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Abstract A concurrent learning adaptive-optimal control architecture for aerospace
systems with fast dynamics is presented. Exponential convergence properties of con-
current learning adaptive controllers are leveraged to guarantee a verifiable learning
rate while guaranteeing stability in presence of significant modeling uncertainty.
The architecture switches to online-learned model based Model Predictive Control
after an online automatic switch gauges the confidence in parameter estimates. Feed-
back linearization is used to reduce a nonlinear system to an idealized linear system
for which an optimal feasible solution can be found online. It is shown that the states
of the adaptively feedback linearized system stay bounded around those of the ide-
alized linear system, and sufficient conditions for asymptotic convergence of the
states are presented. Theoretical results and numerical simulations on a wing-rock
problem with fast dynamics establish the effectiveness of the architecture.

1 Introduction

Model based optimal control of dynamical systems is a well studied topic. For ex-
ample, one of the most commonly used techniques for linear and nonlinear systems
with constraints is model predictive control (see e.g. [4, 30, 20]). While this tech-
nique has been heavily studied and implemented for slower industrial processes,
only in the past decade enough computational power has become available to en-
able online optimization for fast system dynamics typical of aerospace applications
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(some relevant demonstrations are in [14, 15, 13, 32, 33, 5]). MPC depends on a dy-
namic predictive model of the system. However, unaccounted modeling errors and
dynamic variations in any real world scenario often result in an a-priori generated
model of a system becoming obsolete or inaccurate. In such cases, the stability and
performance of an MPC approach cannot be guaranteed, especially if the underlying
dynamics are nonlinear [31]. One way to deal with this is to estimate parameters of
the dynamic model online, and then generate optimal controllers at each time step
assuming that the estimated model at that time step is the correct one. This results
in an indirect adaptive control approach that uses the principle of certainty equiva-
lence (see e.g. [19, 2]). The benefit of this indirect-adaptive MPC approach is that it
allows for a way to incorporate learning in the MPC framework. However, the main
drawback of this method is that it is difficult to guarantee stability, especially during
parameter estimation transient phases. This is one major challenge in synthesizing
algorithms for online adaptive-optimal control [25].

Several authors have made key contributions to implementing such adaptive
MPC architectures. Fukushima et al. used the comparison principle to develop adap-
tive MPC for linear systems [17]. Adetola et al. considered adaptive MPC of linearly
parameterized nonlinear systems and showed that one way to guarantee stability is
to ensure that the initial parameter errors are within certain bounds [1]. Aswani et
al. explored and experimented in flight with the notion of safe-MPC by guarantee-
ing that control inputs are selected such that the system evolution is constrained to
(approximations of) invariant reachable sets. Their work has clearly demonstrated
that adaptive MPC can indeed result in improved flight performance through flight
testing. However, they used an EKF for parameter estimation, which is known to
not guarantee predictable and quantifiable learning rates under general operating
conditions, and concentrate on linear dynamical systems [5, 3]. In general, while
significant progress has been made in adaptive MPC, the results tend to be con-
servative, as the presence of learning transients prevent a general non-conservative
solution to be formed.

On the other hand, adaptive control is one of the most well studied areas in con-
trol systems theory. In adaptive control algorithms and techniques are developed
for dealing with modeling uncertainties and disturbances. Direct adaptive control
methods directly modify the system input to account for modeling uncertainties. In
a certain light, these techniques could be viewed as model-free, in the sense that they
do not focus on learning the system model, but rather on suppressing the uncertainty
pointwise-in-time to minimize the instantaneous tracking error. Direct adaptive con-
trollers can guarantee stability, even during harsh transients, however, they do not
offer any long-term improvement due to model learning unless the system states are
persistently exciting (PE; see e.g. [6]). Furthermore, it is difficult to generate opti-
mal solutions in presence of input and state constraints with direct adaptive control
architectures.

Adaptive control literature also consists of hybrid-direct-indirect control archi-
tectures. For example, Duarte and Narendra, Lavretsky, and Chowdhary and John-
son have shown that modifying direct adaptive controllers such that they focus also
on learning the uncertainty improves performance (see e.g. [12, 24, 9]). The power
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of these techniques is that they can handle harsh learning transients,guarantee learn-
ing of unknown model parameters subject to conditions on the system trajectories,
and guarantee system stability during the learning. It is natural therefore, to hy-
pothesize that adaptive-optimal control algorithms can be devised that use provable
hybrid adaptive control techniques to guarantee stability in the learning phase and
then switch automatically to model-based optimal control algorithms (e.g. MPC) af-
ter sufficient confidence in estimated parameters has been gauged online. One such
architecture is proposed in this paper and displayed in Figure 1. The main chal-
lenges in developing such an architecture include guaranteeing a verifiable learning
rate for the uncertainty estimation such that the uncertainty is approximated in fi-
nite time before the architecture switches to the online learned model-based optimal
controller, guaranteeing stability before and after the switch, and guaranteeing that
the architecture can switch back to the adaptive controller if ideal parameters of the
system change.

