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Abstract The problem of rotorcraft system identification is considered and a novel,

two step technique is proposed, which combines the advantages of time domain and

frequency domain methods. In the first step, the identification of a black-box model

using a subspace model identification method is carried out, using a technique which

can deal with data generated under feedback; subsequently, in the second step, a-

priori information on the model structure is enforced in the identified model using

an H∞ model matching method. A simulation study is used to illustrate the proposed

approach.

1 Introduction

The problem of system identification of helicopter aeromechanics has been studied

extensively in the last few decades, as identification has been known for a long time

as a viable approach to the derivation of control-oriented dynamic models in the ro-

torcraft field (see for example the recent books [21, 12] and the references therein).

Model accuracy is becoming more and more important, as progressively stringent

requirements are being imposed on rotorcraft control systems: as the required con-

trol bandwidth increases, accurate models become a vital part of the design problem.

In the system identification literature, on the other hand, one of the main novelties

of the last two decades has been the development of the so-called Subspace Model

Identification (SMI) methods (see for example the books [22, 25]), which have

proven extremely successful in dealing with the estimation of state space models

for Multiple-Inputs Multiple-Outputs (MIMO) systems. Surprisingly enough, even

though SMI can be effectively exploited in dealing with MIMO modelling problems,
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2 Marco Bergamasco and Marco Lovera

until recently these methods have received limited attention from the rotorcraft com-

munity, with the partial exception of some contributions such as [24, 7, 16]). SMI

methods are particularly well suited for rotorcraft problems, for a number of rea-

sons. First of all, the subspace approach can deal in a very natural way with MIMO

problems; in addition, all the operations performed by subspace algorithms can be

implemented with numerically stable and efficient tools from numerical linear alge-

bra. Finally, information from separate data sets (such as generated during different

experiments on the system, i.e., different test flights) can be merged in a very sim-

ple way into a single state space model. Recently, see [15], the interest in SMI for

helicopter model identification has been somewhat revived and the performance of

subspace methods has been demonstrated on flight test data. However, so far only

methods and tools which go back 10 to 15 years in the SMI literature (such as the

MOESP algorithm of [23] and the bootstrap-based method for uncertainty analysis

of [8]) have been considered. Therefore, the further potential benefits offered by the

latest developments in the field have not been fully exploited. Among other things,

present-day approaches can provide:

• unbiased model estimates from data generated during closed-loop operation, as is

frequently the case in experiments for rotorcraft identification (see, e.g., [9, 11]);

• the possibility to quantify model uncertainty using analytical expressions for the

variance of the estimates instead of relying on computational statistics (see [9]);

• the direct estimation of continuous-time models from (possibly non-uniformly)

sampled input-output data (see [6] and the references therein).

Some preliminary results in the application of continuous-time SMI to the rotorcraft

problem have been presented in [5].

The only, well known, downside of the SMI approach to state space model iden-

tification, on the other hand, is the impossibility to impose a fixed basis to the

state space representation. This, in turn, implies that it is hard to impose a param-

eterisation to the state space matrices in this framework, and therefore recovering

physically-motivated models is a challenging problem. This, to date, prevents the

successful application of SMI methods to the problem of initialising iterative meth-

ods for the identification of structured state space representations and constitutes a

major stumbling block for the application of such methods in communities in which

physically motivated models represent the current practice.

In this paper the problem of bridging the gap between ”unstructured” models

obtained using SMI and structured ones deriving from flight mechanics is addressed

as an input-output model matching one, in terms of the H∞ norm of the difference

between the two models (see also [3]). The solution of the problem is then computed

using recent results in non-smooth optimisation techniques, see [1], which yield

effective computational tools (see [10]).

In view of the above discussion, this paper has the following objectives. First, a

set of methods suitable for time-domain, continuous-time identification of rotorcraft

dynamics using SMI is presented. The proposed technique can deal with data gen-

erated in closed-loop operation as it does not require restrictive assumptions in this

sense. Subsequently, a frequency-domain H∞ approach to the problem of deriving

a structured model from the unstructured one is proposed. Finally, the achievable
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Rotorcraft system identification: an integrated time-frequency domain approach 3

model accuracy is illustrated by means of simulation results for a full-scale heli-

copter.

