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Abstract A new substitution based (SB) recursive identification method, using mul-
tivariate simplex B-splines (MVSBs), has been developed for the purpose of reduc-
ing the computational time in updating the spline B-coefficients. Once the struc-
ture selected, the recursive identification problem using the MVSBs turns to be a
constrained recursive identification problem. In the proposed approach, the con-
strained identification problem is converted into an unconstrained problem through
a transformation using the orthonormal bases of the kernel space associated with
the constraint equations. The main advantage of this algorithm is that the required
computational time is greatly reduced due to the fact that the scale of the identi-
fication problem, as well as the scale of the global covariance matrix, is reduced
by the transformation. For validation purpose, the SB-RMVSBs algorithm has been
applied to approximate a wind tunnel data set of the F-16 fighter aircraft. Compared
with the batch MVSBs method and the equality constrained recursive least squares
(ECRLS) MVSBs method, the computational load of the proposed SB-RMVSBs
method is much lower than that of the batch type method while it is comparable to
that of the ECRLS-MVSBs method. Moreover, the higher the continuity order is,
the less computational time the SB-RMVSBs method requires compared with the
ECRLS-MVSBs method.
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1 Introduction

The control performance of a model-based automatic controlsystem, like for ex-
ample the adaptive nonlinear dynamic inversion (ANDI) flight control system [4, 7]
and the module based adaptive backstepping flight control system [7], heavily re-
lies on the accuracy of the object model that is identified in real-time. Recently, de
Visser et al. [11] proposed a novel batch type identificationmethod using multivari-
ate simplex B-splines. Comparing with the ordinary polynomial basis (OPB) based
method, this simplex spline basis (SSB) based method can provide a relatively more
stable basis and enjoys a higher approximation power owing to the fact that mul-
tiple local modules are identified instead of identifying a single overall model[10].
Another main merit of the multivariate simplex B-splines (MVSBs) is that they are
capable of using the scattered dataset as training data. This is a property that the
multivariate sensor product splines method does not have [11].

Later, de Visser and Chu et al. [12] developed an equality constrained recur-
sive least squares (ECRLS) based MVSBs identification method after combining
the linear regression formulation of the spline bases from [11] with the recursive
least squares identification method from [15]. The recursive identification method
presented in [15] can convert a constrained identification problem into a free-of-
constraint identification problem . In this recursive identification method, the con-
strained recursive identification process is circumventedby merely injecting the
equality constraint information into the general least square solution calculated us-
ing an initial training data collection.

However, in order to enable the real-time aerodynamic modelidentification, it is
still necessary to reduce the computational load of the recursive MVSBs method.
This paper is aimed at providing a more effective recursive identification method
than the ECRLS-MVSBs method developed in [12]. The new method should enjoy
a much lower computational load than the batch MVSBs, and have a lower computa-
tional load than the ECRLS-MVSBs method. In this paper, a newsubstitution based
multivariate simplex B-splines (SB-MVSBs) method is developed. The kernel-space
bases based transformation can greatly cut down the computational time required by
the SB-MVSBs method.

This paper is structured as follows. The preliminaries on the multivariate sim-
plex B-splines are introduced in section 2. The SB-MVSBs method is developed
in section 3. In section 4, the proposed SB-RMVSBs method is applied to a wind
tunnel data set of the F-16 fighter aircraft, and the selection of the spline function
structure is investigated. Subsequently, the proposed method is compared with both
the batch method and the ECRLS-MVSBs method in section 5. Finally, this paper
is concluded by section 6.
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2 Preliminaries on Multivariate Simplex B-splines

The basic principles for simplex splines are briefly introduced in this section. With-
out this introduction, the formulation of the SB-MVSBs method will be incomplete.

2.1 Simplex and Barycentric Coordinates

Let t be an n-simplex formed by the convex hull of itsn+ 1 non-degenerate ver-
tices(v0,v1, ...,vn) ⊂ R

n. The normalized barycentric coordinates of some evalua-
tion pointx ∈ R

n with respect to simplext are defined as

b(x) := (b0,b1, ...,bn) ∈ R
n+1, x ∈ R

n (1)

which follows from the following implicit relation:

x =
n

∑
i=0

bivi,
n

∑
i=0

bi = 1 (2)

2.2 Triangulations of Simplices

The approximation power of the multivariate simplex splineis partly determined by
the structure of the triangulation. A triangulationT is a special partitioning of a
domain into a set ofJ non-overlapping simplices:

T :=
J
⋃

i=1

ti, ti ∩ t j ∈ {∅, t̃} ,∀ ti, t j ∈ T (3)

with the edge simplex̃t a k-simplex with 0≤k≤ n−1. High quality triangulations
can be obtained using constrained Delaunay triangulation (CDT) methods, such as
the 2-dimensional CDT method presented by Shewchuk [8].