In this paper, we present a Concurrent Learning based adaptive-optimal Model
Predictive Controller (CL-MPC) to address these challenges. Our architecture lever-
ages the CL algorithm of Chowdhary and Johnson [9, 8], which guarantees simulta-
neous system stability and exponential convergence to the ideal parameters without
requiring persistency of excitation. This allows us to guarantee verifiable conver-
gence rates. A online metric is developed to initiate a switch to MPC. Learning
continues while the system is in MPC using a variant of the CL algorithm, and it
is shown that exponential convergence of parameters can be guaranteed if the basis
of the uncertainty is known. Furthermore, using a feedback linearization approach
we show that a feedback linearizable nonlinear system can be transformed into a
a linear system for which an optimal feasible MPC solution can be formulated in
presence of constraints. This greatly helps in ensuring feasibility of obtaining an
optimal solution for aerospace systems with fast dynamics, as one need only to
solve the MPC problem for the ideal feedback linearized system. It is also shown
that the actual feedback linearized system’s solution is mean square exponentially
bounded around the ideal system, and sufficient conditions are provided to guar-
antee asymptotic convergence to the ideal solution. The presented architecture is
validated through simulation on a wing-rock dynamics system. The results show
significant improvement over an adaptive-only approach in presence of significant
modeling uncertainty.

2 Approximate Model Inversion based Model Reference
Adaptive Control

Let x(t) ∈ Dx ⊂ Rn, δ (t) ∈ Dδ ⊂ Rl , and consider the following multiple-input
nonlinear uncertain dynamical system

ẋ(t) = f (x(t),δ (t)). (1)
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Fig. 1 An adaptive-optimal control architecture. A learning-focused adaptive controller guarantees
stability while learning uncertain system parameters. Once sufficient confidence has been gauged
online in the estimated parameters, the architecture switches to using an online model-based con-
troller, such as MPC. The resulting switched adaptive-optimal controller is guaranteed to be stable
without being conservative about initial parameter errors.

The unknown function f (·) is assumed to be globally Lipschitz and the control
input δ is assumed to be bounded and piecewise continuous, so as to ensure the
existence and uniqueness of the solution to (1). Furthermore, it is assumed that an
admissible control input exists that drives the system from any initial condition in
Dx to a neighborhood of any arbitrary point in Dx in finite time. It is further assumed
that l ≤ n (while restrictive for overactuated systems, this assumption can be relaxed
through the design of appropriate control assignment [16]).

The Approximate Model Inversion based MRAC approach used here feedback
linearizes the system (1) by finding a pseudo-control input ν(t) ∈ Rl that achieves
a desired acceleration. If the exact plant model in equation (1) is known and invert-
ible, the required control input to achieve the desired acceleration is computable by
inverting the plant dynamics. However, since this usually is not the case, an approx-
imate inversion model f̂ (x,δ ) is employed. The inversion model is chosen to be
invertible w.r.t. δ ; the operator f̂−1 : Rn+l → Rl is assumed to exist and assign for
every unique element of Rn+l a unique element of Rl .

The following assumption guarantees invertibility of f̂ (x,δ ) w.r.t. δ [21].

Assumption 1. ∂ f̂ (x,δ )
∂δ

is continuous w.r.t δ and nonsingular over Dx×Dδ .

Given a desired pseudo-control input ν ∈ Rl a control command δ can be found by
approximate dynamic inversion:

δ = f̂−1(x,ν). (2)

Let z = (x,δ ) for brevity. The use of an approximate model results in a modeling
error ∆ for the system,

∆(z) = f (z)− f̂ (z). (3)
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It should be noted that if the control assignment function (the mapping between
control inputs to states) is known and invertible with respect to δ , then an inversion
model exists such that the modeling error is not dependent on the control input δ .

