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Abstract This work deals with the construction of a nonlinear adaptive trajectory
controller, which is easily applicable to a multitude of fixed wing unmanned aircraft.
Given a common signal interface, the adaptive trajectory controller is divided into a
generic part, which is common for each vehicle, and into a part, which is unique. The
generic part of the control architecture bases on a common inversion model which is
used for feedback linearization. However, the dynamics of the aircraft and the inver-
sion model differ, thus introducing model uncertainties to the feedback linearized
system. The effect of modeling uncertainties is reduced by the application of a con-
current learning model reference adaptive controller, which uses neural networks
in order to approximate the uncertainty. Leveraging instantaneous as well as stored
data concurrently for adaptation ensures convergence of the adaptive parameters to
a set of optimal weights, which minimize the approximation error. Performance and
robustness against certain model uncertainties is shown through numerical simula-
tion for two significantly different unmanned aircraft.
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1 Introduction

Unmanned Aircraft (UA) have attracted a high amount of attention in recent years.
Research institutes encounter a lot of challenging tasks, while handling an increas-
ing number of aerial vehicles. In order to perform flight tests in different research
areas, reliable flight control systems need to be available for each aircraft. In UA
projects a considerable amount of time and effort is spent creating reliable control
architectures. In an attempt to decrease the effort for the controller design the Insti-
tute of Flight Systems at the German Aerospace Center (DLR) analyzed in collab-
oration with the Institute of Flight System Dynamics (FSD) at the Technische Uni-
versität München, to which extent such a control architecture can be generalized.
As a basis for this the two significantly different aircraft Prometheus (DLR) and
ExtremeStar (FSD) serve as testing platforms. The goal of this paper is to develop
a flight control architecture, which can easily be applied to different fixed-wing air-
craft at both institutes, thus aiming to decrease the time and effort needed in order to
set up a flight control system. The underlying assumption in this connection is that
the fixed wing UA share the same dynamical structure.

In classical linear control theory the parameters of the aircraft and controller
gains satisfying desired performance and robustness requirements have to be found
for a set of trimming points throughout the flight envelope. While this approach has
shown to be reliable to control an aircraft, parameter identification and the selection
of gains has to be performed for each UA individually ([6, 22]). Furthermore, the
received database might become unreliable once the configuration of the aircraft
changes, further increasing the amount of time and effort which needs to be put into
the design of the flight control system. This disadvantage especially applies to (fixed
wing) UA, since they operate in a huge range of altitude and velocity.

Using nonlinear control methods, trimming points and their blending can be
avoided. One such technique is feedback linearization, also called dynamic inver-
sion. The idea is to transform the nonlinear system into an equivalent linear form
([11]). For the resulting system linear control methods such as a linear tracking con-
trol design can be applied. The benefit compared to the classic linearization is that
the transformed system is valid throughout a wider part of the flight envelope and
not limited to the close vicinity of selected trimming points. However, feedback lin-
earization requires accurate knowledge of the dynamics and parameters of the non-
linear system. In general, nonlinear systems are of infinite order and only estimates
of the real parameters are available. Therefore, feedback linearization can only be
performed with respect to a model of the nonlinear dynamical system, inevitably
introducing uncertainties to the system.

Model Reference Adaptive Control (MRAC) is concerned with reducing the im-
pact of such modeling uncertainties ([1, 18]). In the framework of a feedback lin-
earized system, the idea is to make the real dynamics behave like the model chosen
for the inversion. If the structure of the uncertainty is known, it can be linearly
parameterized by a weighted combination of its (known) basis ([1, 18, 26]). If the
structure is unknown universal approximators can be employed to reduce the impact
of the uncertainty ([4, 11, 13, 14, 19, 23]). Therefore a-priori chosen regressor func-
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tions are weighted by a set of adaptive parameters, which are updated based on the
instantaneous tracking error. The underlying assumption is that there exists an ideal
set of weights which result in the approximation with the smallest error. In classical
adaptive control the convergence of the adaptive parameters to their optimal values
is only achieved if the regressor vector is persistently excited (PE) ([26]). To ensure
PE on the regressor vector is often operationally undesirable and might not even be
possible.

Concurrent learning uses instantaneous information concurrently with specifi-
cally stored data for future updates of the parameters ([5, 7]): The idea is, that if
data points are stored at a time when the regressor vector was excited, this infor-
mation can be used for future updates to ensure parameter convergence. For this
purpose the stored data only has to meet a requirement of linearly independency on
the stored data, the regressor vector is not required to be PE.