2.3 Basis Functions of the Simplex B-splines

According to [3] and [11], the Bernstein basis polynomialBd
κ (b(x)) of degreed in

terms of the barycentric coordinatesb(x) = (b0,b1, ...,bn) from Eq. (2) is defined
as:

Bd
κ(b(x)) :=

{ d!
κ0!κ1!···κn! bκ0

0 bκ1
1 · · ·bκn

n ,x ∈ t
0 ,x /∈ t

(4)
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whereκ = (κ0,κ1, ...,κn) ∈ Nn+1 is a multi-index with the following properties:
κ ! = κ0!κ1!...κn! and |κ | = κ0+κ1+ ...+κn. In Eq. (4) we use the notationbκ =
bκ0

0 bκ1
1 ...bκn

n . Given that|κ |= d, the total number of valid permutations of themulti-
index κ is:

d̂ =
(d +n)!

n!d!
(5)

In [2], it was proved that any polynomialp(b) of degreed on a simplext can
therefore be written as a linear combination ofd̂ basis polynomials in what is known
as the B-form as follows:

pt(b(x)) :=

{

∑|κ |=d ct
κ Bd

κ(b(x)) ,x ∈ t
0 ,x /∈ t

(6)

with ct
κ the B-coefficients which uniquely determinespt(b(x)), where the super-

script ’t ’ indicates thatp is defined on the simplex ’t ’. The total number of basis
function terms is equal tôd, which is the total number of valid permutations ofκ .

2.4 Vector Formulations of the B-form

As introduced in [12], the vector formulation, according toEq. (6), for a B-form
polynomialp(b(x)) in barycentricRn+1 has the following expression:

pt(x) :=

{

Bd
t (b(x)) ·ct ,x ∈ t

0 ,x /∈ t
, (7)

with b(x) the barycentric coordinates of the Cartesianx. The row vectorBd
t (b(x)) in

Eq. (7) is constructed from individual basis polynomials which are sorted lexicographically[12].
The simplex B-spline functionsm

d (b(x)) of degreed and continuity orderm, de-
fined on a triangulation consisting ofJ simplices, is defined as follows:

sm
d (x) := Bd(b(x)) ·c ∈ R, (8)

with Bd(b(x)) the global vector of basis polynomials which has the following full
expression:

Bd(b(x)) := [Bd
t1(b(x)) Bd

t2(b(x)) · · · Bd
tJ (b(x)) ] ∈ R

1×J·d̂ (9)

Note that according to Eq. (7) we haveBd
t j
(b(x)) = 0 for all evaluation locations

x that are located outside of the trianglet j. This results in thatBd is a sparse row
vector.

The global vector of B-coefficientsc in Eq. (8) has the following formulation:

c :=
[

ct1⊤ ct2⊤ · · · ctJ⊤
]⊤

∈ R
J·d̂×1 (10)
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with eachct j a per-simplex vector of lexicographically sorted B-coefficients.
For a single observation ony we have:

f = Bd(b(x))c+ ε (11)

with ε the residue. Then, for all theN observations, we have the following well-
known formulation:

f = X(b(x))c+ξ ∈ R
N×1 (12)

with X(b(x)) ∈ R
N×J·d̂ a collection matrix of the row vectorBd from Eq. (9), and

ξ = [ε1,ε2, ...εN ]
T the residue vector. For writing convenience,X(b(x)) will be writ-

ten asX in the remainder of this paper.

2.5 Global continuity constraints

The formulation for the continuity conditions from [1] and [3] is used:

cti
(κ0,...,κn−1,m)

= ∑
|γ |=m

c
t j

(κ0,...,κn−1,0)+γ Bm
γ (v) , 0≤ m ≤ r (13)

with v the Bernstein coordinates of the vertex which only belongs to theith simplex,
γ = (γ0,γ1, ...,γn) a multi-index independent ofκ , |(κ0, ...,κn−1,m)+ γ | = d. ti, t j

denote thei-th and j-th simplices separately.
Eventually, the following equality constraints should be maintained during the

calculation of the global B-coefficient vectorc:

H ·c= 0 (14)

with H ∈ R
(E·R)×(J·d̂) the smoothness matrix [11],R is the number of continuity

conditions per edge.E is the number of edges in the specified triangulation. If all the
simplices’ surfaces connect smoothly on the edges within the whole triangulation,
we call the simplex splines globally continuous. Global continuity is determined by
Eq. (13) and Eq. (14).