The paper is organised as follows. In Section 2 the problem statement is given

and some definitions are provided. Section 3 provides a summary of the proposed

two-step approach. Finally, some simulation results are presented in Section 4 to

illustrate the performance of the proposed method.

2 Problem statement and preliminaries

Consider the linear, time-invariant continuous-time system

Ms(λ ) :

{
ẋ(t) = A(λ )x(t)+B(λ )u(t)+w(t), x(0) = x0

y(t) =C(λ )x(t)+D(λ )u(t)+ v(t)
(1)

where x∈Rn, u∈Rm and y∈Rp are, respectively, the state, input and output vectors

and w∈Rn and v∈Rp are the process and the measurement noise, respectively, with

covariance given by

E

{[
w(t1)
v(t1)

][
w(t2)
v(t2)

]T
}

=

[
Q S

ST R

]
δ (t2 − t1).

The system matrices A(λ ), B(λ ), C(λ ), and D(λ ) are dependent on the constant pa-

rameter vector λ ∈Rnλ such that (A(λ ),C(λ )) is observable and (A(λ ), [B(λ ),Q1/2])
is controllable.

Assume now that a dataset {u(ti),y(ti)}, i ∈ [1,N] of sampled input/output data

(possibly associated with a non equidistant sequence of sampling instants) obtained

from system (1) is available. Then, the problem is to provide an estimate of the

parameter λ on the basis of the available data. Note that unlike most identification

techniques, in this setting incorrelation between u and w, v is not required, so that

this approach is viable also for systems operating under feedback.

In the following Sections a number of definitions will be used, which are sum-

marised hereafter for the sake of clarity (see, e.g., [26, 13, 17, 2] for further details).

Definition 1. (Laguerre basis) Let L2(0,∞) denote the space of square integrable

and Lebesgue measurable functions of time 0 < t < ∞. Consider the first order all-

pass (inner) transfer function

w(s) =
s− a

s+ a
, (2)

a > 0. w(s) generates the family of Laguerre filters, defined as

Li(s) = wi(s)L0(s) =
√

2a
(s− a)i

(s+ a)i+1
. (3)

Denote with ℓi(t) the impulse response of the i-th Laguerre filter. Then, it can be

shown that the set
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{ℓ0, ℓ1, . . . , ℓi, . . .} (4)

is an orthonormal basis of L2(0,∞), i.e., all signals in L2(0,∞) can be represented

by means of the set of their projections on the Laguerre basis.

Definition 2. (H∞ norm) Consider an asymptotically stable, linear time-invariant

system with transfer function G(s). Then the H∞ norm of the system is defined as

‖G‖∞ = sup
α>0

{
sup

ω
σ̄ (G(α + jω))

}
= sup

ω
σ̄ (G( jω)) , (5)

where σ̄ is the maximum singular value.

Identifiability is an important issue in system identification problems; for the

purpose of this study we adopt the following definitions:

Definition 3. (Local identifiability) Let λ o ∈ Λ ⊂ Rnλ , the model structure is said

to be locally identifiable in λ o if ∀λ1,λ2 in the neighborhood of λ o it holds that

Ms(λ1) = Ms(λ2)⇒ λ1 = λ2.

Definition 4. (Global identifiability) The model structure Ms(λ ) is said to be glob-

ally identifiable if it is locally identifiable ∀λ ∈ Λ , i.e., over the entire parameter

space.

In the following the model structure Ms(λ ) is considered globally identifiable.

3 An integrated time-frequency domain approach

The problem formulated in the previous Section can be faced using a two-steps

approach: in the first step a black-box model is identified using a continuous-time

SMI method, which can deal with data generated under feedback but generates an

”unstructured” model; in the subsequent step a-priori information on the model

structure is enforced in the model using an H∞ model matching method.

In Section 2 the gray-box model Ms(λ ) was introduced, while a generic ”un-

structured” black-box model Mns can be described as the linear time-invariant sys-

tem

Mns :

{
ẋ(t) = Âx(t)+ B̂u(t)+w(t), x(0) = x0

y(t) = Ĉx(t)+ D̂u(t)+ v(t)
(6)

where x, u, y, w, and v are defined as in Section 2. The system matrices Â, B̂, Ĉ and D̂

have been estimated from a dataset {u(ti),y(ti)}, i ∈ [1,N] of sampled input/output

data using the continuous-time predictor-based subspace model identification al-

gorithm introduced in the Section 3.1. Suppose Mns belonging to the same model

structure of Ms(λ ), and that (1) and (6) describe the same system with different state

space basis. Therefore the problem becomes to provide estimates of λ such that the
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Rotorcraft system identification: an integrated time-frequency domain approach 5

input-output behaviors of Mns and Ms(λ ) are equivalent under some criterion, and

it is faced using an H∞ approach described in Section 3.2.