The modeling uncertainty can be assumed to be represented using a linear com-
bination of basis functions. The basis functions can often be designed based on
knowledge of the system dynamics (see e.g. [37, 9]). Alternatively, universally ap-
proximating bases, such as Gaussian radial basis functions, can be used ([23]). In
either case, letting the basis be represented by φ(z) ∈ Rm, we assume the existence
of an ideal weight matrix W ∗ ∈ Rm×l such that

∆(z) =W ∗
T

φ(z)+η(z), (4)

where the representation error ηsup = supz∈Dx
‖η̄(z)‖ is bounded over Dx.

A designer chosen reference model is used to characterize the desired response
of the system

ẋrm = frm(xrm,r), (5)

where frm(·) denote the reference model dynamics, which are assumed to be con-
tinuously differentiable in xrm for all xrm ∈ Dx ⊂ Rn. The reference command r(t)
is assumed to be bounded and piecewise continuous, furthermore, frm(·) is assumed
to be such that xrm is bounded for a bounded reference input.

Define the tracking error to be e(t) = xrm(t)− x(t), and the pseudo-control input
ν to be

ν = νrm +νpd−νad , (6)

consisting of a linear feedback term νpd = Ke with K ∈ Rl×n; a linear feedforward
term νrm = ẋrm; and an adaptive term νad(z). Since ∆ is a function of νad as per
equation (3), and νad needs to be designed to cancel ∆ , the following assumption
needs to be satisfied:

Assumption 2. The existence and uniqueness of a fixed-point solution to νad =
∆(·,νad) is assumed.

Sufficient conditions for satisfying this assumption are available in [40, 21]. As-
sumption 2 implicitly requires the sign of the control effectiveness matrix to be
known ([21]).

Using equation (3) and the pseudo-control (6) the tracking error dynamics can be
written as

ė = Ae+B[νad(z)−∆(z)], (7)

where the state space model (A,B) is in canonical form with the eigenvalues of A
assigned by νpd . The baseline full state feedback controller νpd is chosen to make
A Hurwitz. Hence, for any positive definite matrix Q ∈ Rn×n, a positive definite
solution P ∈ Rn×n exists for the Lyapunov equation

0 = AT P+PA+Q. (8)
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The adaptive controller framework described above guarantees that the tracking
error is uniformly bounded if the following well known gradient based update laws
that minimize a cost on the instantaneous tracking error eT e are used:

Ẇ (t) =−ΓW φ(z(t))eT (t)PB. (9)

However, this adaptive law guarantees that the adaptive parameters (W ) stay bounded
within a neighborhood of the ideal parameters (W ∗) only if the regressor vector φ(z)
is PE (see e.g. [35, 29, 28, 22]). Note that even when φ(z) is PE, e(t)9 0 uniformly
only if supz∈Dx

‖η̄(z)‖ = 0. Therefore, this adaptive law cannot be used within the
proposed framework as there is no guarantee that the weights will converge to their
true values and an (approximate) representation of the system uncertainty will be
learned. This has been a major reason why MRAC-MPC switching systems cannot
be formulated easily.

Fortunately, it is possible to incorporate long term learning in the MRAC frame-
work by ensuring that the adaptive law learns the modeling uncertainty by incor-
porating additional information [24, 12, 9]. It was shown in [8, 9] that for linearly
parameterized uncertainties the requirement on persistency of excitation can be re-
laxed if online recorded data is used concurrently with instantaneous data for adap-
tation. In particular, for a linearly parameterized representations of the uncertainty,
the following theorem can be proven [8, 9, 10]:

Theorem 1. Consider the system given by (1), with the inverse law (2), and the ref-
erence model of (5). Assume that the uncertainty is linearly parameterizable using
an appropriate set of bases over a compact domain Dx. For each online recorded
data point i, let εi(t) = W T (t)φ(xi,δi)− ∆̂(xi,δi), with ∆̂(xi,δi) = ˙̂xi − ν(xi,δi),
where ˙̂xi is the bounded estimate of ẋi, and consider the following update law

Ẇ =−ΓW φ(z)eT PB− 1
p

p

∑
j=1

ΓWbφ(xi,δi)ε
T
j , (10)

where ΓWb > 0 is the learning rate for training on online recorded data. Let Z =
[φ(z1), ....,φ(zp)] and assume that rank(Z) = m. Furthermore, let Bα be the largest
compact ball in Dx with radius α , and assume x(0) ∈ Bα , define δ = 2‖PB‖η̄

λmin(Q) +

pη̄
√

l
λmin(Ω) with Ω = ZZT , and assume that Dx is sufficiently large such that mrm = α−
δ is a positive scalar. If the states xrm of the bounded input bounded output reference
model of (5) remains bounded in the compact ball Bm = {xrm : ‖xrm‖ ≤mrm} for all
t ≥ 0 then the tracking error e and the weight error W̃ =W −W ∗ are mean-squared
exponentially uniformly ultimately bounded. Furthermore, if the representation is
exact over Dx, that is if supz∈Dx

‖η̄(z)‖ = 0, then the tracking error and weight
error converge exponentially fast to a compact ball around the origin for arbitrary
initial conditions, with the rate of convergence directly proportional to the minimum
singular value of the history stack matrix Z.