2.6 Spline Function Space and a Polynomial Function Space

In this paper, we use a new type of definition of polynomial function space:

Pd (n) := {pk (x) : pk|x ∈ Pk, ∀x ∈ R
n and ∀k ≤ d} (15)

with x the input vector,Pk the space of polynomials of degreek.
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We use the following definition of the spline space, which is amodified form of
the definition given by Lai et al. in [3]:

Sm
d (n) := {sm

d (x) ∈Cm : sm
d |x ∈ Pd , ∀x ∈ R

n} (16)

with Pd the space of polynomials of degreed, and n the dimension of function
inputs.

Note that, the former represents the ordinary polynomial function bases with the
order up tod. For example, if we selectx = [x, y]T , thenP2 (2) := c1+ c2x+ c4y+
c3x2+ c6xy+ c5y2 with x andy two elements ofx.

3 Transformation based recursive identification method

The kernel space information of the equality constraint matrix H, formulated in
Eq. (14), has been utilized to transform the constrained recursive identification prob-
lem into a free-of-constraint recursive identification problem.

3.1 Transformation of constraints

Once the triangulation and the spline function structure are chosen, the equality
constraints have the property that they are time invariant and known a priori. In this
case, a straightforward substitution method can be appliedto remove the constraints
in each recursion step.

Following from Eq. (8), the original constrained recursiveidentification problem
has the following expression:

f = B ·c+ ε (17)

s.t.H ·c= 0 (18)

Assume that the singular value decomposition (SVD) result of H is as follows:

Hn×m = Vn×n

[

∑r×r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]

UT
m×m (19)

where∑= diag
(

σ1 , · · · σr
)

is the diagonal vector of all singular values ,σ1 ≥ ·· · ≥
σr > 0 andr is the rank of H. V =

[

V1 V2
]

is annth order orthogonal matrix,V1

is ann by r matrix. U =
[

U1 U2
]

is amth-order orthogonal matrix,U1 is anm by
r matrix. Becausec∈ null (H), one feasible general solution for the homogeneous
equation Eq. (18) is:

c= U2y (20)
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where the column vectors ofU2 form an orthonormal basis ofnull (H) [14, 5].y is a
column vector which needs to be calculated (identified) later, and its length ism−r.
The feasibility of the above mentioned conversion will be proved later in theorem 1.

By introducing this general solution into Eq. (17), we get the following forma-
tion:

f = BU2y+ ε (21)

with U2 a basis fornull (H). Since Eq. (21) only represents an unconstrained iden-
tification problem, a regular recursive least squares identification method becomes
capable to solve it. In order to obtain the final unknown parameters (B-coefficients),
we only need to substitute the identified vectory into Eq. (20). The computational
flow chart is concluded as follows.
Algorithm 1:

step.1 determine the triangulationT , calculate the smoothness matrixH, and carry out
the SVD according to Eq. (19) to getU2.

step.2 calculate the spline basis vector according to Eq. (9).
step.3 identify the unknown vectory contained by Eq. (21) using regular recursive least

squares method.
step.4 reconstruct the B-coefficient vectorc from the vectory using Eq. (20). Return to

step.2 if a new data is available.

Theorem 1:Optimal approximation
Given y the unique and optimal least square estimation vector of problem

Eq. (21),c = U2y is the optimal least squares solution of the constrained problem
Eq. (17).
Proof:

Given U2 derived from Eq. (19), columns of matrixU2 constitute orthonormal
bases for the kernel space ofH. Therefore, we haveHU2 = 0. Hence, we can get
HU2 · y = 0. Becausec = U2y as shown in Eq. (20), we can getH · c = 0. The
equality constraintsH ·c= 0 are satisfied during parameter estimation.

Because Eq. (17) and Eq. (21) hold, we have

f −X ·c= ξ = f −XU2y (22)

We define the cost function of the least square problem asC (c) = min
c

ξ T ξ , where

c is the vector to estimate. Asy is the optimal and unique least square solution of
problem 21, we assume that it leads to a minimum residual vector ξd , so the mini-
mum cost function value can be written asC (y) = ξ T

d ξd . Because the two problems
described by Eq. (17) Eq. (18) and Eq. (21) are identical systems in view of the
output approximation, we can get the following result:C (c) = C (y) = ξ T

d ξd from
Eq. (22).�
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3.2 Remarks

Note that, according to Eq. (21), the proposed recursive identification method has
cut down the scale of the original identification problem by multiplying the regres-
sion data matrix byU2 from the right hand side.

