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A New Substitution Based Recursive B-Splines
Method for Aerodynamic Model Identification

L. G. Sunand C. C. de Visser and Q. P. Chu

Abstract A new substitution based (SB) recursive identification radtlusing mul-
tivariate simplex B-splines (MVSBSs), has been developedHe purpose of reduc-
ing the computational time in updating the spline B-coediits. Once the struc-
ture selected, the recursive identification problem usiggNVSBs turns to be a
constrained recursive identification problem. In the psgubapproach, the con-
strained identification problem is converted into an unt@msed problem through
a transformation using the orthonormal bases of the kepeates associated with
the constraint equations. The main advantage of this akgoris that the required
computational time is greatly reduced due to the fact thatsttale of the identi-
fication problem, as well as the scale of the global covagamatrix, is reduced
by the transformation. For validation purpose, the SB-RM¥algorithm has been
applied to approximate a wind tunnel data set of the F-16diggutcraft. Compared
with the batch MVSBs method and the equality constrainedredee least squares
(ECRLS) MVSBs method, the computational load of the prodoSB-RMVSBs
method is much lower than that of the batch type method whitedomparable to
that of the ECRLS-MVSBs method. Moreover, the higher thetiooity order is,
the less computational time the SB-RMVSBs method requioaspared with the
ECRLS-MVSBs method.
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2 L. G. Sunand C. C. de Visser and Q. P. Chu

1 Introduction

The control performance of a model-based automatic cosyratem, like for ex-
ample the adaptive nonlinear dynamic inversion (ANDI) fligbntrol system [4, 7]
and the module based adaptive backstepping flight contstésy[7], heavily re-
lies on the accuracy of the object model that is identifieceal-time. Recently, de
Visser et al. [11] proposed a novel batch type identificati@ihod using multivari-
ate simplex B-splines. Comparing with the ordinary polymarbasis (OPB) based
method, this simplex spline basis (SSB) based method caitera relatively more
stable basis and enjoys a higher approximation power ovarthe fact that mul-
tiple local modules are identified instead of identifyingirzgte overall model[10].
Another main merit of the multivariate simplex B-splines\(BIBs) is that they are
capable of using the scattered dataset as training data.iF ki property that the
multivariate sensor product splines method does not haMe [1

Later, de Visser and Chu et al. [12] developed an equalitysttaimed recur-
sive least squares (ECRLS) based MVSBs identification nae#tfter combining
the linear regression formulation of the spline bases frafj fvith the recursive
least squares identification method from [15]. The recergientification method
presented in [15] can convert a constrained identificatimblem into a free-of-
constraint identification problem . In this recursive idécation method, the con-
strained recursive identification process is circumverigdnerely injecting the
equality constraint information into the general leastssgusolution calculated us-
ing an initial training data collection.

However, in order to enable the real-time aerodynamic mioditification, it is
still necessary to reduce the computational load of thersa@ MVSBs method.
This paper is aimed at providing a more effective recursileniification method
than the ECRLS-MVSBs method developed in [12]. The new nteimuld enjoy
a much lower computational load than the batch MVSBs, and hdewer computa-
tional load than the ECRLS-MVSBs method. In this paper, a swstitution based
multivariate simplex B-splines (SB-MVSBs) method is deyedd. The kernel-space
bases based transformation can greatly cut down the cotigngktime required by
the SB-MVSBs method.

This paper is structured as follows. The preliminaries anrttultivariate sim-
plex B-splines are introduced in section 2. The SB-MVSBshoetis developed
in section 3. In section 4, the proposed SB-RMVSBs methogjsied to a wind
tunnel data set of the F-16 fighter aircraft, and the seleaticthe spline function
structure is investigated. Subsequently, the proposedades compared with both
the batch method and the ECRLS-MVSBs method in section &llginthis paper
is concluded by section 6.
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2 Preliminaries on Multivariate Simplex B-splines

The basic principles for simplex splines are briefly introeld in this section. With-
out this introduction, the formulation of the SB-MVSBs medhwill be incomplete.

2.1 Simplex and Barycentric Coordinates

Let t be an n-simplex formed by the convex hull of its- 1 non-degenerate ver-
tices(vo, V1, ...,Vn) C R™. The normalized barycentric coordinates of some evalua-
tion pointx € R" with respect to simplekare defined as

b(x) := (bo, by, ...,bn) € R xc RN (1)

which follows from the following implicit relation:
n n
x=9YYbvi, Ybh=1 (2
5™ 20

2.2 Triangulations of Simplices

The approximation power of the multivariate simplex spimpartly determined by
the structure of the triangulation. A triangulatioh is a special partitioning of a
domain into a set o non-overlapping simplices:

J
7=t tnt e{o,i} Vi tje 7 3)
i—1

with the edge simplek a k-simplex with 0<k< n— 1. High quality triangulations
can be obtained using constrained Delaunay triangula@®@) methods, such as
the 2-dimensional CDT method presented by Shewchuk [8].

