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Abstract This paper presents an analysis of a non-linear control algorithm called
incremental non-linear dynamic inversion. A Taylor series approximation is used in
this algorithm, neglecting higher order terms. This could destabilize the controller
if the error made is not bounded. By making use of the Taylor series remainder term
and the bounding properties it has, a derivation is made showing that the control
algorithm is able to reject these inaccuracies under certain conditions. It is also
shown that the incremental non-linear dynamic inversion controller remains robust
towards model uncertainties under the influence of the remainder.

1 Introduction

Incremental Non-linear Dynamic Inversion or INDI for short has many advantages
over the related Non-linear Dynamic Inversion (NDI), see [1], [2], [3] and [4]. One
of the greatest advantages is that it is not required to have an accurate (aerodynamic)
model. One of the disadvantages is that in the derivation of the INDI algorithm a
Taylor Series approximation is used. In this approximation higher order terms are
neglected inducing possible errors. Following is a quantization of this error and
statements about the influence it has on the accuracy of this control algorithm.

First the remainder of the Taylor series will be derived for both one dimensional
and multi-variable functions. Next the INDI algorithm is derived in the case model
uncertainties are present and including the influence of the remainder. An example
model will be analyzed using the just derived controller and remainder function.
The last section states the conclusions
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2 A.L. Hertog

2 Taylor Series Approximation

It is very common to use a Taylor series approximation when linearizing a non-linear
system despite the error made by neglecting higher order terms. A magnitude for this
error is called the remainder Rn of which n equals to the order of the approximation.
We will first state this value for a Taylor Series depending on just one variable,
followed by the derivation of the remainder of a multi-variable function.

2.1 Single variable remainder

For a function f : R → R, it can be stated that:

f (x) =
k

∑
n=0

f (n)(a)
n!

(x−a)n +
1
k!

∫ x

a
(x− t)k f (k+1)(t)dt (1)

in which the Taylor series equals to:

Tk(x) =
k

∑
n=0

f (n)(a)
n!

(x−a)n (2)

and the remainder to:

Rk(x) =
1
k!

∫ x

a
(x− t)k f (k+1)(t)dt (3)

For this to be true it is required that f (n+1)(x) is continues on an open interval I, also
I must contain a, and x is in I. As n approaches infinity, n → ∞, the remainder will
approach zero:

lim
k→∞

Rk(x) = 0 (4)

Continuing with Eq. (3) the one dimensional Taylor’s inequality theorem is
proven in [5].

Theorem 1 (Taylor’s Inequality).

|Rk(x)| ≤
M

(k+1)!
|x−a|k+1 (5)

in which
| f (k+1)(x)| ≤ M (6)

and
|x−a| ≤ d (7)
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The Influence of the Taylor Series Remainder on an INDI Controller 3

From this theorem it is clear that the remainder is bounded but depends on the
order of the approximation k and the value of d. It is interesting to note that for any
value of f (k+1) the remainder can be reduced by decreasing d. Also one should note
that in practise the remainder might be negative.

2.2 Multi-variable remainder

The approximation of the function f (x) as given in Eq. (1) is one dimensional. To
extend theorem 1 for a function f (x) : Rn →R and later f(x) : Rn →Rn, a coordinate
transformation can be used. In the case both x ∈ Rn and a ∈ Rn lay in a compact set
and f (x) is continues on the considered closed interval, the Taylor series follows a
linear path between x and a. For this a function u(t) : R → Rn is defined which only
depends on the variable t ∈ R:

u(t) = a+ t(x−a) (8)

next this function is applied in

g(t) = f (u(t)) (9)

defining the function g(t) which can replace the function f (t) in Eq. (1) and inte-
grating over t on the closed interval [0,1]:

f (x) = g(1) = g(0)+
k

∑
n=1

g(n)(0)
n!

(1−0)n +
1
k!

∫ 1

0
(1− t)kg(k+1)(t)dt

= g(0)+
k

∑
n=1

g(n)(0)
n!

+
1
k!

∫ 1

0
(1− t)kg(k+1)(t)dt (10)

The next step is to obtain the derivatives of the function g(t):

g( j)(t) =
d j

dt j f (u(t))

=
d j

dt j f (a+ t(x−a))

= ∑
|α|= j

(
j

α

)
(Dα f )(a+ t(x−a)(x−a)α (11)

the chain rule has been applied to f (a+ t(x−a)) and a multi-index notation is used
to express the factorial and partial derivatives. For the multi-index notation a n-tuple
is used:

α = (α1, α2, · · · ,αn) (12)
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4 A.L. Hertog

|α| = α1 +α2 + · · ·+αn (13)(
j

α

)
=

j!
α1!α2! · · ·αn!