3.1 Continuous-time predictor-based subspace model identification

3.1.1 From continuous-time to discrete-time using Laguerre projections

The main issue in the application of subspace model identification methods to

continuous-time model identification is the need of computing the high order deriva-

tives of input-output measurements arising from the continuous-time data equation.

This problem can be faced using a method, based on the results first presented in

[19, 17], and further expanded in [14, 18], that transforms a continuous-time system

and signals to their discrete-time representations. First note that under the assump-

tions stated in the previous section, (6) can be written in innovation form as

ẋ(t) = Ax(t)+Bu(t)+Ke(t)

y(t) =Cx(t)+Du(t)+ e(t) (7)

and it is possible to apply the results of [19] to derive a discrete-time equivalent

model, as follows. Note that the notation ˆ(·) has been dropped for clarity. Consider

the first order inner function w(s) defined in (2) and apply to the input u, the output

y and the innovation e of (7) the transformations

ũ(k) =

∫ ∞

0
ℓk(t)u(t)dt

ỹ(k) =
∫ ∞

0
ℓk(t)y(t)dt (8)

ẽ(k) =

∫ ∞

0
ℓk(t)e(t)dt,

where ũ(k) ∈ Rm, ẽ(k) ∈ Rp and ỹ(k) ∈ Rp. Then (see [19] for details) the trans-

formed system has the state space representation

ξ (k+ 1) = Aoξ (k)+Boũ(k)+Koẽ(k), ξ (0) = 0

ỹ(k) =Coξ (k)+Doũ(k)+ ẽ(k) (9)

where the state space matrices are given by

Ao = (A− aI)−1(A+ aI)

Bo =
√

2a(A− aI)−1B

Ko =
√

2a(I−C(A− aI)−1K)−1(A− aI)−1K (10)

Co =−
√

2aC(A− aI)−1

Do = D−C(A− aI)−1B.
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It is worth to underline that in this context k is not a time index, but refers to the

projection of the signals onto the k-th basis function.

3.1.2 Predictor-based subspace model identification

In this Section a summary of the continuous-time PBSID algorithm proposed in

[4, 6], called CT-PBSIDo, is provided, and its implemention is discussed. More pre-

cisely, starting from system (7), a sketch of the derivation of a PBSID-like approach

to the estimation of the state space matrices Ao, Bo, Co, Do, Ko is presented. Consid-

ering the sequence of sampling instants ti, i = 1, . . . ,N, the input u, the output y and

the innovation e of (7) are subjected to the transformations

ũi(k) =
∫ ∞

0
ℓk(τ)u(ti + τ)dτ

ỹi(k) =

∫ ∞

0
ℓk(τ)y(ti + τ)dτ (11)

ẽi(k) =

∫ ∞

0
ℓk(τ)e(ti + τ)dτ

(or to the equivalent ones derived from (8)), where ũi(k) ∈ Rm, ẽi(k) ∈ Rp and

ỹi(k) ∈ Rp. Then (see [19] for details) the transformed system has the state space

representation

ξi(k+ 1) = Aoξi(k)+Boũi(k)+Koẽi(k), ξi(0) = x(ti)

ỹi(k) =Coξi(k)+Doũi(k)+ ẽi(k) (12)

where the state space matrices are given by (10).