2.3 Basis Functions of the Simplex B-splines

According to [3] and [11], the Bernstein basis polynonBdl(b(x)) of degreed in
terms of the barycentric coordinatbg«) = (b, bs,...,bn) from Eqg. (2) is defined

as: | Ko 1K
4 bplbit-- bk x et

d | wort
B (b0) = { & o @
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4 L. G. Sunand C. C. de Visser and Q. P. Chu

wherek = (Ko, K1, ...,Kn) € N"1 is a multi-index with the following properties:
K! = Ko'Kq!...kn! and |K| = Ko+ K1 + ... + Kn. In EQ. (4) we use the notatidsf =
bg’bi™...bkn. Given thatk| = d, the total number of valid permutations of tmeiti-
index K is:

(d+n)!

nid! ®)
In [2], it was proved that any polynomigd(b) of degreed on a simplext can

therefore be written as a linear combinatiorddfasis polynomials in what is known
as the B-form as follows:

6:

d
P (bi(x) 1= { Zi-a B (009) X h (6)

with ¢, the B-coefficients which uniquely determingYb(x)), where the super-

script t” indicates thatp is defined on the simplex’ The total number of basis
function terms is equal td, which is the total number of valid permutationskof

2.4 Vector Formulations of the B-form

As introduced in [12], the vector formulation, accordingEq. (6), for a B-form
polynomialp(b(x)) in barycentridR™? has the following expression:

t(X) - {(B)td(b(x))ct :i;: , (7)

with b(x) the barycentric coordinates of the Cartesialihe row vectoBg (b(x)) in

Eq. (7) is constructed from individual basis polynomialsattare sorted lexicographically[12].

The simplex B-spline functiog]'(b(x)) of degreed and continuity ordem, de-
fined on a triangulation consisting éfsimplices, is defined as follows:

(x) :=B(b(x)) -c €R, (8)

with BY(b(x)) the global vector of basis polynomials which has the foltogvfull
expression:

BY(b(x) = (B (b(x) Bl (b(0) -~ B (bG)] RV (@)

t

Note that according to Eq. (7) we hai&!éJ (b(x)) = 0 for all evaluation locations

X that are located outside of the triangje This results in thaBY is a sparse row
vector.
The global vector of B-coefficientsin Eq. (8) has the following formulation:

T A
Cci= [c‘lT cel ... ctJT} e RI1 (10)
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with eachcli a per-simplex vector of lexicographically sorted B-coédints.
For a single observation gnwe have:

f =BY(b(x))c+& (11)

with € the residue. Then, for all th observations, we have the following well-
known formulation:
f =X(b(x))c+& e RN*? (12)

with X (b(x)) € RN*3d a collection matrix of the row vectd® from Eg. (9), and
& =g, &, ...eN]T the residue vector. For writing convenienggb(x)) will be writ-
ten asX in the remainder of this paper.

2.5 Global continuity constraints

The formulation for the continuity conditions from [1] an8] [is used:

L _ I
C(KO,...,Kn,l,m) - ‘V‘ZmC(JKOv-wKn—LOHVB? (V)v 0<m<r (13)

with v the Bernstein coordinates of the vertex which only belongbéit" simplex,
y = (Yo, V1, .-, ¥h) @ multi-index independent of, | (Ko, ...,kn—1,m) +y| = d. tj, t;
denote the-th andj-th simplices separately.

Eventually, the following equality constraints should baintained during the
calculation of the global B-coefficient vector

H-c=0 (14)

with H € RER*(39) the smoothness matrix [L1R is the number of continuity
conditions per edgé is the number of edges in the specified triangulation. Ifrel t
simplices’ surfaces connect smoothly on the edges witteénathole triangulation,
we call the simplex splines globally continuous. Globaltaauity is determined by
Eqg. (13) and Eq. (14).

2.6 Spline Function Space and a Polynomial Function Space

In this paper, we use a new type of definition of polynomialction space:
Py (n) := {pk(X) : px|x € Pk, ¥x € R"and vk < d} (15)

with x the input vectorlPx the space of polynomials of degrke
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6 L. G. Sunand C. C. de Visser and Q. P. Chu

We use the following definition of the spline space, which madified form of
the definition given by Lai et al. in [3]:

() :={sg'(x) eC™: §|x € Py, Vx € R"} (16)

with P4 the space of polynomials of degrele and n the dimension of function
inputs.

