potential of this approach, simulation results of a
pitch rate control of a small fixed wing UAV with large uncertainties in aerodynamic
parameters are presented.

2 Problem formulation

Let (Ω ,F ,P) denote a complete probability space and given the following system
represented as

ẋ(t) = Amx(t)+b(µu(t)+θ
>x(t)+σ(t)), x(0) = x0

y(t) = c>x(t)
(1)

where x(t) is the Rn-valued solution to (1), y(t) is the R-valued observation of the
output of the system, Am ∈Rn×n is a known Hurwitz matrix that defines the desired
dynamics of the system, b, c ∈ Rn are known constant vectors, u(t) ∈ R the control
input, θ ∈ Rn is a vector of constant unknown parameters, µ ∈ R is an unknown
constant input gain, σ(t) is assumed to be a colored noise, i.e. a linear time invariant
system driven by a white noise modeled by

ẋσ (t) = Aσ xσ (t)+bσ w(t), xσ (0) = 01×l

σ(t) = c>σ xσ (t)
(2)

where w(t) = w(t,ω) : [t0, t f ]×Ω →Rn is assumed to be zero mean Gaussian white
noise process with zero mean and variance ξ , xσ ∈ Rl is the state vector of the
disturbance, Aσ ∈ Rl×l is a known Hurwitz matrix that defines the dynamics of the
disturbance, bσ and cσ ∈ Rl are known constant vectors.

Assumption. The unknown parameter θ is uniformly bounded i.e. θ ∈Θ where
Θ is a known compact convex set, furthermore L = maxθ∈Θ ‖θ‖1. The unknown
input gain µ is partially known, i.e. µ ∈ [µl ,µu] where 0 < µl < µu are given lower
and upper bounds of the input gain. The disturbance σ(t) is bounded i.e. |σ(t)|< ∆

where ∆ ∈ R+.
Taking z(t) = (x(t) xσ (t))

> the system (1) can be written in augmented form as

ż(t) = Az(t)+bu(µu(t)+θ
>x(t))+bww(t), z(0) = (x0 01×l)

> (3)

where A =

[
Am b cσ

0d×n Aσ

]
bu =

(
b

0n×1

)
and bw =

(
0l×1
bσ

)
The control objective is to design a state-feedback adaptive controller, such that

the system described in (1) follows the desired model given by

ẋm (t) = Amxm(t)+bkgr(t), xm(0) = x0

ym(t) = c>xm(t)
(4)
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where r(t) is is the reference input, xm(t) is the desired state vector and the static
gain kg is chosen kg =−1/(c>A−1

m b).

3 L1 Adaptive Controller

Similar to the approach for systems with deterministic uncertainties [1] the proposed
approach of L1 stochastic adaptive control is composed of the state predictor, the
adaptation law and the control law Fig. 1.

Fig. 1 Block diagram of the control architecture.

The expression of the state predictor, where a Kalman type gain is introduced, is
given by

˙̂z(t) = Aẑ(t)+bu

(
µ̂u(t)+ θ̂

>(t)x(t)
)
+bwL>x̃(t), ẑ(0) = z0

ŷ(t) = (c> 0lx1)ẑ(t)
(5)

where ẑ(t) =
(
x̂(t) x̂σ (t)

)> is the state vector of the predictor, x̃(t) = x̂(t)− x(t) is
the error prediction of the state vector, θ̂ is the estimate of the unknown parameter
θ and L ∈ Rn is the Kalman type static gain vector.

The control law is given by
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u(s) = kD(s)(kgr(s)− η̂(s)−F(s)L>x̃(s)) (6)

where η̂(s) is the Laplace transformation of the term µ̂(t)u(t)+ θ̂>(t)x̂(t), F(s) =
c>σ (sI−Aσ )

−1bσ is the transfer function of the disturbance model and D(s) is a
transfer function that leads to a strictly proper stable filter C(s)= µkD(s)/(1+µkD(s))
with C(0) = 1.