Letting now

z̃i(k) =
[
ũT

i (k) ỹT
i (k)

]T

and

Āo = Ao −KoCo

B̄o = Bo −KoDo

B̃o =
[
B̄o Ko

]
,

system (12) can be written in predictor form as

ξi(k+ 1) = Āoξi(k)+ B̃oz̃i(k), ξi(0) = x(ti)

ỹi(k) =Coξi(k)+Doũi(k)+ ẽi(k), (13)

to which the PBSIDopt algorithm, summarised hereafter, can be applied to compute

estimates of the state space matrices Ao, Bo, Co, Do, Ko. To this purpose note that

iterating p− 1 times the projection operation (i.e., propagating p− 1 forward in the
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Rotorcraft system identification: an integrated time-frequency domain approach 7

index k the first of equations (13), where p is the so-called past window length) one

gets

ξi(k+ 2) = Ā2
oξi(k)+

[
ĀoB̃o B̃o

][ z̃i(k)
z̃i(k+ 1)

]

... (14)

ξi(k+ p) = Āp
o ξi(k)+K

pZ
0,p−1
i

where

K
p =

[
Ā

p−1
o B̃0 . . . B̃o

]
(15)

is the extended controllability matrix of the system in the transformed domain and

Z
0,p−1
i =




z̃i(k)
...

z̃i(k+ p− 1)


 .

Under the considered assumptions, Āo has all the eigenvalues inside the open unit

circle, so the term Ā
p
oξi(k) is negligible for sufficiently large values of p and we have

that

ξi(k+ p)≃ K
pZ

0,p−1
i .

As a consequence, the input-output behaviour of the system is approximately given

by

ỹi(k+ p)≃CoK
pZ

0,p−1
i +Doũi(k+ p)+ ẽi(k+ p)

... (16)

ỹi(k+ p+ f )≃CoK
pZ

f ,p+ f−1
i +Doũi(k+ p+ f )+

+ ẽi(k+ p+ f ),

so that introducing the vector notation

Y
p, f

i =
[
ỹi(k+ p) ỹi(k+ p+ 1) . . . ỹi(k+ p+ f )

]

U
p, f
i =

[
ũi(k+ p) ũi(k+ p+ 1) . . . ũi(k+ p+ f )

]

E
p, f
i =

[
ẽi(k+ p) ẽi(k+ p+ 1) . . . ẽi(k+ p+ f )

]

Ξ
p, f
i =

[
ξi(k+ p) ξi(k+ p+ 1) . . . ξi(k+ p+ f )

]

Z̄
p, f
i =

[
Z

0,p−1
i Z

1,p
i . . . Z

f ,p+ f−1
i

]
(17)

equations (14) and (16) can be rewritten as
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8 Marco Bergamasco and Marco Lovera

Ξ p, f
i ≃ K

pZ̄
p, f
i

Y
p, f

i ≃CoK
pZ̄

p, f
i +DoU

p, f
i +E

p, f
i . (18)

Considering now the entire dataset for i = 1, . . . ,N, the data matrices become

Y p, f = [ỹ1(k+ p) . . . ỹN(k+ p) . . .

ỹ1(k+ p+ f ) . . . ỹN(k+ p+ f )], (19)

and similarly for U
p, f
i , E

p, f
i , Ξ p, f

i and Z̄
p, f
i . The data equations (18), in turn, are

given by

Ξ p, f ≃ K
pZ̄p, f

Y p, f ≃CoK
pZ̄p, f +DoU p, f +E p, f . (20)

From this point on, the algorithm can be developed along the lines of the discrete-

time PBSIDopt method, i.e., by carrying out the following steps. Considering p = f ,

estimates for the matrices CoK
p and Do are first computed by solving the least-

squares problem

min
CoK p,Do

‖Y p,p −CoK
pZ̄p,p −DoU p,p‖F , (21)

where by ‖ · ‖F we denote the Frobenius norm of a matrix. Defining now the ex-

tended observability matrix Γ p as

Γ p =




Co

CoĀo

...

CoĀ
p−1
o


 (22)

and noting that the product of Γ p and K p can be written as

Γ p
K

p ≃




CoĀp−1B̃o . . . CoB̃o

0 . . . CoĀB̃o

...

0 . . . CoĀp−1B̃o


 , (23)

such product can be computed using the estimate ĈoK
p of CoK

p obtained by

solving the least squares problem (21).