Note that, the former represents the ordinary polynomiatfion bases with the
order up tod. For example, if we seleat= [x, y]T, thenP, (2) := ¢y + Cox+ gy +
c3X? + CeXy -+ Csy? with x andy two elements ok.

3 Transformation based recursive identification method

The kernel space information of the equality constraintrixatl, formulated in
Eq. (14), has been utilized to transform the constrainearsae identification prob-
lem into a free-of-constraint recursive identification fgeam.

3.1 Transformation of constraints

Once the triangulation and the spline function structuee adrosen, the equality
constraints have the property that they are time invariadtkeown a priori. In this
case, a straightforward substitution method can be apgiesmove the constraints
in each recursion step.
Following from Eg. (8), the original constrained recursidentification problem
has the following expression:
f=B-ct+¢ a7)

stH-c=0 (18)
Assume that the singular value decomposition (SVD) redutt & as follows:

Drxr 0r><(m—r) T
H =V U 19
m e O(nfr)xr O(nfr)x(mfr) rhem ( )

wherey :diag(al R ar) is the diagonal vector of all singular values;,> - - - >
or >0 andristherankofH.V = [Vl Vz] is anny, order orthogonal matrix,V1
is ann by r matrix. U = [U1 Uz] is amy-order orthogonal matrixJ; is anm by

r matrix. Because < null (H), one feasible general solution for the homogeneous

equation Eq. (18) is:
c= Uy (20)
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where the column vectors bf, form an orthonormal basis ofill (H) [14, 5].yis a
column vector which needs to be calculated (identifiedy lated its length isn—r.
The feasibility of the above mentioned conversion will bevad later in theorem 1.
By introducing this general solution into Eq. (17), we get thllowing forma-
tion:
f =BUyy+¢ (21)

with U, a basis fomull (H). Since Eq. (21) only represents an unconstrained iden-
tification problem, a regular recursive least squares ifiemtion method becomes
capable to solve it. In order to obtain the final unknown patars (B-coefficients),
we only need to substitute the identified vecganto Eq. (20). The computational
flow chart is concluded as follows.

Algorithm 1:

step.1l determine the triangulation, calculate the smoothness matrixand carry out
the SVD according to Eq. (19) to geb.

step.2 calculate the spline basis vector according to Bqg. (9

step.3 identify the unknown vectgrcontained by Eq. (21) using regular recursive least
squares method.

step.4 reconstruct the B-coefficient vectdrom the vectory using Eqg. (20). Return to
step.2 if a new data is available.

Theorem 1: Optimal approximation

Given y the unigque and optimal least square estimation vector obleno
Eqg. (21),c = Uyy is the optimal least squares solution of the constrainetlipno
Eqg. (17).

Proof:

Given Uy derived from Eq. (19), columns of matrbd, constitute orthonormal
bases for the kernel space l@f Therefore, we havelU, = 0. Hence, we can get
HU, -y = 0. Because = Uyy as shown in Eq. (20), we can get-c = 0. The
equality constraintsl - ¢ = 0 are satisfied during parameter estimation.

Because Eq. (17) and Eq. (21) hold, we have

f—X.-c=&=f—XUyy (22)

We define the cost function of the least square proble@(@$ = mcinETE, where

c is the vector to estimate. Asis the optimal and unique least square solution of
problem 21, we assume that it leads to a minimum residuabvégt so the mini-
mum cost function value can be written@gy) = EdTEd. Because the two problems
described by Eq. (17) Eq. (18) and Eqg. (21) are identicalesystin view of the
output approximation, we can get the following res@lfc) = C(y) = EdT &q from

Eq. (22).0
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8 L. G. Sunand C. C. de Visser and Q. P. Chu

3.2 Remarks

Note that, according to Eq. (21), the proposed recursivetifigation method has
cut down the scale of the original identification problem byltiplying the regres-
sion data matrix byJ, from the right hand side.

There exist some similarities between the SB-MVSBs methmtithe orthogo-
nal least squares based identification method present&il in theory, the singular
value decomposition allows to reduce the structure of thedymamic model. By
keeping all (non-zero) singular values, the SB-MVSBs metias removed the de-
pendent columns in the data matrix. However, it is not reabtento cut out the
smallest singular values and further reduce the scale ohtigel because the con-
straints are originally added to the unknown parameteh&rdhan to the regression
data matrix.