=
j!

α!
(14)

α! = α1!α2! · · ·αn! (15)

With the partial derivatives written as:

Dα =

(
∂

∂x1

)α1
(

∂
∂x2

)α2

· · ·
(

∂
∂xn

)αn

(16)

When using Eq. (11) in Eq. (10) the Taylor series approximation for a multi-
variable function f (x) : Rn → R is obtained:

f (x) = f (a) +
k

∑
|α|=1

1
α!

(Dα f )(a)(x−a)α

+ ∑
|β |=k+1

k+1
β !

∫ 1

0
(1− t)k(Dβ f )(a+ t(x−a))(x−a)β dt (17)

To clarify the multi-index notation one can take the example of a first order Taylor
series of the function f (x) : R2 → R. In the case of a first order expansion k and
|α | are equal to one. The expression α! is also equal to one on both cases of α =
(α1, α2) = (1, 0) or (0, 1). The values of |β | and k+1 are equal to two. This results
in three combinations for β : (2, 0), (0, 2) and (1, 1), and three partial derivatives:

∂ 2

∂x12 , ∂ 2

∂x22 and ∂ 2

∂x1∂x2
.

Now that the expression of the multi-variable remainder has been stated we can
continue with it’s bounding properties. The absolute remainder of the null-th order
Taylor series can be bounded by using the mean value theorem:

|R0| = | f (x)− f (a)|

≤
∥∥∥∥∫ 1

0
(D f (a+ t(x−a))(x−a)dt

∥∥∥∥
≤
∫ 1

0
‖D f (a+ t(x−a))‖ ‖x−a‖dt

≤ M ‖x−a‖ (18)

When using a higher order Taylor series the accompanying remainder is bounded
by an inequality which makes use of a supremum norm [6]:

|Rk(x)| ≤
1

β !
sup

0≤t≤1

∥∥∥Dβ f (a+ t(x−a))(x−a)β
∥∥∥ (19)

For the case f (x) is a vector function f(x) : Rn → Rm, Eq. 19 can be extended to:
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The Influence of the Taylor Series Remainder on an INDI Controller 5

‖Rk(x)‖ ≤
1

β !
sup

0≤t≤1

∥∥∥Dβ f(a+ t(x−a))(x−a)β
∥∥∥ (20)

This is the general case, in most cases related to aerospace applications, a continues
function with continues derivatives is considered on a closed interval. This implies
that the supremum norm can be replaced by a maximum norm:

‖Rk(x)‖∞ ≤ 1
β !

max
0≤t≤1

∥∥∥Dβ f(a+ t(x−a))(x−a)β
∥∥∥ (21)

3 Incremental Non-linear Dynamic Inversion

The goal of an (I)NDI controller is to linearize the non-linear system dynamics.
The closed loop transfer function of this linearizion than becomes equal to a pure
integrator around which one can easily design a linear controller.

3.1 INDI derivation

The dynamical system under consideration is described by the following equations:

ẋ = f(x)+g(x,u) (22)
y = h(x) (23)

in which f, g : Rn → Rn, h : Rn → R2n, x, u ∈ Rn and y ∈ R2n. For the inversion
to be valid it is required that g(x,u) is continuously differentiable up until the first
degree and Dg should be invertible.

There are two ways one can derive an INDI controller [2] [4]. In this work the
Taylor series method is used. The first step is to derive the first order Taylor series
of Eq. (22):

T(x,u,x0,u0) = f(x0) +
∂ f(x)

∂x

∣∣∣∣
x=x0, u=u0

(x−x0)

+
∂g(x,u)

∂x

∣∣∣∣
x=x0, u=u0

(x−x0)

+
∂g(x,u)

∂u

∣∣∣∣
x=x0, u=u0

(u−u0) (24)

Next T and f are replaced by the appropriate values of ẋ:

ẋ = ẋ0 +
∂ f(x)

∂x

∣∣∣∣
x=x0, u=u0

(x−x0)
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6 A.L. Hertog

+
∂g(x,u)

∂x

∣∣∣∣
x=x0, u=u0

(x−x0)

+
∂g(x,u)

∂u

∣∣∣∣
x=x0, u=u0

(u−u0) (25)

It is now presumed that the change in the state vector ∆x= x−x0 is so small that we
may neglect it. The change in input signal ∆u = u−u0 is not neglected. The actual
approximation is thus a first order Taylor Series expansion along u and a null-th
order expansion along x:

ẋ = ẋ0 +
∂g(x,u)

∂u

∣∣∣∣
x=x0

∆u (26)

When solving for ∆u the final INDI equation is obtained:

∆u =

(
∂g(x,u)

∂u

∣∣∣∣
x=x0, u=u0

)−1

(ν − ẋ0) (27)

In Eq. 27 we have replace ẋ with the so called virtual control input ν . The value of
the virtual control input can be obtained from a linear controller:

ν = Kp(xr −x) (28)

in which Kp is the proportional gain, xr the set point or reference and xm the mea-
sured value of x.