The adaptation law is defined by

˙̂µ(t) = Γ Pro j
(

µ̂(t),−x̃>(t)Pbu(t)
)

˙̂
θ(t) = Γ Pro j

(
θ̂(t),−x̃>(t)Pbx(t)

) (7)

where Γ ∈ R is the adaptation rate, P = P> > 0 is the solution of the Lyapunov
equation A>mP+PAm =−Q with Q = Q> > 0 arbitrary and Pro j(·, ·) is the projec-
tion operator described by the following [8]

Definition 1. Suppose that f (θ):Rn→ R is a continuously differentiable smooth
convex function denoted by

f (θ) =
(ε +1)θ>θ −θ 2

max

εθ 2
max

with θmax is the norm bound imposed on the vector θ and ε > 0 is an arbitrary
tolerance bound. The gradient vector of f evaluated at θ is noted by5 f (θ).

For a constant δ > 0, consider a convex compact set with a smooth boundary
given by

Ωc = {θ ∈ Rn| f (θ)< δ}

the projection operator is defined by

Pro j(θ ,y) =

{
y− 5 f (θ)(5 f (θ)>)

‖5 f (θ)‖2 y f (θ) if f (θ)> 0 and 5 f (θ)>y > 0
y if not

4 Analysis of the Control Architecture

Analysis of the properties of the control architecture involves showing bounded-
ness of the prediction error and demonstrating performance bounds, i. e. the error
between reference system and the closed-loop plant adaptive Controller.
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4.1 Prediction error dynamics

In this section, the bound the estimation error is shown using mean square stochas-
tic stability, being minimum mean square a frequently used criterion in estimation
theory. First, the following definitions are recalled from [4].

Definition 2. Consider the continuous-time stochastic process described by the
Itô stochastic differential equation, with a global and unique time-continuous solu-
tion

dx(t) = f (x, t)dt +g(x, t)dW (t) (8)

where W (t) is an independent Wiener process, defined on the probability space
(Ω ,F ,P). For any given V (x) > 0 ∈C2, associated with the stochastic system (8),
the differential operator L is defined by:

LV (x, t) =
∂V (x, t)

∂x>
f (x, t)+

1
2

Tr
{

g>(x, t)
∂ 2V

∂x∂x>
g(x, t)

}
(9)

Definition 3. Consider the stochastic differential equation (8). Then x(t) is said
to be exponentially ultimately bounded in the mean square if there exist positive
constants c1, c2 and c3, such that for all t ≥ 0 the following expectation is true

E[‖x(t)‖]< c1 e−c2t + c3 (10)

where E(·) denotes the expected value operator.
Next, it is shown in the following theorem, that the prediction error is bounded

in mean square.
Theorem 1. The estimation error of the augmented system (3) with the state

predictor (5) and the adaptation law (7) is mean-square exponentially ultimately
bounded.

Proof. From (3) and (5) the expression of the dynamics of the prediction error
can be written in Itô form as

dz̃(t) =
(

Az̃(t)+bu

(
µ̃u(t)+ θ̃

>(t)x(t)
)
+bwL>x̃(t)

)
dt−ξ bwdW (t) (11)

where µ̃(t) = µ̂(t)−µ , θ̃(t) = θ̂(t)−θ and W (t) is an increment of a Wiener pro-
cess (Brownian motion) with zero-mean Gaussian distribution and variance given
by E[dW (t)dW>(t)] = 1.

Under the assumption that the unknown parameters µ and θ are constant, using
the adaptation law (7) it can be written

dµ̃(t) = Γ Pro j (µ̂(t),−x̃(t)Pbu(t))dt

dθ̃(t) = Γ Pro j
(
θ̂(t),−x̃(t)Pbx(t)

)
dt

(12)

Taking ζ (t) =
(
x̃(t) x̃σ (t) µ̃(t) θ̃(t)

)> equations (11) and (12) are written

WeAT1.4

60



6 Toufik Souanef, Federico Pinchetti and Walter Fichter

dζ (t) = f (ζ , t)dt +g(ζ , t)dW (13)

where f (ζ , t)=


Amx̃(t)+b

(
µ̃u(t)+ θ̃>(t)x(t)+ c>σ x̃σ (t)

)
Aσ x̃σ +bσ L>x̃(t)