In order to construct a trajectory controller based on feedback linearization and
concurrent learning MRAC for a multitude of UA, a common signal interface needs
to be defined. Especially, the states chosen for the feedback linearization approach
need to be available through a suitable set of sensors and sensor fusion algorithms.
The adaptive controller is then used to drastically reduce the effects of the un-
certainty resulting from a deviation between the plant dynamics and the inversion
model. In fact, the concurrent learning adaptive controller ensures that the same in-
version model can be used for a multitude of fixed wing UA. In order to show that the
control architecture is applicable to a multitude of UA and in order to show robust-
ness against uncertainties, the controller is tested in numerical simulation for two
significantly different fixed wing UA, namely Prometheus (DLR) and ExtremeStar
(FSD).

In this paper, for a given vector a, (a)∗ denotes the frame in which a is notated and
a∗ denotes the physical type of a. For example (VK)B denotes the kinematic velocity
notated in the body-fixed frame. Furthermore, (ωxy) describes the rotational rates
of the y system relative to the x system. All signals are notated with respect to the
center of gravity if not stated otherwise. The outline of this paper is as follows:
In Section 2 the control strategy based on feedback linearization and an adaptive
element is described. In Section 3 we present the results from numerical simulation
in a Software- and Hardware-in-the-Loop framework. The paper is concluded in
Section 4.

2 Control Architecture

The concept of the proposed control strategy is presented in Figure 1. The goal of
the paper is to define a control architecture which is simply applicable to a variety
of fixed wing UA. The underlying assumption is that multiple fixed wing UA share
the same dynamic structure. However, it is not yet possible to construct an inversion
controller which is simply applicable to every aircraft. Instead, the proposed non-
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linear trajectory controller is divided into two parts: A generic inversion controller,
including reference models, and the control allocation.

The generic inversion controller is independent of the individual fixed wing UA
and is constructed based on a shared inversion model. Still, the parameters in this
block, in particular proportional and integral controller gains as well as the param-
eter of the reference model dynamics, have to be adjusted in order to suit each
individual platform. Another part of this block is the concurrent learning adaptive
controller, which minimizes the deviation between the plant dynamics and the cho-
sen inversion model.

In order for this block to be valid for several platforms, a common signal inter-
face has to be defined. This interface has to meet two requirements. On the one hand,
the model of the plant has to be feedback linearizable with the chosen set of states
provided by the interface. On the other hand, the chosen signals have to be measur-
able or at least computable from measurable data by the application of appropriate
sensor fusion algorithms.

Finally, the control allocation maps the desired outputs of the generic inversion
controller onto the control devices of the aircraft. Since the number and type of
control devices can vary strongly between UA, this part has to be constructed indi-
vidually for each aircraft.

The outline of this section is as follows: Section 2.1 defines a common signal
interface for the proposed generic inversion controller. In section 2.2 dynamic in-
version is performed with respect to a selected inversion model. Section 2.3 intro-
duces the adaptive component which reduces the effects of modeling uncertainties.
Finally, Section 2.4 briefly discusses the control allocation.

Plant
Control

Allocation

Generic
Inversion 
Controller

Sensor Fusion

Nonlinear Trajectory Controller

Desired

Forces and

Moments Command Output

Reference 

Command

State Feedback

Fig. 1 General control strategy

2.1 Signal Interface Definition

Unmanned aircraft can be equipped with a huge variety of sensors each relaying
on different information about the states of an aircraft. Furthermore, it is possible
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to perform feedback linearization of a dynamic system relying on different sets of
states, the attitude dynamics can, for example, be inverted by using either Euler an-
gles or kinematic attitude angles. Table 1 gives a summary of the specific signal
interface definitions used in this work. All signals which are required as an input are
labeled with ’in’. The commands generated by the inversion controller are labeled
with ’out’. A feasible set of sensors which ensures that the required signals in Ta-
ble 1 can be obtained and the proposed control architecture can be used is given by a
pitot tube, an Inertial Measurement Unit, a Magnetometer and a GPS module. Fur-
thermore, the body-fixed moments and the force which acts in the direction of the
velocity vector need to be estimated. For this purpose the chosen inversion model
can be used together with a model of the actuators ([11]).