There exist some similarities between the SB-MVSBs method and the orthogo-
nal least squares based identification method presented in [9]. In theory, the singular
value decomposition allows to reduce the structure of the aerodynamic model. By
keeping all (non-zero) singular values, the SB-MVSBs method has removed the de-
pendent columns in the data matrix. However, it is not reasonable to cut out the
smallest singular values and further reduce the scale of themodel because the con-
straints are originally added to the unknown parameters rather than to the regression
data matrix.

4 Validation using wind tunnel data of the F-16 fighter aircraft

4.1 F-16 Aerodynamic Model Structure

According to the F-16 aerodynamic wind tunnel data presented in [6], the following
structure is a good option for X-direction aerodynamic force (moment) coefficient:

Fx

(

α,β ,δe,δle f ,
qc
V

)

=f1 (α,β ,δe)+ f2 (α,β ) ·δle f

+f3 (α) · qc
V

+ f4 (α) · qc
V

·δle f

(23)

Note that the engine thrust is assumed to be constant and its related term is removed
from Eq. (23). According to Eq. (23), once theq, V and δle f are fixed, we can
derive the following linear regression formulation for a three dimensional MVSBs
function.

S (x) = B ·c (24)

whereB is the B-form spline vector calculated using Eq. (9).
According to de Visser [13], the global continuity matrixH for the three dimen-

sional MVSBs function should be calculated using Eq. (13).
In the simulation, an aerodynamic model of the F-16 aircraftwas identified us-

ing simulated flight test data generated with a nonlinear F-16 simulator based on a
NASA wind tunnel dataset [6]. The training inputs of the simulated flight test dataset
were obtained by generating 20,000 uniformly distributed inputs within their own
valid regions. The inputs of the test dataset containing 4331 points are produced
by the grids determined byα andβ . The system output were calculated through
the high resolution interpolation from the wind tunnel dataprovided by [6] with
δle f = 1◦,V = 600 f t/s, q = 0.1rad/s, c̄ = 11.32m. Moreover, the model outputs
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of the aerodynamic model is contaminated artificially by adding a white noise with
a magnitude of 1% (relative to its maximum and minimum value).

4.2 Cross validation results in determining the structure

In the numerical simulation, we have chosen the MVSBs function to have only one
three dimensional sub-function. The notationSm

d (n) from Sec. 2 has been used, and
the overall spline function becomes the following expression:
S (x) = Sm

d (n), wheren = 3, while d, m are kept undetermined. The partitioning
vector ofα is [−20 10 40]. The partitioning vector ofβ is [−25 25]. The partition-
ing vector ofδe is [−20 20]. In order to enhance the approximation ability of this
algorithm, all the inputs are normalized into the closed range of [0 1]. In order to
select a suitable structure for the spline model ofCm (i.e. the nondimensional pitch
moment coefficient), the effects of the structural parameters (i.e. d and m) will be
investigated. To demonstrate the approximation power of the SB-MVSBs method,
we compared it with the batch MVSBs method.

 

 

test
train

polynomial functionPd (3)

lo
g 1

0(
R

M
SE

)

d
1 2 3 4 5 6

−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

Fig. 1 Different selection of d forPd(3), Cm.

Fig. 1 shows the root mean squared errors (RMSE) of the fittingoutputs (Cm) us-
ing the ordinary polynomial basis (OPB) based recursive least squares identification
method.

Fig. 2(a) and Fig. 2(b) show the RMSE of the training data set using the batch
MVSBs method and the proposed SB-MVSBs method respectively. Comparing
these two figures, it has been found that the SB-MVSBs method enjoys the same
level of approximation power as that of the batch MVSBs.

Fig. 3(a) and Fig. 3(b) show the RMSE of the testing data set based on the B-
coefficients identified using the batch MVSBs method and the SB-MVSBs method
respectively. As can be seen from these two figures, the approximation power of
the batch MVSBs method and the SB-MVSBs method are very close. Moreover,
compared with the results shown in Fig. 1, Fig. 3 indicate that both the batch MVSBs
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(a) batch MVSBs training.
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(b) SB-MVSBs training.

Fig. 2 Different combination of m and d forSm
d (3), T12, Cm.
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(a) batch MVSBs test.
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(b) SB-MVSBs test.

Fig. 3 Different combination of m and d forSm
d (3), T12, Cm.

method and the SB-MVSBs method enjoy a higher approximationpower than the
OPB based recursive identification method.