Recalling now that

Ξ p,p ≃ K
pZ̄p,p (24)

it also holds that

Γ pΞ p,p ≃ Γ p
K

pZ̄p,p. (25)

Therefore, computing the singular value decomposition
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Rotorcraft system identification: an integrated time-frequency domain approach 9

Γ p
K

pZ̄p,p =UΣV T (26)

an estimate of the state sequence can be obtained as

Ξ̂ p,p = Σ
1/2
n V T

n = Σ
−1/2
n UT

n Γ p
K

pZ̄p,p, (27)

from which, in turn, an estimate of Co can be computed by solving the least squares

problem

min
Co

‖Y p,p − D̂oU p,p −CoΞ̂ p,p‖F . (28)

The final steps consist of the estimation of the innovation data matrix E p,p

E p,p = Y p,p − ĈoΞ̂ p,p − D̂oU p,p (29)

and of the entire set of the state space matrices for the system in the transformed

domain, which can be obtained by solving the least squares problem

min
Ao,Bo,Ko

‖Ξ̂ p+1,p −AoΞ̂ p,p−1 −BoU
p,p−1 −KoE p,p−1‖F . (30)

The state space matrices of the original continuous-time system can then be retrieved

by inverting the (bilinear) transformations (10).

3.2 From unstructured to structured models with an H∞ approach

Suppose that the linear continuous-time time-invariant system Mns has been esti-

mated from a dataset of sampled input/output data using the CT-PBSIDo algorithm

presented in the previous Section. Consider now the model class Ms(λ ) introduced

in Section 1. Mns and Ms(λ ) should have the same input-output behavior. This

problem can be faced in a computationally effective way by defining the input-

output operators associated with Mns and Ms(λ ) and seeking the values of the

parameters corresponding to the solution of the optimisation problem

λ ⋆ = argmin
λ

‖Mns−Ms(λ )‖ (31)

for a suitably chosen norm. In the linear time-invariant case, the input-output oper-

ators can be represented as the transfer functions Ĝns(s) and Gs(s;λ ) and the H∞

norm is considered, so that the model matching problem can be recast as

λ ⋆ = argmin
λ

‖Ĝns(s)−Gs(s;λ )‖∞. (32)

Note that the open-loop dynamics of a helicopter is unstable in most flight condi-

tions and so the H∞ norm is undefined. In this case the eigenvalues of Ms(λ ) and

Mns are shifted on the real axis by a suitable value µ as follows
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10 Marco Bergamasco and Marco Lovera

G̃s(s;λ ) =C(λ )((s− µ)I−A(λ ))−1B(λ )+D(λ ) (33)

G̃ns(s) = Ĉ((s− µ)I− Â)−1B̂+ D̂, (34)

where µ is chosen such that all eigenvalues of Mns have negative real part. Then the

model matching problem is reformulated as

λ ⋆ = argmin
λ

‖G̃ns(s)− G̃s(s;λ )‖∞. (35)

As mentioned in the Introduction, this is a non-convex, non-smooth optimisation

problem, which has been studied extensively in recent years in the framework of

the fixed-structured controller design problem and for which reliable computational

tools (see [10]) are presently available.

4 Simulation study: model identification for the BO-105

helicopter

The simulation example considered in this paper is based on the BO-105 helicopter.

Possibly it is the most studied helicopter in the rotorcraft system identification liter-

ature. The BO-105 is a light, twin-engine, multi-purpose utility helicopter.

It is considered in forward flight at 80 knots, a flight condition which corresponds

to unstable dynamics, with the aim of demonstrating the identification of a nine-

DOF state-space model with test data extracted from a simulator based on the nine-

DOF model from [20]. As described in the cited reference, the model includes the

classical six-DOF and some additional states to account for some additional effects,

namely:

• the BO-105 exhibits highly coupled body-roll and rotor-flapping responses; their

interaction is represented in the model with a dynamic equation that describes

the flapping dynamics using the cyclic controls.

• A second order dipole is appended to the model of roll rate response to lateral

stick in order to account for the effect of lead-lag rotor dynamics.

Therefore, the simulator includes a nine-DOF linear model including the six-

DOF quasi steady dynamics, the flapping equations and the lead-lag dynamics mod-

elled with a complex dipole. Delays at the input of the model are also taken into

account in the simulation, though they are not estimated. The state vector and the

trim values are

x =
[

u v w p q r φ θ a1s b1s x1 x2

]

and, respectively,

u0 = 40 m/s, v0 = 3 m/s, w0 =−5 m/s, φ0 = 0 rad, θ0 = 0 rad. (36)