Γ Pro j (µ̂(t),−x̃(t)Pbu(t))
Γ Pro j

(
θ̂(t),−x̃(t)Pbx(t)

)
 and g(ζ , t)=


0n×1
−ξ bσ

0
0


Considering the Lyapunov function candidate

V (ζ , t) = x̃>(t)Px̃(t)+ x̃>σ (t)Pσ x̃σ (t)+Γ
−1
(

θ̃
>(t)θ̃(t)+ µ̃

2(t)
)

(14)

with Pσ = P>σ > 0 is the solution of the Lyapunov equation A>σ Pσ +Pσ Aσ = −Qσ

with Qσ = Q>σ > 0 arbitrary. Thus, the expression of the differential generator of
V (ζ , t) is written

LV (ζ , t) =x̃>(t)(PAm +A>mP)x̃(t)+2x̃>(t)Pbµ̃u(t)+2x̃>(t)Pbθ̃
>(t)x(t)

+2x̃>(t)Pbc>σ x̃σ (t)+ x̃>σ (t)(Pσ Aσ +A>σ Pσ )x̃σ (t)

+2x̃>σ (t)Pσ bσ L>x̃(t)+2µ̃(t)Pro j (µ̂(t),−x̃(t)Pbu(t))

+2θ̃
>(t)Pro j

(
θ̂(t),−x̃(t)Pbx(t)

)
+

1
2

ξ
2Tr
{

b>σ Pσ bσ

}
=−x̃>(t)Qx̃(t)− x̃>σ (t)Qσ x̃σ +2x̃>(t)

(
Pbc>σ +Lb>σ Pσ

)
x̃σ (t)

+2µ̃(t)
(

x̃>(t)Pbu(t)+Pro j(µ̂ (t) ,−x̃(t)Pbu(t))
)

+2θ̃
>(t)

(
x(t)x̃>(t)Pb+Pro j(θ̃(t),−x̃(t)Pbx(t))

)
+

1
2

ξ
2Tr
{

b>σ Pσ bσ

}

(15)

Given the adaptation law in (7) one can derive the following bound

LV (ζ , t)≤−λmin(Q)x̃>(t)x̃(t)−λmin(Qσ )x̃>σ (t)x̃σ (t)

+2x̃>(t)
(

Pbc>σ +Lb>σ Pσ

)
x̃σ (t)+

1
2

ξ
2Tr
{

b>σ Pσ bσ

} (16)

where λmax(·), λmin(·) are respectively the maximum/minimum eigenvalue of a ma-
trix.

Choosing L =−Pbc>σ Pσ bσ (b>σ P2
σ bσ )

−1 enables the elimination of the third right
hand term of inequality (16). Furthermore, for simplicity, the arbitrary matrices Qσ

and Q can be chosen such that λmin(Qσ ) = λmin(Q) and consequently

LV (ζ , t)≤−λmin(Q)‖z̃‖2 +
1
2

ξ
2Tr
{

b>σ Pσ bσ

}
(17)

WeAT1.4

61



L1 Adaptive Control for Systems with Matched Stochastic Disturbance 7

Moreover, since the projection-based adaptation law ensures that θ̂(t)∈Θ and µl ≤
µ̂(t)≤ µu, hence the Lyapounov function V (ζ , t) in (14) can be bounded as

V (ζ , t)≤ x̃>(t)Px̃(t)+ x̃>σ (t)Pσ x̃σ (t)+
1
Γ

(
4θ

2
max +(µu−µl)

2)
:≤ max [λmax(P),λmax(Pσ )]‖z̃‖2 +

1
Γ

(
4θ

2
max +(µu−µl)

2) (18)

where θmax = maxθ∈Θ‖θ‖2. Further given

λmin(Q)‖z̃‖2 =
λmin(Q)

max [λmax(P),λmax(Pσ )]
max [λmax(P),λmax(Pσ )]‖z̃‖2 (19)

it follows that

λmin(Q)‖z̃‖2 ≥ λmin(Q)

max [λmax(P),λmax(Pσ )]

(
V (ζ , t)− 1

Γ

(
4θ

2
max +(µu−µl)