Remark 1. The size of the compact ball around the origin where the weight and
tracking error converge is dependent on the representation error η̄ and the estima-
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tion error ε̆ = maxi ‖ẋi− ˙̂xi‖. The former can be reduced by choosing appropriate
number of RBFs across the operating domain, and the latter can be reduced by an
appropriate implementation of a fixed point smoother. A fixed point smoother uses
data before and after a data point is recorded to form very accurate estimates of ˙̂xi
using a forward-backward Kalman filter [18, 11]. Note that ˙̂x(t) is not needed at the
current time instant t, which is a much more restrictive requirement. Therefore, an
appropriate implementation of a fixed point smoother alleviates the time-delay often
observed in estimating ˙̂x(t) with forward Kalman filter (or a low pass filter) only.

Remark 2. The history stack matrix Z = [φ(z1), ....,φ(zp)] is not a buffer of the last
p states. It can be updated online by including data points that are of significant in-
terest over the course of operation. Theoretically, convergence is guaranteed as soon
as the history stack becomes full ranked. New data points could replace existing data
points once the history stack reaches a pre-determined size. It was shown in [10] that
the rate of convergence of the tracking and weight error is directly proportional to
the minimum singular value of Z. This provides a useful metric to determine which
data points are most useful for improving convergence. Consequently, an algorithm
for adding points that improve the minimum singular value of Z for the case of
linearly parameterizable uncertainty was presented there.

Remark 3. The main limitation of the linearly parameterized RBF NN representa-
tion of the uncertainty is that the RBF centers need to be preallocated over an esti-
mated compact domain of operation Dx. Therefore, if the system evolves outside of
Dx all benefits of using adaptive control are lost. This can be addressed by evolv-
ing the RBF basis to reflect the current domain of operation. A reproducing ker-
nel Hilbert space approach for accomplishing this was presented in [23]. However,
when the basis is fixed, in order for the adaptive laws above to hold, the reference
model and the exogenous reference commands should be constrained such that the
desired trajectory does not leave the domain over which the neural network approx-
imation is valid. Ensuring that the state remains within a given compact set implies
an upper bound on the adaptation gain (see for example Remark 2 of Theorem-1 in
[39]).

3 Feedback Linearization for MPC

The key enabling factor for the proposed switching CL-MPC architecture presented
here is the guaranteed convergence property of CL-MRAC as established in Theo-
rem 1. Once the approximation of the uncertainty is good enough the system shall
change to the new MPC structure. Therefore a decision algorithm is implemented
which tests for

‖x‖ 6= 0 and ‖ ˙̂x−ν−νad‖ ≤ εtol, (11)

where εtol ≥ 0 represents a tolerated approximation error. Note that due to Theo-
rem 1 it can be shown that this guarantees an upper bound on W̃ (tσ ), where tσ is
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a switching time. Note further that other automatic-switching algorithms, includ-
ing those that approximate the switching surface probabilistically, are possible and
expected to be investigated in our future work.

Once the weights converged to a neighborhood around their optimal values, as
determined by the test in (11), the system switches to the model-based optimal con-
troller. In this mode, the plant does not track a reference model but use the complete
available control authority νavail ∈ Rl after feedback linearization to track com-
mands optimally. For the case that the system switched to the model-based optimal
controller and with regard to equation (6) redefine the pseudo-control ν to be

ν = ν f b +KBνavail−νad , (12)

consisting of the linear feedback term ν f b = KMx with KM ∈ Rn×n; a feedforward
part KBνavail with KB ∈ Rl×l ; and the adaptive part νad . Let Bm = BKB, then the
feedback linearized system becomes