4 Validation using wind tunnel data of the F-16 fighter aircraft

4.1 F-16 Aerodynamic Model Structure

According to the F-16 aerodynamic wind tunnel data preskint§s], the following
structure is a good option for X-direction aerodynamic éofmoment) coefficient:

B (5. Bt S ) (.80 + o) B

C C
(@) T Ber

(23)
+f3 (or)

Note that the engine thrust is assumed to be constant areddted term is removed
from Eg. (23). According to Eq. (23), once tligV and §s are fixed, we can
derive the following linear regression formulation for agé dimensional MVSBs
function.

S(x) =B-c (24)

whereB is the B-form spline vector calculated using Eq. (9).

According to de Visser [13], the global continuity matkixfor the three dimen-
sional MVSBs function should be calculated using Eqg. (13).

In the simulation, an aerodynamic model of the F-16 aironaf$ identified us-
ing simulated flight test data generated with a nonlinea6 sitnulator based on a
NASA wind tunnel dataset [6]. The training inputs of the slatad flight test dataset
were obtained by generating 20,000 uniformly distributggouis within their own
valid regions. The inputs of the test dataset containingl43dnts are produced
by the grids determined by and 3. The system output were calculated through
the high resolution interpolation from the wind tunnel dptavided by [6] with
def = 1°,V = 600ft/s, q = 0.1rad/s, c = 11.32m. Moreover, the model outputs
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of the aerodynamic model is contaminated artificially byiadd white noise with
a magnitude of 1% (relative to its maximum and minimum value)

4.2 Cross validation resultsin determining the structure

In the numerical simulation, we have chosen the MVSBs fanctib have only one
three dimensional sub-function. The notatigf(n) from Sec. 2 has been used, and
the overall spline function becomes the following expressi

S(x) = §}'(n), wheren = 3, while d, m are kept undetermined. The partitioning
vector ofa is [—20 10 4Q. The partitioning vector of is [-25 25. The partition-
ing vector ofde is [—20 2. In order to enhance the approximation ability of this
algorithm, all the inputs are normalized into the closedyeanf [0 1]. In order to
select a suitable structure for the spline modeCgf(i.e. the nondimensional pitch
moment coefficient), the effects of the structural paransefiee. d and m) will be
investigated. To demonstrate the approximation power @f3B-MVSBs method,
we compared it with the batch MVSBs method.

polynomial functiorPy (3)

Fig. 1 Different selection of d foPy(3), C.

Fig. 1 shows the root mean squared errors (RMSE) of the fittiiguts Cr,) us-
ing the ordinary polynomial basis (OPB) based recursivstlsguares identification
method.

Fig. 2(a) and Fig. 2(b) show the RMSE of the training data s@igithe batch
MVSBs method and the proposed SB-MVSBs method respecti@dynparing
these two figures, it has been found that the SB-MVSBs methjmy/e the same
level of approximation power as that of the batch MVSBs.

Fig. 3(a) and Fig. 3(b) show the RMSE of the testing data sse¢da@n the B-
coefficients identified using the batch MVSBs method and ®&/&/SBs method
respectively. As can be seen from these two figures, the aippation power of
the batch MVSBs method and the SB-MVSBs method are very cidseeover,
compared with the results shown in Fig. 1, Fig. 3 indicatéhio#h the batch MVSBs
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batch training oS{}'(3) substitution training oS{J'(3)

1 2 3 4 5 6
d

(a) batch MVSBs training. (b) SB-MVSBs training.

Fig. 2 Different combination of m and d fd&#]'(3), 712, C.

batch test off]'(3) substitution test o8}'(3)

Py(3)
~16 ——s,1(3)
4}55(3)
{FS?(S)
e sg(3>
~-sio

1 2 3 4 5 6

d d
(a) batch MVSBs test. (b) SB-MVSBs test.

Fig. 3 Different combination of m and d f&]'(3), 712, Cm.

method and the SB-MVSBs method enjoy a higher approximaiamer than the
OPB based recursive identification method.