2))
(20)

and thus the upper bound in (17) can be used to obtain

LV (ζ , t)≤−k1V (ζ , t)+ k2 (21)

where

k1 =
λmin(Q)

max [λmax(P),λmax(Pσ )]

and

k2 =
1
Γ

λmin(Q)
(
4θ 2

max +(µu−µl)
2
)

max [λmax(P),λmax(Pσ )]
+

1
2

ξ
2Tr
{

b>σ Pσ bσ

}
From [5], it follows that

E [V (ζ , t)]≤ ν0 e−k1t +
k2

k1

(
1− e−k1t

)
:≤
(

ν0−
k2

k1

)
e−k1t +

k2

k1

(22)

where ν0 = E [V (ζ ,0)].
Given

min
(
λmin(P),λmin(Pσ ),Γ

−1)‖ζ‖2 ≤V (ζ , t) (23)

it can be written

E
[
‖ζ‖2

]
≤ E [V (ζ , t)]/min

(
λmin(P),λmin(Pσ ),Γ

−1) (24)

and consequently the prediction error ζ = [x̃(t), x̃σ (t), µ̃(t) and θ̃(t)]> is exponen-
tially ultimately bounded in mean square and the proof is complete �
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Lemma 1. The following bound holds, almost surely, for the prediction error of
state vector of the plant

‖x̃(t)‖ ≤ ρ(t), ∀t ≥ 0

where

ρ(t) =
1√

λmin(P)

√
k2

k1

(
2ek1δ −1

)
eεt + e2k1δ

(
ν0−

k2

k1

)
e−(k1−2ε)t

where δ > 0, and ε ∈ (0,k1/2) are arbitrary constants. Furthermore, we have the
Lyapunov exponent

limsup
t→∞

1
t

log‖x̃(t)‖ ≤ 0

Proof. If equation (21) is verified, thus using [7] theorem 7, it follows that for
the arbitrary constants δ , and ε defined above, there exists a random instant t0 such
that for all t > t0, we have

λmin(P)‖x̃(t)‖2 ≤V (ζ , t)≤ k2

k1

(
2ek1δ −1

)
eεt + e2k1δ

(
ν0−

k2

k1

)
e−(k1−2ε)t (25)

Furthermore, given λmin(P)‖x̃(t)‖2≤V (ζ , t), thus for t > 0 the following inequality
holds

1
t

log
(

λmin(P)‖x̃(t)‖2
)
≤ 1

t
log(V (ζ , t)) (26)

and using here again [7] theorem 7 it follows that

limsup
t→∞

1
t

log‖x̃(t)‖ ≤ limsup
t→∞

1
t

log(V (ζ , t))≤ 0 (27)

and the proof is complete �
Remark 1. Note that choosing high adaptation gain, contribute to the optimiza-

tion of the bound of the prediction error ‖x̃(t)‖. Indeed minimizing the factor k2/k1
leads to an optimal bound of the estimation error.

Given

k2

k1
=

1
Γ

(
4θ

2
max +(µu−µl)

2)+ 1
2

ξ
2Tr{b>Pb}max [λmax(P),λmax(Pσ )]

λmin(Q)

For high adaptation gain, this factor can be approximated to become

k2

k1
' 1

2
ξ

2Tr{b>Pb}max [λmax(P),λmax(Pσ )]

λmin(Q)

solving this problem of optimization by LMI methods as in [7] will lead to an opti-
mal almost sure bound of the prediction error.
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4.2 Closed loop reference system

In this section, the reference system, i.e. the closed loop system with nominal param-
eters, is introduced and its stability is shown through the use of stochastic Laplace
transform [2, 3]. Stochastic Laplace transform is an extension of the theory of
Laplace transforms in the context of the Itô-Doob stochastic calculus. This method
provides an algebraic approach for finding Itô-Doob type stochastic integrals and
solving stochastic linear differential equations of the Itô-Doob type.