With the obtained value for ∆u we can increment u0 to obtain the new controller
output

u = u0 +∆u (29)

hence the name Incremental NDI.

3.2 INDI with model uncertainties

In [3] a prove is given showing that INDI is robust towards model uncertainties. We
will now state a summary of their derivations so that our later derivation of the INDI
with a Taylor Series remainder is more clear.

The model described in Eq. (22) is only the model as we know it. In reality
certain properties of the system may be unknown or uncertain. These properties
can be modeled with the terms ∆ f(x0) and ∆Gu(x0,u0), in which the subscript u
indicates the partial derivative along u.

ẋ = f(x0)+∆ f(x0)+Gu(x0,u0)∆u+∆Gu(x0,u0)∆u (30)
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The Influence of the Taylor Series Remainder on an INDI Controller 7

Note that the term ∆Gx(x0,u0)∆x has been left out because it is still assumed that
∆x can be neglected.

The terms f(x0)+∆ f(x0) in Eq. (30) can be replaced by ẋ0 when it is assumed
that ẋ0 is accurately measurable:

ẋ = ẋ0 +Gu(x0,u0)∆u+∆Gu(x0,u0)∆u (31)

leaving only ∆Gu(x0,u0) as an unknown. Replacing ∆u with the INDI controller
from Eq. (27) yields:

ẋ = ẋ0 +[Gu(x0,u0)+∆Gu(x0,u0)]

(
∂g(x,u)

∂u

∣∣∣∣
x=x0, u=u0

)−1

(ν − ẋ0)

= ẋ0 +(Gu(x0,u0)+∆Gu(x0,u0))G−1
u (x0,u0)(ν − ẋ0)

= ẋ0 +
(
I +∆Gu(x0,u0)G−1

u (x0,u0)
)
(ν − ẋ0)

= −∆Gu(x0,u0)G−1
u (x0,u0)ẋ0 +

(
I +∆Gu(x0,u0)G−1

u (x0,u0)
)

ν
= −Bẋ0 +(I +B)ν (32)

To simplify the equation the notation B = ∆Gu(x0,u0)G−1
u (x0,u0) has been intro-

duced.
Continuing with Eq. (32), reference [3] obtains the closed loop transfer func-

tion Eq. (33) which includes the linear controller from Eq. (28). The closed loop is
depicted in Fig. 1.

Hcl =
Kp

s+Kp
(33)

Because no uncertain terms show in the transfer function, [3] concluded that the
INDI algorithm is robust towards model uncertainties.

+

−

xref
Kp I +B

ν

+

−
I
s

ẋ x0

sB
ẋ0

Fig. 1 Closed loop block diagram of the INDI controller and a system with uncertainties.
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8 A.L. Hertog

3.3 INDI under the influence of the Taylor series remainder

In the earlier section the INDI algorithm was derived without including the Taylor
series remainder. In the following the remainder will be included to study the effects
it has on the closed loop stability of the control loop. In an actual implementation
it will not be included taking into account the lessons learned from the following
derivation. The remainder could be included but this would render the advantage of
the INDI algorithm, extensive model knowledge is not required, useless.

Including the remainder in the linearization of the model used for deriving the
INDI algorithm, Eq. (26), results in:

ẋ = ẋ0 +
∂g(x,u)

∂u

∣∣∣∣
x=x0

∆u+R(x,u) (34)

As the INDI algorithm is based on a zeroth expansion along x and a first order along
u, the remainder term depends on the first derivative of x and up until the second
derivative of u. Also note that the actual remainder term as derived in the previous
sections can be both positive and negative. It is only the absolute value which is
bounded.

When continuing with the derivation of an INDI, Eq. (34) is solved for ∆u which
results in:

∆u =

(
∂g(x,u)

∂u

∣∣∣∣
x=x0, u=u0

)−1

(ν − ẋ0 −R(x,u)) (35)

This equation of the INDI algorithm is now entered in to the equations of motion
with model uncertainties, Eq. (30):

ẋ = ẋ0 +(Gu(x0,u0)+∆Gu(x0,u0))G−1
u (x0,u0)(ν − ẋ0 −R(x,u))

= ẋ0 +
(
I +∆Gu(x0,u0)G−1

u (x0,u0)
)
(ν − ẋ0 −R(x,u))

= −∆Gu(x0,u0)G−1
u (x0,u0)ẋ0 +

(
I +∆Gu(x0,u0)G−1

u (x0,u0)
)
(ν −R(x,u))

= −Bẋ0 +(I +B)(ν −R(x,u)) (36)

The equation derived in Eq. (36) has a closed loop transfer function with the
remainder as input equal to:

HR =
−1

s+Kp
(37)

Figure 2 displays the control loop. The remainder can thus be considered a distur-
bance which is rejected for values of Kp > 1.