In details, the state vector includes the longitudinal flapping a1s, the lateral flapping

b1s and two state variables x1 and x2, coming from the lead-lag dynamics complex

dipole. The corresponding equations of motion are
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Rotorcraft system identification: an integrated time-frequency domain approach 11

u̇ = Xuu+Xww+Xpp+(Xq −w0)q+ v0r− gθ +Xδlon
δlon +Xδcol

δcol

v̇ = Yvv+Yww+(Yp +w0)p+Yqq+(Yr − u0)r− gφ +Yδlat
δlat +Yδcol

δcol

ẇ = Zuu+Zww+(Zp − v0)p+ u0q+Zδcol
δcol

ṗ = Luu+Lvv+Lww+Lqq+Lδb1s
b1s +Lδlon

δlon +Lδped
δped +Lδcol

δcol (37)

q̇ = Mvv+Mww+Mpp+Mrr+Mδa1s
a1s +Mδped

δped +Mδcol
δcol

ṙ = Nvv+Nww+Nqq+Nrr+Nδlon
δlon +Nδlat

δlat +Nδped
δped +Nδcol

δcol

φ̇ = p

θ̇ = q

ȧ1s =−q− 1

τ f

a1s +
Ka1s

τ f

δlon,

ḃ1s =−p− 1

τ f

b1s +
Kb1s

τ f

δlat +Kx1
x1 +Kx2

x2

ẋ1 = x2

ẋ2 =C1x1 +C2x2 + δlat .

Finally, the output vector is

y =
[

u v w p q r ax ay az φ θ
]
,

where

ax = u̇+w0q− v0r+ gθ

ay = v̇−w0 p+ u0r− gφ

az = ẇ+ v0 p− u0q,

i.e., the state variables related to quasi-steady dynamics and the linear accelera-

tions are measured. Considering (37), λ contains the stability derivatives, the con-

trol derivatives, the flapping and lead-lag rotor dynamics parameters, for a total of

47 parameters.

The identification experiment is performed in closed-loop because of the insta-

bility of the model, with the helicopter operating under feedback from an LQG

controller tuned in order to maintain the helicopter close enough to trim to justify

the identification of a linear model. In the experiment, additive perturbations have

been applied to the input variables (δlat ,δlon,δped ,δcol) computed by the controller;

in particular, all the channels have been excited in the same experiment with pseu-

dorandom binary signals with a duration of 60 s and a dwell time of 0.8 s. The per-

turbation of the control inputs has a 1% amplitude and the sampling time is 0.008s.

For the purpose of the present preliminary study, measurement noise has not been

included in the simulated data. The parameters of the algorithm presented in the

previous Section have been chosen as p = 40 and a = 45. The obtained results are

illustrated in Table 1.

As can be seen from the Table, the CT-PBSIDo algorithm is able to identify the

dynamics of the system with a slight loss of accuracy at high frequency.
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Simulator Identified Model (CT-PBSIDo)

Real Imag Omega Zeta Real Imag Omega Zeta

Pitch phugoid 0.119 0.278 0.302 -0.394 0.119 0.278 0.302 -0.394
Dutch roll -0.571 2.546 2.609 0.219 -0.571 2.546 2.609 0.219

Roll/flapping -9.904 7.740 12.569 0.788 -9.901 7.7399 12.568 0.788

Lead-Lag -0.868 15.567 15.592 0.0557 -0.867 15.566 15.590 0.0556
Spiral -0.0510 -0.0507

Pitch1 -0.448 -0.448

Pitch2 -5.843 -5.844

Long. flapping -15.930 -15.901

Table 1 Comparison between simulator and black-box identified eigenvalues.

The study in the reconstruction of the above described structured state-space rep-

resentation has been carried out by applying the approach presented in Section 3 to

estimate the relevant parameters. In order to evaluate the performance of the pro-

posed method the relative estimation error is defined as follows

λerr =
λ 0 − λ̄

λ 0
, (38)

where λ̂ and λ 0 are respectively the estimated and the actual value of the parameter

λ . In this example the relative errors of the estimated physical parameters in (37)

are below 0.03%. It is clear from Table 2, where the eigenvalues of the real system

and the identified gray-box model are shown, that using a-priori information, i.e.,

exploting the model structure, the estimation accuracy increases.