ẋ(t) = Amx+Bmνavail +B(∆ −νad), (13)

where the state space model (Am,Bm) is in canonical form with the eigenvalues of
Am assigned by ν f b. Choose the gains such that if ∆ − νad = 0, a unique solution
to (13) exists and Bm satisfies assumption 1. Furthermore, the resulting matrices
(Am,Bm) need to be chosen such that a feasible optimal solution to the system (13)
is known; one possibility is to choose (Am,Bm) equal to the reference model, which
was used during the exclusively adaptive case. The available control authority νavail
is dynamically constrained by the physical maximum and minimum control allowed
νmin/max, minus the adaptive part (νad) of the pseudo control which is needed to
cancel the uncertainty and the part (ν f b) which is required in order for the feedback
linearized system to recover the dynamics in 13. For each element of ν f b we have

K−1
B (νmin +νad−ν f b)≤ νavail ≤ K−1

B (νmax +νad−ν f b). (14)

Using equation (4), the last term in equation (13) is

‖∆(z)−νad(z)‖ ≤ ‖W̃‖‖φ(z)‖+ηsup. (15)

Let β (z) = ∆(z)−νad . The feedback linearized system can be written as

ẋ(t) = Amx+Bmνavail +Bβ (z) (16)

Let tσ be a time instant when the control architecture switches to using MPC. Due
to Theorem 1 it follows that W̃ (t) approaches a neighborhood of zero exponentially
fast, furthermore, since the algorithm switches to the optimal controller (MPC) only
when ‖ ˙̂x−ν +νad‖ ≤ εtol and ‖x‖ 6= 0, it follows that ‖W̃ (tσ )‖ is small. Leveraging
this fact, MPC design is performed on the ideal feedback linearized system with
states x̄(t) given by
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˙̄x(t) = Amx̄(t)+Bmνavail(t), (17)

assuming β (z) = 0.

3.1 Stability

Let [tσ , tσ+1] be a finite interval where the algorithm has switched to using the opti-
mal model based controller (e.g. MPC). It is clear that when the algorithm switches,
although β (z) is likely to be very small, it will probably not be zero. In this case,
the question arises as to whether learning should continue or not. Since any possible
initial transients have already passed, there seems no reason to continue to learn. In
fact, such an approach can be thought equivalent to an assumption on allowable ini-
tial parameter error W̃ (0) for a non-switching based MPC [17, 1, 5]. One approach
therefore, could be to continue to learn using a smaller learning-rate Γ and using
estimates of model error only (not using also the tracking error as was the case
in Theorem 1). The following lemma characterizes that in this case, a concurrent
learning gradient descent law guarantees that the feedback linearization error β (z)
is exponentially bounded. To facilitate the analysis, it is assumed that a noise free
estimate of ẋi for all online recorded data points i is available. This assumption can
be relaxed to yield mean squared exponential ultimate boundedness of W̃ instead of
mean square exponential stability [27].

Lemma 1. Consider the model error given by (3), εi(t) as defined in (10) for the
recorded data points, and the following gradient descent law

Ẇ =−Γ ∑φ(xi,δi)ε
T
j ). (18)

Assume also that the history stack is full ranked, that is rank(Z) = m, then the
parameter error is exponentially bounded as ‖W̃ (t)‖ ≤ exp−c1t ‖W̃ (tσ )‖ for some
c1 > 0 dependent on Z and the parameter error W̃ (tσ ) at the instant the algorithm
switches to model based optimal control. Furthermore,
β (z(t))≤ exp−c1t ‖W̃ (tσ )‖φ(z(t))+ηsup for all t ∈ [tσ , ti+1].

Proof. Consider the quadratic function given by V (W̃ ) = 1
2W̃ (t)T Γ−1W̃ (t), and

note that V (0) = 0 and V (W̃ ) > 0 ∀ W̃ 6= 0, hence V (W̃ ) is a Lyapunov func-
tion candidate. Since V (W̃ ) is quadratic, letting λmin(.) and λmax(.) denote the op-
erators that return the minimum and maximum eigenvalue of a matrix, we have:
λmin(Γ

−1)‖W̃‖2 ≤ V (W̃ ) ≤ λmax(Γ
−1)‖W̃‖2. Differentiating the Lyapunov candi-

date with respect to time along the trajectories of (18) we have

V̇ (W̃ (t))≤−W̃ (t)T [
p

∑
j=1

φ(x j)φ
T (x j)]W̃ (t). (19)
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Let Ω =
p
∑
j=1

Φ(x j)Φ
T (x j) and note that since φ(x(t))φ T (x(t))≥ 0 ∀φ(x(t)), λmin(Ω)>

0. Then it follows that

V̇ (W̃ )≤−λmin(Ω)‖W̃‖2 ≤− λmin(Ω)

λmax(Γ−1)
V (W̃ ). (20)

Let c1 = λmin(Ω)
λmax(Γ−1)

, then ‖W̃ (t)‖ ≤ exp−c1t ‖W̃ (tσ )‖. It follows from the definition
of β (z) in (16) that for all t ∈ [tσ , ti+1]

β (z(t))≤ exp−c1t ‖W̃ (tσ )‖φ(z(t))+ηsup. (21)
ut

The next theorem shows that x̃ = x− x̄, the difference between the ideal feedback
linearized system (16) and the true feedback linearized system (17) is bounded.
Therefore, applying the stabilizing feasible solution of the ideal system (17) to the
true system (16) guarantees boundedness of the true system states.