5 Comparison with the ECRLS-MVSBs and the batch MVSBs

5.1 Computational Complexity

The computational complexity of the substitution based B¥JSB-MVSBS)
method is split into two parts. Firstly, according to Eq. }2the multiplication
between theB vector and theU, matrix needsm- (m—r) with r the rank of
the continuity matrix, andn the length of the B-coefficient vecta: Similar to
the ECRLS method, the computational complexity for the pegression pro-
cess using the recursive least squareg (s‘.%(m— r)z). By summing them up, we

can get the total computational complexity of the SB-MVSBatimod:C (m,r) =
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(m—r)-(4m—3r) = 3r? — 7mr 4-4m?. The computational complexity in time of the
batch MVSBs method, the ECRLS-MVSBs method and the SB-MMi&Bthod are
tabulated in Table 1.
Givenm, functionC (m,r) monotonously increases as. m. Therefore the mini-
mum computational complexity of the SB-MVSBs methodrig 4vhenr = 0, while
(7-v37)

its highest limit is 0. In additionC (m,r) = 3n? holds wherr = s —m.

Table 1 Computational Complexity (CC) in time

Methods batch MVSBs ECRLS-MVSBs SB-MVSBs
cC 0 (m) 0(Bm?)  (m—r)-(4m—23r)

5.2 Computational time comparison with the ECRLS-MVSBs

Table 2 Computational time for 20k data 6f,, 712, B-coefficient number 100&]' (3)

condition 53 S0 S3 %0 SB S0
ECRLS 104.5092 105.5291 105.0324 106.2780 106.2854 106.69
SB-MVSBs(operated) 101.7709 33.2808 13.4270 5.3797 4.2418.7263
SB-MVSBs(normal) 139.4835 67.7009 24.0644 7.9068 6.0565 463.6

In order to reveal the influence of the continuity ordeon the computational
complexity in time, a numerical experiment is performedhwdifferent selection
for the continuity ordem. In the remainder of this paper, we will always choose
the MVSBs function to have only one three dimensional suizfion in all of the
numerical experiments. The simulation results are listedable 2. In Table 2,
"operated’ means that th&U, multiplication shown in Eq. (21) is executed in ad-
vance in a batch manner. According to Table 2, the SB-MVSBthaterequire
less computational time than the ECRLS-MVSBs method, aisdativantage will
become more apparent with the increase of the continuitgrond

5.3 Evaluation results on the approximation power

The OPB based recursive identification method, the batch B&4&ethod and the
SB-MVSBs recursive identification method are utilized tdHi# same training data
set ofCy respectively. The models identified using these threerdiffemethods re-
spectively are validated using the testing data that asdaloon the mesh grids. The
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wind tunnel data surface, C, validation surface, C,, batch splines, SX(3)

(a) Original wind tunnel data surface. (b) batch spline function surface.

validation surface, C,, substitution splines, SI(3) validation surface, C,,, polynomial function Py(3)

(c) substitution spline function surface. (d) Polynomial fitting surface.

Fig. 4 Validation surface o€y (3 = 2°), Z1».

validation surfaces oy are shown in Fig. 4. Apparently, the SB-MVSBs method
enjoys an equal fitting accuracy to that of the batch MVSBshativhile having a
higher approximation power than the OPB based recursiveifamtion method.

The OPB based recursive identification method, the batch B8/&hd the SB-
MVSBs recursive identification methods are utilized to fié ftame training data
set ofC,,. The models identified using three different methods ariglad using
the same testing data set as that mentioned previously. dlfdation surfaces of
Cm are plotted in Fig. 5. We can get a similar conclusion as thatvd from last
experiment that the SB-MVSBs method has the same fitting pawehe batch
MVSBs method while having a higher approximation power thias OPB based
recursive identification method.

6 Conclusions

A new substitution based recursive MVSBs method is propdeedhe online

aerodynamic model identification. In view of the equalitynstraints contained
by the MVSBs, a SVD based transformation is empoyed to comreoriginally

constrained recursive identification problem into a fréeanstraint identification
problem. The proposed recursive model identification nettimmely SB-MVSBs
method was applied to approximate a series of two wind tuda&é sets of F-
16 aircraft, and were compared with the batch MVSBs methatitha ECRLS-
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Wind tunnel data surface, C, validation surface ,C_, batch splines, S(3)

(a) Original wind tunnel data surface. (b) batch spline function surface.

validation surface .C,, substitution splines, S%(3) validation surface, C,, polynomial function Py(3)

(c) substitution spline function surface. (d) Polynomial fitting surface.

Fig. 5 Validation surface o€y, (3 = 2°), J12.

MVSBs method. The numerical simulation results show that phoposed SB-
MVSBs method requires less computational time than thehbs®¢SBs method
and the ECRLS-MVSBs method. In addition, the computatidimaé required by
the SB-MVSBs decreases with the increase of the continuitgron. The reduction
of the computational time is caused by the fact that the kespace bases based
transformation has cut down the scale of the original sgdass based model.
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