Definition 4. Let g(t,W (t)) be a real valued function of two variables (t,W (t))
defined for all real numbers t ≥ 0 and W (t) be a Wiener process. The Laplace trans-
form of g in the sense of the Itô-Doob integral or stochastic Laplace transform is
denoted by

GW (s) = LW (g(t,W (t))) =
∫

∞

t=0
e−stg(t,W (t))dW (t) (28)

for all values of s for which this improper integral exists.
Note that the stochastic Laplace transform inherits linearity, derivative, integral

and convolution properties of deterministic Laplace transforms [2, 3].
Next, in order to derive the dynamics of the reference system of the plant, the

case of known parameters is considered and it is written as

xre f (t) = Amxre f +b(µure f (t)+θ
>xre f (t)+σ(t)) xre f (0) = x0

yre f (t) = c>xre f
(29)

The control law is given by

ure f (s) =
C(s)

µ

(
kgr(s)−θ

>xre f (s)−F(s)K>x̃re f (s)
)

(30)

Defining proper BIBO stable transfer functions H(s) = (sI−Am)
−1b and G(s) =

H(s)(1−C(s)), the stability of the closed loop reference system is demonstrated
through the following lemma.

Lemma 2. If the filter C(s) is designed such that the L1 norm condition
‖G(s)‖L1

L < 1 [1] is verified, then the closed-loop reference system in (29) and
(30) is BIBS stable with respect to the reference input and initial conditions.

Proof. From (2) the expression of the stochastic disturbance is written in Itô form
as

dxσ (t) = Aσ xσ dt +bσ ξ dW (t)

σ(t) = cσ xσ (t)
(31)

writing (31) as an integral equation leads to

xσ (t) =
∫ t

0
Aσ xσ (τ)dτ +bσ ξ

∫ t

0
dW (τ) (32)
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Using the symbol L as a Laplace operator and taking the Laplace transformation of
(32) it can be written

Xσ (s) =L
(∫ t

0
Aσ xσ (τ)dτ +ξ bσ

∫ t

0
dW (τ)

)
=Aσ L

(∫ t

0
xσ (τ)dτ

)
+bσ ξ L

(∫ t

0
dW (τ)

) (33)

Using properties of the stochastic Laplace transform [2, 3] it can be written

L(dW (t)) = LW (1) (34)

and consequently

Xσ (s) =
1
s

Aσ Xσ (s)+bσ ξ
LW (1)

s
(35)

which leads to

(sI−Aσ )Xσ (s) = bσ ξ LW (1) (36)

Hence, the Laplace transformation of the stochastic disturbance σ(t) is written

Σ(s) = c>σ Xσ (s) = ξ F(s)LW (1) (37)

Consequently, the closed loop reference system is written

xre f (s) =G(s)θ>xre f (s)+C(s)H(s)kgr(s)

−C(s)H(s)F(s)K>x̃re f (s)+Σ(s)+ xin(s)
(38)

where xin(s) = (sI−Am)
−1x0. Thus, from [1] lemma A.7.1 it follows that for all

τ ≥ 0 the following bound holds∥∥xre f τ

∥∥
L∞
≤
∥∥∥G(s)θ>

∥∥∥
L1

∥∥xre f τ

∥∥
L∞

+
∥∥C(s)H(s)kg

∥∥
L1
‖rτ‖ L∞

+
∥∥∥C(s)H(s)F(s)K>

∥∥∥
L1

∥∥x̃re f τ

∥∥
L∞

+‖στ‖ L1
+‖xin‖ L∞

(39)

Given the condition of L1 stability [1] equation (39) is written

∥∥xre f τ

∥∥
L∞
≤

∥∥C(s)H(s)kg
∥∥

L1
‖r τ‖ L∞

1−‖G(s)‖ L1
L

+

∥∥C(s)H(s)F(s)K>
∥∥

L1

∥∥x̃re f τ

∥∥
L∞

+∆ +‖xin‖ L∞

1−‖G(s)‖ L1
L

(40)
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Since r(t), xin(t), ψ(t) and x̃re f (t) are bounded it is straightforward that the reference
state xre f (t) in (40) is bounded and the proof is complete. �

4.3 Performance Bounds

The following theorem states on the transient performances of the closed loop sys-
tem i. e. the tracking errors between the reference system and the plant with L1
adaptive control, and it is shown that the transient regime is strongly connected to
the estimation error.