Theorem 2. Consider the true feedback linearized system in (16) and Lemma 1.
Assume that a feasible optimal solution ν∗avail exists for the ideal feedback linearized
system of (17). Then, the states of the true system with the control ν∗avail are uniformly
ultimately bounded around those of the ideal system, and approach asymptotically
a compact set that is a function of the representation error ηsup over every switching
interval [tσ , tσ+1] where MPC control is active.

Proof. Note that

˙̃x = Amx̃+Bβ (z). (22)

Let V (x̃) = 1
2 x̃T Pmx̃, where Pm is the positive definite solution to 0 = Qm +AT

mPm +
PmAm for a positive definite Qm, guaranteed to exist due to the feedback ν f b,
which is chosen such that Am in (13) is Hurwitz. Hence V (W̃ ) is a radially un-
bounded quadratic Lyapunov function candidate with: λmin(Γ

−1)‖W̃‖2 ≤ V (W̃ ) ≤
λmax(Γ

−1)‖W̃‖2. It follows therefore that

V̇ (x̃)≤−x̃T Qmx̃+ x̃T PBβ (z). (23)

Applying Lemma 1 we have

V̇ (x̃)≤−λmin(Qm)‖x̃‖2 +‖x̃‖‖PmB‖(exp−c1t ‖W̃ (tσ )‖φ(z(t))‖+ηsup). (24)

Let c2 = ‖PmB‖‖W̃ (tσ )‖, and noting that the m basis functions are bounded by
‖φ(.)‖ ≤ c3, we have

V̇ (x̃)≤−λmin(Qm)‖x̃‖2 +‖x̃‖(mc2c3 exp−c1t +ηsup). (25)
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Therefore, outside of the compact set ‖x̃‖ ≥ mc2c3 exp−c1t +ηsup
λminQm

, V̇ (x̃) ≤ 0. Therefore
x̃ is uniformly ultimately bounded and approaches asymptotically the set ‖x̃‖ ≥

ηsup
λminQm

.
ut

Corollary 1. Assume that Theorem 2 holds and that an exact representation exists
such that ηsup = 0 in (4), then, the states of the true feedback linearized system
asymptotically approach the states of the ideal feedback linearized system over ev-
ery switching interval [tσ , tσ+1] where MPC control is active.

Proof. The proof follows by noting that (25) becomes

V̇ (x̃)≤−λmin(Qm)‖x̃‖2 +‖x̃‖(mc2c3 exp−c1t), (26)

hence, V → 0 as t→ ∞.
ut

4 Model Predictive Control

For the implementation of the MPC a discrete model of the feedback linearized
system in equation (17) is formulated:

x̄(k+1) = Āmx̄(k)+ B̄mνavail(k), (27)

where Ām and B̄m denote the discretized versions of the respective matrices in equa-
tion (17). Let ∆νavail(k+1) = νavail(k+1)−νavail(k) be a future incremental con-
trol. The optimal control trajectory is captured by a sequence of incremental control
signals:

∆U =


∆νavail(k)

∆νavail(k+1)
...

∆νavail(k+Nc−1)

 , (28)

where Nc denotes the control horizon. Within the prediction horizon Np ≥ Nc the
MPC drives the state of the system x̄(k) onto the desired reference signal r(k) by
minimization of a quadratic cost function. Define the following matrices:

F =


Ām
Ā2

m
...

ĀNp
m

 ,Φ =


B̄m 0 . . . . . . 0

ĀmB̄m B̄m 0 . . . 0
...