The influence of the remainder on the closed loop system is influenced in two
ways. First the absolute value of the remainder is bounded by the system properties
and the step size of the Taylor series. It is thus possible to reduce |R| by reducing
the absolute step size. In the case of the INDI algorithm the step size is equal to
ωr −ω0 or in other words the error signal. The closer the measurement is to the
set point the smaller the remainder. It is thus better to slowly vary the set point as
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The Influence of the Taylor Series Remainder on an INDI Controller 9

+

−

xref
Kp

+
−ν

I +B

R(x,u)

+
−

I
s

ẋ x0

sB
ẋ0

Fig. 2 Closed loop block diagram of the INDI controller including.

suppose to placing a step input on the system. The second possibility to decrease the
influence of the remainder is to increase the gain Kp. The lower limit of Kp, Kp > 1
is determined by the ability of Eq. (3.3) to reject R. The upper limit is determined
by the system, actuator dynamics, etc.

4 Example

To show the use of this theory an example follows. The choice has been made to use
the model of an aerospace vehicle which controls its attitude by means of aerody-
namic surfaces. Using this model the INDI algorithm for this particular model will
be derived followed by a discussion on the stability of the system.

4.1 Model

In the model a number of variables are used: the state vector x which holds the
rotational speed of the vehicle along it’s three body axes, the input vector u hold-
ing the control surface deflections of the aileron, elevator and rudder, and last the
measurement vector y which holds both the rotational speed and acceleration.

x = ω = [p q r]T (38)
u = δ = [δa δe δr]

T (39)
y = [ω ω̇]T = [p q r ṗ q̇ ṙ]T (40)

As one can imagine this is a highly simplified model. This was chosen to focus on
the effects different controller setting have on the bound of the remainder term.

A basic set of non linear equations where chosen which are influenced only by
the rotational rate and control surface deflections:

ω̇ = J−1 (Ma −ω × Jω) (41)
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10 A.L. Hertog

in this equation the inertia is given by:

J =

 Jxx 0 0
0 Jyy 0
0 0 Jzz

 (42)

and the aerodynamic moment by Ma. The aerodynamic moment has three compo-
nents: a part depending on ω , Ma(ω), a part depending on δ , Ma(δ ), and a part
which does not depend on neither, the general vector term Ma will be used for this
component from now on. The derivatives of interest along ω and δ are given by:

Maω =
∂Ma(ω)

∂ω

=
1
2

ρV 2S

 bClp 0 bClr
0 c̄Cmq 0

bCnp 0 bCnr

 (43)

Maδ =
∂Ma(δ )

∂δ

=
1
2

ρV 2S

 bClδa
0 bClδr

0 c̄Cmδe
0

bCnδa
0 bCnδr

 (44)

In which the non-dimensional coefficients C are given along the moments l, m and
n along the three body axes. The subscripts p, q and r indicate the rotational rates
along the body axes and δa, δe and δr the control surface deflections of the aileron,
elevator and rudder. The non-dimensional coefficients are made dimensional by
multiplying them with a half times the air density ρ times the velocity squared V 2

times the wing area S. Depending on the axes the coefficient is multiplied by either
the mean aerodynamic cord c̄ or the wing span b. For this example it is presumed
that all parameters are known exactly, [1] and [3] deal with parameter uncertainties.

This the given model at hand we now look back at Eq. (22) we can establish that
the functions f(ω) and g(δ ) are equal to:

f(ω) = J−1(Ma +Ma(ω)−ω × Jω) (45)
g(δ ) = J−1Ma(δ ) (46)

Based on the model Eqs. (46) and (46), the controller implementation of Eqs.
(27), (28) and (29) now becomes becomes:

ν = Kp(ωr −ωm) (47)

∆δ =
(
J−1Maδ

)−1
(ν − ω̇m)

= Ma
−1
δ J(ν − ω̇m) (48)

δ = δ m +∆δ (49)
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The Influence of the Taylor Series Remainder on an INDI Controller 11

In which ωr is the set point and ωm the measured value of the rotational rate. Also
the measured or estimated value of the rotational acceleration, ω̇m, is required.