5 Comparison with the ECRLS-MVSBs and the batch MVSBs

5.1 Computational Complexity

The computational complexity of the substitution based MVSBs (SB-MVSBs)
method is split into two parts. Firstly, according to Eq. (21), the multiplication
between theB vector and theU2 matrix needsm · (m− r) with r the rank of
the continuity matrix, andm the length of the B-coefficient vectorc. Similar to
the ECRLS method, the computational complexity for the pureregression pro-

cess using the recursive least squares isO

(

3(m− r)2
)

. By summing them up, we

can get the total computational complexity of the SB-MVSBs method:C (m,r) =

ThBT2.2

867



Title Suppressed Due to Excessive Length 11

(m− r) ·(4m−3r) = 3r2−7mr+4m2. The computational complexity in time of the
batch MVSBs method, the ECRLS-MVSBs method and the SB-MVSBsmethod are
tabulated in Table 1.

Givenm, functionC (m,r) monotonously increases asr < m. Therefore the mini-
mum computational complexity of the SB-MVSBs method is 4m2 whenr = 0, while

its highest limit is 0. In addition,C (m,r) = 3n2 holds whenr =
(7−

√
37)

6 m.

Table 1 Computational Complexity (CC) in time

Methods batch MVSBs ECRLS-MVSBs SB-MVSBs
CC O

(

m3
)

O
(

3m2
)

(m− r) · (4m−3r)

5.2 Computational time comparison with the ECRLS-MVSBs

Table 2 Computational time for 20k data ofCm, T12, B-coefficient number 1008,Sm
6 (3)

condition S−1
6 (3) S0

6 (3) S1
6 (3) S2

6 (3) S3
6 (3) S4

6 (3)
ECRLS 104.5092 105.5291 105.0324 106.2780 106.2854 106.6970
SB-MVSBs(operated) 101.7709 33.2808 13.4270 5.3797 4.24103.7263
SB-MVSBs(normal) 139.4835 67.7009 24.0644 7.9068 6.0565 5.6464

In order to reveal the influence of the continuity orderm on the computational
complexity in time, a numerical experiment is performed with different selection
for the continuity orderm. In the remainder of this paper, we will always choose
the MVSBs function to have only one three dimensional sub-function in all of the
numerical experiments. The simulation results are listed in Table 2. In Table 2,
’operated’ means that theBU2 multiplication shown in Eq. (21) is executed in ad-
vance in a batch manner. According to Table 2, the SB-MVSBs method require
less computational time than the ECRLS-MVSBs method, and this advantage will
become more apparent with the increase of the continuity order m.

5.3 Evaluation results on the approximation power

The OPB based recursive identification method, the batch MVSBs method and the
SB-MVSBs recursive identification method are utilized to fitthe same training data
set ofCx respectively. The models identified using these three different methods re-
spectively are validated using the testing data that are located on the mesh grids. The
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12 L. G. Sun and C. C. de Visser and Q. P. Chu

(a) Original wind tunnel data surface. (b) batch spline function surface.

(c) substitution spline function surface. (d) Polynomial fitting surface.

Fig. 4 Validation surface ofCx (δe = 2o), T12.

validation surfaces ofCx are shown in Fig. 4. Apparently, the SB-MVSBs method
enjoys an equal fitting accuracy to that of the batch MVSBs method while having a
higher approximation power than the OPB based recursive identification method.

The OPB based recursive identification method, the batch MVSBs and the SB-
MVSBs recursive identification methods are utilized to fit the same training data
set ofCm. The models identified using three different methods are validated using
the same testing data set as that mentioned previously. The validation surfaces of
Cm are plotted in Fig. 5. We can get a similar conclusion as that drawn from last
experiment that the SB-MVSBs method has the same fitting power as the batch
MVSBs method while having a higher approximation power thanthe OPB based
recursive identification method.

6 Conclusions

A new substitution based recursive MVSBs method is proposedfor the online
aerodynamic model identification. In view of the equality constraints contained
by the MVSBs, a SVD based transformation is empoyed to convert an originally
constrained recursive identification problem into a free-of-constraint identification
problem. The proposed recursive model identification method namely SB-MVSBs
method was applied to approximate a series of two wind tunneldata sets of F-
16 aircraft, and were compared with the batch MVSBs method and the ECRLS-
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(a) Original wind tunnel data surface. (b) batch spline function surface.

(c) substitution spline function surface. (d) Polynomial fitting surface.

Fig. 5 Validation surface ofCm (δe = 2o), T12.

MVSBs method. The numerical simulation results show that the proposed SB-
MVSBs method requires less computational time than the batch MVSBs method
and the ECRLS-MVSBs method. In addition, the computationaltime required by
the SB-MVSBs decreases with the increase of the continuity orderm. The reduction
of the computational time is caused by the fact that the kernel space bases based
transformation has cut down the scale of the original splinebasis based model.
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