ĀNp−1
m B̄m ĀNp−2

m B̄m . . . . . . ĀNp−Nc
m B̄m

 , (29)

where F ∈ Rn·Np×n and Φ ∈ RNp·n×Nc·ns . Let ∆ x̄(k+1) = x̄(k+1)− x̄(k). Then the
vector containing the predicted states X ∈ Rn·Np within the prediction horizon can
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be built by
X = F∆ x̄(k)+Φ∆U. (30)

In the MPC framework constraints can be formulated for the input and the states.
The goal is to formulate the constraints dependent on the incremental control ∆U .
For the control input we have

νavail,min ≤M1ν(k−1)+M2∆U ≤ νavail,max, (31)

where M1 =

 I
...
I

 ∈ RNc·nS×nS and M2 =


I 0 . . . . . . 0
I I 0 . . . 0

...
I . . . I

 ∈ RnS·Nc×nS·Nc . The input

constraints are placed by the vectors νavail,min and νavail,max, each consisting of Nc
elements of the minimum and maximum control input. Equation (31) can also be
expressed in matrix form:[

−M2
M2

]
∆U ≤

[
−νavail,min +M1νavail(k−1)
νavail,max−M1νavail(k−1)

]
. (32)

Similarly, constraints on the states can be placed by

Xmin ≤ F∆ x̄(ki)+Φ∆U ≤ Xmax. (33)

Similar to equation (31), Xmin and Xmin are vectors containing the lower and upper
constraints for the states. Written in matrix form we have[

−Φ

Φ

]
∆U ≤

[
−Xmin +F∆ x̄(k)
Xmax−F∆ x̄(k)

]
. (34)

There exists a functional relationship between the predicted system state and the
incremental control input ∆νavail . Using hard constraints on input and the states si-
multaneously can cause constraint conflicts. Introducing a slack variable s > 0 and
relaxing the constraints Xmin/max solves this problem. Let RS ∈Rn·Np be a vector con-
taining the reference command r(k) with Rs = [1, ...,1]r(k) and define the following
quadratic cost function, which reflects the control objective:

J = (Rs−X)T Q̄(Rs−X)+∆UT R̄∆U. (35)

Here R̄ and Q̄ denote positive definite diagonal matrices. Inserting equation (30)
into equation (35) the problem of model predictive control is finding the control
sequence ∆U which minimizes the cost function

J = (Rs−Fx̄(k))T Q̄(Rs−Fx̄(k))−2∆UT
Φ

T Q̄(Rs−F∆ x̄(k))

+∆UT (ΦT Q̄Φ + R̄)∆U,
(36)

subject to the inequality constraint
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−M2
M2
−Φ

Φ

∆U ≤


−νavail,min +M1νavail(k−1)
νavail,max−M1νavail(k−1)

−Xmin +F∆ x̄(k)
Xmax−F∆ x̄(k)

 . (37)

Note that since Am is known a-priori, it may be possible to solve a significant portion
of this problem off-line to create the optimal value-function which can be directly
used on-line for an approximate optimal solution.

5 Trajectory Tracking in the Presence of Wing Rock Dynamics

Modern highly swept-back or delta wing fighter aircraft are susceptible to lightly
damped oscillations in roll angle known as “Wing Rock”. Wing rock often occurs at
low speeds and at high angle of attack, conditions commonly encountered when the
aircraft is landing (see [34] for a detailed discussion of the wing rock phenomena).
Hence, precision control of the aircraft in the presence of wing rock dynamics is
critical in order to ensure safe landing. In this section we use concurrent learning
adaptive control and the proposed MPC framework to track a sequence of roll com-
mands in the presence of wing rock dynamics. Let φ denote the roll attitude of an
aircraft, p denote the roll rate and δa denote the aileron control input . Then a model
for wing rock dynamics is ([26]):

φ̇ = p (38)
ṗ = δa +∆(x), (39)

where ∆(x) = W0 +W1φ +W2 p +W3|φ |p +W4|p|p +W5φ 3. The parameters for
wing rock motion are partly adapted from [36, 38, 7]; they are W1 = 6.2314,W2 =
2.1918,W3 =−0.6245,W4 = 0.0095,W5 = 0.0214. In addition to these parameters,
a trim error is introduced by setting W0 = 0.8. A simple inversion model has the
form ν = δa. The linear part of the control law is given by νpd =−4φ −2p for the
exclusive adaptive as well as the MPC part of the control framework of Figure 1.
These values are chosen as they result in good baseline control performance without
exciting high-gain oscillations. Furthermore, in the MPC part the feedforward gain
is chosen to be KB = 4. The reference model is chosen to be of second order with
natural frequency of 2rad/sec and a damping ratio of 0.5. This choice results in
reasonably smooth trajectories without large transients and without exceeding the
constraints when baseline or CL-MRAC controllers are used. The learning rate is
set to ΓW = 6 for both the instantaneous update and the update based on stored data.