4.2 Taylor series remainder

As stated in section 3.3 the remainder term created by deriving an INDI controller is
comprised out of the first order derivatives along ω and the second order derivative
along δ . The variables as used in the multi-variable Taylor series remainder, Eq.
(21), have in this example the following implementation for the part that belongs to
the zeroth order Taylor series along ω :

a = ωm = [pm qm rm]
T (50)

x = ωr = [pr qr rr]
T (51)

and in the case of the first order Taylor series along δ :

a = δ m =
[
δ̇am δ̇em δ̇rm

]T
(52)

x = δ =
[
δ̇ar δ̇er δ̇rr

]T
(53)

Do note that in this example it is assumed that there is no measurement delay.
In [3] a prediction algorithm is proposed which is designed to overcome problems
arising from this delay.

Continuing with the remainder terms, the zeroth order remainder requires the
following derivative:

D1f(ω) =
∂ f(ω)

∂ω

=
∂

∂ω
(
J−1 (Ma +Ma(ω)−ω × Jω)

)
= J−1

(
Maω −

[
∂

∂ p
(ω × Jω)

∂
∂q

(ω × Jω)
∂
∂ r

(ω × Jω)

])
(54)

The coefficients in this equation are all known and used in common aerodynamic
models. This is not the case with the first order remainder:

D(1,0)g(δ ) =
∂g(δ )

∂δ

=
∂

∂δ
J−1Ma(δ )

= J−1Maδ (55)

D(2,0)g(δ ) =
∂ 2g(δ )

∂δ 2
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12 A.L. Hertog

=
∂ 2

∂δ 2 J−1Ma(δ )

= J−1Maδ 2 (56)

D(1,1)g(δ ) =
∂ 2g(δ )
∂δ∂ω

=
∂ 2

∂δ∂ω
J−1Ma(δ )

= J−1 ∂
∂ω

Maδ (57)

Second order derivatives and derivatives along ω of the control parameters are not
commonly used. In the following results it was assumed that the zeroth order re-
mainder is dominate. This assumption is based on the fact that for short term mo-
tions, linear models capture the dynamics well. In these model second order control
parameter derivatives are not used and are thus presumed of lesser importance.

This results in a remainder term which is bounded by:

|R0(ω)|=
∥∥∥∥J−1

(
Maω −

[
∂

∂ p
(ω × Jω)

∂
∂q

(ω × Jω)
∂
∂ r

(ω × Jω)

])
(ωr −ωm)

∥∥∥∥
∞

(58)

4.3 Discussion of the simulation results

Using numerical software the model has been simulated. During the simulation two
parameters have been varied: the controller gain and the set point function. The
controller gain has been set equal to Kp = 1 and Kp = 10. For the set point variation
two option where chosen: a step and a ramp, both end at the same values and vary
both the p and q desired values. The effects these variations have on the model
output are depicted in the Figs. 3 till 9. Figure 3 depicts the bounding value of the
remainder during the different cases. Figures 4 till 6 depict the rotational rates of the
vehicle, Figs. 7 till 9 depict the control surface deflections. As indicated in section
3.3 the bounding value of the remainder is influenced by these two parameters, this
is clearly visible from the results.

Stated in section 3.3 is that the transfer function with the remainder as input
becomes unstable for controller gains Kp ≤ 1. This was not found in the results, a
considerable decrease of the bounding value is however visible when increasing the
controller gain. It is suspected that this is partially due to the fact that the set point
is followed much better as can be seen in Figs. 4 till 6. This was the second point
stated in section 3.3 which would influence the remainder limit. Using a set point
which stays closer to the current value clearly decreases the limit considerable. The
more slowy varying ramp function clearly has a much lower value.
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The Influence of the Taylor Series Remainder on an INDI Controller 13

5 Conclusion

From the analysis of the INDI closed loops with the Taylor series remainder it has
become clear that the remainder is a disturbance which can be rejected under certain
conditions. The absolute remainder will decrease for a small error signal and large
gains. The addition of the remainder does not effect the robustness of the algorithm
with regard to model uncertainties.
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Fig. 3 Maximum values of the remainder for different gains and set point variations.
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Fig. 4 The response of the angular rate along the x axis for different gains and set point variations.
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Fig. 5 The response of the angular rate along the y axis for different gains and set point variations.
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Fig. 6 The response of the angular rate along the z axis for different gains and set point variations.
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Fig. 7 Aileron deflections for different gains and set point variations.
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Fig. 8 Elevator deflections for different gains and set point variations.
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Fig. 9 Rudder deflections for different gains and set point variations.
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