Simulator Identified Model (Gray-box)

Real Imag Omega Zeta Real Imag Omega Zeta

Pitch phugoid 0.119 0.278 0.302 -0.394 0.119 0.278 0.302 -0.394
Dutch roll -0.571 2.546 2.609 0.219 -0.571 2.546 2.609 0.219

Roll/flapping -9.904 7.740 12.569 0.788 -9.903 7.740 12.568 0.788

Lead-Lag -0.868 15.567 15.592 0.0557 -0.868 15.566 15.590 0.557
Spiral -0.0510 -0.0507

Pitch1 -0.448 -0.448

Pitch2 -5.843 -5.843
Long. flapping -15.930 -15.929

Table 2 Comparison between simulator and gray-box identified eigenvalues.

Finally, a time-domain validation of the identified models has been also carried

out, by measuring the simulation accuracy of the models in response to a doublet

input signal on each input channel. The input sequence used in the validation exper-

iment is illustrated in Figure 1, while the time history for two of the outputs (u and

w) is presented in Figure 2. Again, even though the open-loop system is unstable,

the simulated outputs obtained from the identified models (dashed lines: black-box;

cross: gray-box) match very well the ones computed from the nine-DOF model

(solid lines).

In quantitative terms, considering the root mean square error, defined as
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Fig. 1 Doublet input signal used for model validation.
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Fig. 2 Doublet output signals (real: solid line; black-box: dashed line; gray-box: cross).

RMS =

√
1

N

N

∑
i=1

(y(i)− ŷ(i))2, (39)

where y is the real output and ŷ is the estimated one, its value is below 0.01 on all

the considered output variables as shown in Table 3. Note that most of the error is

due the unestimated input delays, as can be seen in Figure 2.

Finally, in Figures 3-14 the magnitude of the frequency response of the error

transfer function defined as

Es(s) = Gs(s;λ 0)−Gs(s; λ̂ )

is shown, where G(s;λ 0) is the true transfer function of the BO-105 model and

Gs(s; λ̂ ) is the gray-box estimated one. As can be seen from the figures, the magni-
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14 Marco Bergamasco and Marco Lovera

Output RMSCT−PBSIDo
RMSGray−Box

u 0.0013 0.0013
v 0.0044 0.0044

w 0.0026 0.0026

p 0.0002 0.0002
q 0.0003 0.0003

r 0.0003 0.0003

ax 0.0013 0.0013
ay 0.0017 0.0017

az 0.0077 0.0077

φ 0.0001 0.0001

θ 0.0001 0.0001

Table 3 Relative errors norm.
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Fig. 3 Frequency response from longitudinal input to linear (top) and angular (bottom) velocities.
(real: solid line; error: dashed line)
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Fig. 4 Frequency response from lateral cyclic input to linear (top) and angular (bottom) velocities.
(real: solid line; error: dashed line)

tude of the error frequency response is always several orders of magnitude smaller

than the one for the true transfer function.

5 Concluding remarks

The problem of rotorcraft system identification has been considered and a two step

technique combining the advantages of time domain and frequency domain methods

has been proposed. A simulation study based on a model of the BO-105 helicopter

has been used to illustrate the proposed approach. Simulation results show that the

proposed schemes are viable for rotorcraft applications and can deal successfully

with data generated during closed-loop experiments. Future work will focus on the

analysis of the impact on the solution of (35) of an identified model that has been

obtained under noisy conditions.
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Fig. 6 Frequency response from collective input to linear (top) and angular (bottom) velocities.
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Fig. 8 Frequency response from lateral cyclic input to linear accelerations. (real: solid line; error:

dashed line)
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Fig. 9 Frequency response from pedal cyclic input to linear accelerations. (real: solid line; error:
dashed line)
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Fig. 10 Frequency response from collective input to linear accelerations. (real: solid line; error:

dashed line)
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Fig. 11 Frequency response from longitudinal input to attitude angles. (real: solid line; error:

dashed line)
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Fig. 12 Frequency response from lateral cyclic input to attitude angles. (real: solid line; error:
dashed line)
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Fig. 13 Frequency response from pedal cyclic input to attitude angles. (real: solid line; error:

dashed line)

ThBT2.1

856



20 Marco Bergamasco and Marco Lovera

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−10

10
−5

10
0

φ
 [

ra
d

]

Attitude angles − Input δ
col

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−10

10
−5

10
0

θ
 [

ra
d

]

Frequency [rad/s]

Fig. 14 Frequency response from collective input to attitude angles. (real: solid line; error: dashed

line)
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