For the concurrent learning adaptive controller only points which increase the
rank of the history stack are considered for storage. As long as the history stack
does not contain at least as many linearly independent data points as the dimension
of the regressor vector, a σ -modification term with gain κ = 0.01 is added to the
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update law. Once the history stack is full, an algorithm is employed which increases
its minimum singular value ([10]).

The simulation runs for a total of 60s with a time step of 0.01s. The reference
signal r(t) is comprised out of several step inputs. The first two steps start at 5s and
15s, each having an amplitude of 30◦ and lasting 5s. The next two step inputs occur
after 25s and 35s, each having an amplitude of 45◦ and also lasting 5s. After 50s
more aggressive commands shall be tracked. Therefore consecutive steps with an
amplitude of −45◦ or 45◦ are commanded, alternating every 3s.

Figure 2 shows the performance of the proposed control architecture. During
the first step the plant states still deviate from the reference model significantly.
However, the tracking performance increases quickly, the plant tracks the reference
model at the second step nearly perfectly. After about 30s the switching condition
is met and the system automatically switches to the MPC part of the control frame-
work. It can be observed that the performance increases drastically. This is attributed
to the fact that the CL-MPC architecture leverages available control authority fully
while simultaneously ensuring that the constraint on the roll rate is not violated.

Figure 3 shows the evolution of the adaptive weights. As soon as the history
stack meets the rank condition after about 6s the weights start to converge to their
optimal values, thus increasing the tracking performance significantly. At the switch
to the MPC framework the weights have already nearly converged to their optimal
weights. Still, the resulting parameter error is further reduced by the CL update law
of Lemma 1 which learns only on stored data.

Figure 4 shows the trajectory of the system in the phase plane during the simu-
lation. It can be seen that, once the MPC is switched on, the region the states reside
in increases drastically. This is attributed to the fact that the full available control
authority is used, thus increasing the roll rate in transient phases. In addition, de-
spite the increased performance, the chosen state constraints on the roll rate are not
violated.

Finally, Figure 5 shows the control input. As long as only the adaptive controller
is used, the available control authority is not completely leveraged. Once the MPC
is switched on, the complete available control authority is used. Additionally, the
constraints placed on the input are not violated.

6 Conclusion

Initial transients often observed during online learning can result in undesirable per-
formance of (receding horizon) online optimal control architectures such as Model
Predictive Control. This could make it difficult to implement adaptive MPC on
aerospace systems that have fast dynamics. We proposed an adaptive-optimal con-
trol architecture in which a concurrent learning adaptive controller is used to guar-
antee system stability while parameters are adaptively learned. The online-learned
model is used to feedback linearize the system and transform its behavior to an
ideal feedback-linearized system for which a feasible optimal MPC can be formu-
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Fig. 2 Performance of the proposed control architecture. At the beginning of the simulation a
distinct deviation tracking error is observed. Due to the concurrent learning adaptive controller the
performance increases drastically over time. After the switch to the MPC framework, instead of
tracking the suboptimal reference model, the plant tracks the command optimally. The constraints
on the roll rate are not violated.
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Fig. 3 Evolution of the adaptive weights. Once the history stack meets a condition of linearly
independence on the stored data the weights start to converge to their optimal values. Even after
the switch to the MPC framework learning based on stored data continues using the algorithm in
Lemma 1 and the parameter error is further reduced.
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Fig. 4 Phase portrait of the system trajectory. Once the controller switches to the MPC framework
the region in which the states evolve is drastically increased as the controller can execute opti-
mal commands w.r.t. the constraints. In addition, MPC ensures that aggressive commands can be
tracked without violating the constraints on the roll rate.
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Fig. 5 Control input with constraints. In the beginning of the simulation the controller is concerned
with letting the uncertain system behave like the reference model. For this, only a part of the avail-
able control authority is used as a conservative reference model is used to ensure constraints are
not vioalated. Once the controller switches to the MPC framework the complete control authority
is leveraged without violating input constraints.
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lated. The MPC takes over after an online metric has gauged sufficient confidence
in the learned parameters. It was shown that the states of the feedback linearized
system stay exponentially mean square bounded around those of the ideal system,
and sufficient conditions were provided to guarantee asymptotic convergence. Sim-
ulation results were presented on a wing-rock dynamics system with fast dynamics.
These results establish the feasibility of the CL-MPC architecture. Furthermore,
these results indicate that learning in adaptive controllers can be used to improve
the performance of the system.
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