Theorem 2. Given the closed loop system (1), (6) and the reference system (29)
(30), the following bound holds∥∥x(t)− xre f (t)

∥∥
∞
≤ 2√

λmin(P)
(ϕH1 (t)∗ρ (t))

∥∥u(t)−ure f (t)
∥∥

∞
≤ 2√

λmin(P)
(ϕH2 (t)∗ρ (t))

where ϕe (t) = maxi=1,...,n

√
∑

m
j=1 e2

i j(t) , ei j (t) is the ith row, jth column of the

impulse response matrix of E(s) [1] and H1(s), H2(s) are defined below.
Proof. The control law in (6) can be written as

u(s) =
C(s)

µ

(
kgr(s)−θ

>xre f (s)−F(s)K>x̃re f (s)− η̃(s)
)

(41)

where η̃(s) is the Laplace transform of the term µ̃(t)u(t)+ θ̃>(t)x(t). The closed
loop system takes the form

x(s) =G(s)θ>x(s)+C(s)H(s)
(

kgr(s)−F(s)K>x̃(s)− η̃(s)
)
+Σ(s)+ xin(s)

(42)

From (38) it follows that

xre f (s)− x(s) =G(s)θ>
(
xre f (s)− x(s)

)
−C(s)H(s)

(
F(s)K>

(
x̃re f (s)− x̃(s)

)
+ η̃(s)

) (43)

Given (11) the Laplace transform of error dynamics of the plant x̃(t) and the refer-
ence x̃re f (t) is written

x̃(s) = H(s)η̃(s)+H(s)F(s)K>x̃(s)−Σ(s)

x̃re f (s) = H(s)F(s)K>x̃re f (s)−Σ(s)
(44)

Replacing (44) in (43) leads to
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xre f (s)− x(s) = H1(s)
(
x̃re f (s)− x̃(s)

)
≤ 2H1(s)ρ(s) (45)

where H1(s) =−(I−G(s)θ>)−1C(s). Using the same approach in [1] lemma 2.2.6,
(45) leads to the bound of the state vector.

To show the bound of the control law, from equations (6) and (30) it is written

ure f (s)−u(s) =−C(s)
µ

(
θ
> (xre f (s)− x(s)

)
+
(

K>
(
x̃re f (s)− x̃(s)

)
− η̃(s)

))
(46)

From Lemma A.12.1 in [1] there exists a vector c0 such that

ure f (s)−u(s) =− C(s)
µ

θ
>(xre f (s)− x(s))

− C(s)
µ

1
c>0 H(s)

c>0 H(s)
(

F(s)K>
(
x̃re f (s)− x̃(s)

)
− η̃(s)

) (47)

From (44) and it follows hat

ure f (s)−u(s) =− C(s)
µ

θ
>(xre f (s)− x(s))

− C(s)
µ

1
c>0 H(s)

c>0
(
x̃re f (s)− x̃(s)

) (48)

There exists also a vector c1 such that

ure f (s)−u(s) =− C(s)
µ

θ
>(xre f (s)− x(s))

− C(s)
µ

1
c>0 H(s)

c>0
1

c>1 H1(s)
c>1 H1(s)

(
x̃re f (s)− x̃(s)

) (49)

Defining H2 (s) =−C(s)
µ

(
θ>+ 1

c>0 H(s)
c>0

1
c>1 H1(s)

c>1

)
leads to

ure f (s)−u(s) = H2(s)
(
xre f (s)− x(s)

)
(50)

Using the same approach in [1] lemma 2.2.6, equation (50) leads to the expression
of the bound of the control law and completes the proof. �

5 Simulation results

The control law proposed and analyzed in previous sections is now applied to the
pitch dynamics of a fixed wing UAV, a model of the Monsun BO 209. Tracking
performance under stochastic matched disturbance and model uncertainties is shown
through simulations.
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The short period dynamics can be written in matrix form as in [9](
α̇

q̇

)
︸ ︷︷ ︸

ẋ

=

[
Zα

Va
1+ Zq

Va
Mα Mq

]
︸ ︷︷ ︸

A

(
α

q

)
︸ ︷︷ ︸

x

+

( Zδ

Va
Mδ

)
︸ ︷︷ ︸

b

δe︸︷︷︸
u

y = q = (0 1)︸ ︷︷ ︸
c>

x

where α is the angle of attack, q is the pitch angular velocity, Va is the trimmed air-
speed, (Zα , Zq,Zδ ) and (Mα ,Mq,Mδ ) are the partial derivatives of the aerodynamic
force Z and the pitching moment M, with respect to α , q, and δe, respectively. The
control input is the elevator angle δe.

Numerical values for the considered UAV trimmed at Va0 = 20 m/s, α0 = 4◦,
q0 = 0◦/s, and altitude h0= 50 m are given by

A =

[
−11.0447 0.9644
−242.4575 −14.4717

]
, b =

(
−0.2840
−112.4126

)
.

Note that actuator dynamics are assumed to be negligible.
The system is affected by an additive matched disturbance σ(t) with dynamics

F(s) = 1/s+1 and input w(t) as a white noise with variance ξ = 1.
The desired dynamics matrix Am for system (1) is chosen such that it meets mil-

itary specifications for category A, level-1 flight handling qualities requirement and
eigenvalues for the short period mode are given from [9] as λ1,2 =−5.6±4.2 j, i. e.
a pulsation ωn = 7rad/s and a damping ς = 0.8.
L1 adaptive controller parameters are set Γ = 100000, D(s) = 1/s and k = 2000.

Note however that even if this value of k is high it affects only the filter C(s) and it
has no effect on stability margins of the controller [10].

The control approach is based on the augmentation of a linear controller by the
L1 adaptive controller, as the common approach in aerospace systems. This allows
the use of the available knowledge about the system dynamics. The adaptive con-
troller is then added to compensate unknown parameters and / or disturbances effect.

The controller is designed to be robust against uncertainties and the compact sets
are set to µ = (0.41.4), Θ =

{
ϑ = (ϑ1,ϑ2) ∈ R2 : ϑi ∈ (−2,2), i = 1,2

}
. From the

definition of Θ it follows that L = 2, which results in ‖G(s)L‖1 = 0.2277 which
satisfies the L1 stability condition.

Fig. 2 depicts the response of the system to a square signal reference. It can be
seen that the control architecture reduces the effect of noise disturbance.

It is noted in Fig. 3 that the prediction error of the state vector is bounded and
negligible, thus it can be concluded that the predictor is stable and it presents good
prediction performance.

To show pertinence of the developed controller, failures are introduced to the
system as a loss of actuator effectiveness µ = 0.5 and the UAV becomes marginally
stable Mq = 0, and statically unstable Mα > 0. Such drastic and perhaps unrealistic
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Fig. 2 Output of the closed loop system for system without failures.
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Fig. 3 Estimation performance of the system without failures.
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Fig. 4 Output of the closed loop system for system with failures.
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Fig. 5 Estimation performance of the system with failures.
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situation is motivated by the intent to demonstrate the effectiveness of the proposed
approach. Fig. 4 and Fig. 5 show that even under large uncertainties, the system
has good performance and compensates disturbance effect. Moreover, the elevator
command is within acceptable limits.

6 Conclusion

In this paper, a L1 adaptive control scheme for systems with matched stochastic
uncertainties has been proposed. A Kalman type gain is introduced in the predic-
tor architecture and it is shown that the estimation error is exponentially ultimately
bounded in the mean square. Closed loop boundedness and performance are ana-
lyzed using the stochastic Laplace transform. This permits the use of an analysis
approach similar to systems with deterministic disturbances.

Simulation results showed good performances for pitch angle control of a small
fixed wing UAV in the presence of strong disturbances (such as air turbulences).

This work is a starting point on the application of L1 adaptive approach to the
control of stochastic systems and several areas of investigation remain for this pro-
posed control method, including non matched disturbances, output-feedback sys-
tems with measurement noise. Furthermore, the use of stochastic Laplace transform
opens a lot of perspectives for random systems control and analysis.
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