Character Context Symbol Unit Explanation

Reference Command (In) Translation
VK,CMD [m

s ] Kinematic velocity
γK,CMD [rad] Flight-path azimuth angle
χK,CMD [rad] Flight-path inclination angle

Sensor Fusion (In)

Position h [m] Altitude

Translation

 u
v
w


B

[m
s ] Body fixed velocity vector

Attitude

Φ

Θ

Ψ

 [rad] Euler angles

Rotation

 p
q
r


B

[ rad
s ] Body-fixed rotational rates

Air Data q̄ [ N
m2 ] Dynamic pressure

Estimated quantities (In)

Force (Fx)K [N] Estimated force in kinematic x-direction

Moment

 L
M
N


B

[Nm] Estimated moments

Control variable (Out)

Force (Fx,CMD)K [N] Force in kinematic x-direction

Moment

 LCMD
MCMD
NCMD


B

[Nm] Commanded moments

Table 1 Interface definitions for the proposed generic inversion controller

2.2 Approximate Model Inversion for Fixed Wing Aircraft

This section discusses the fundamentals of approximate model inversion and how
this technique can be used to invert the dynamics of a fixed wing UA. Let x(t) ∈Rn

be the known state vector and let δ (t) ∈ Rm denote the control input.
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6 Maximilian Mühlegg, Johann C. Dauer, Jörg Dittrich and Florian Holzapfel

The general nonlinear dynamics of the aircraft can be written as

ẋ(t) = f (x(t),δ (t)), (1)

where the function f is assumed to be unknown yet sufficiently smooth. That is,
its partial derivatives up to the required order are defined and continuous. Addi-
tionally, the control input δ (t) is assumed to be bounded and piecewise continuous.
Since the exact model in (1) is usually neither available nor invertible, we intro-
duce an approximate inversion model f̂ (x(t),δ (t)). The inversion model f̂ needs
to be continuous and invertible with respect to δ (t). Given a pseudo-control input
ν(t) = f̂ (x(t),δ (t)) these requirements need to be fulfilled in order to be able to find
a control command δ (t) by dynamic inversion such that:

δ (t) = f̂−1(x(t),ν(t)) (2)

This approximation results in a model error ∆ ∈ Rn, which can be formulated in
additive form:

ẋ(t) = ν(x(t),δ (t))+∆(x(t),δ (t)) (3)

The feedback linearization approach used in this work is based on the dynam-
ics of a fixed wing aircraft, which are not derived in detail here but can be found
among others in [3]. The validity of the differential equations is connected to a set
of assumptions. The earth is assumed to be flat and non-rotating. Hence, the trans-
port rate and the angular velocity of the earth are neglected. These assumptions are
valid, since the presented UA only fly short distances and operate for a limited time
only. The aircraft is seen to be a rigid body, the relative motion of aircraft mass
elements is thus considered to be zero. Furthermore, the mass as well as mass distri-
bution are considered to be quasi stationary. For the inversion model the atmosphere
is assumed to be static, that is, there is no wind. As a result the intermediate kine-
matic frame as well as the kinematic attitude angles equal the aerodynamic frame
and the aerodynamic attitude angles. Furthermore, the kinematic attitude angles can
be used in order to invert the attitude dynamics. However, in reality the atmosphere
is not static. The forces and moments resulting from wind are therefore considered
as disturbances.

Figure 2 shows the general concept for the feedback linearization approach. The
system is cascaded along the dynamical chain of the aircraft, each loop having a
relative degree of one. For each loop a separate reference model and tracking con-
troller is constructed. The advantage of such a cascaded system is that the resulting
analytical terms are easy to handle. A drawback of the cascaded approach is that the
bandwidth of the overall system is reduced compared to an inversion with relative
degree three. However, it is argued in [11] that in the second case signals can be
required, which are heavily corrupted by measurement noise, thus favoring a cas-
caded approach. In the following the feedback linearization approach based on [11]
for a fixed wing UA is depicted.

The actuator dynamics are neglected in the proposed inversion model. Since the
input exhibits its own dynamics and limitations, an additional uncertainty is added
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to the system. Especially if the inverted system is combined with an adaptive el-
ement, actuator saturation can cause instability of the closed loop system through
unbounded parameter growth during saturation. Pseudo Control Hedging (PCH) is
a method which slows down the reference model dynamics by a measure of the
expected reaction deficit of the plant, thus hiding actuator dynamics from the error
dynamics and allowing adaptation even in the presence of saturation ([13]). Note,
that from any loop the next inner loop can be viewed as a kind of actuator dynam-
ics. Hence, PCH can be added separately to each loop and allows the simultaneous
application of an adaptive element and artificial saturations in inner loops.

Plant 

Generic Inversion Controller 

Flight 
Path 
Loop 

Attitude 
Loop 

Rotation 
Loop 

𝑉𝐾,𝐶𝑀𝐷
𝛾𝐾,𝐶𝑀𝐷
𝜒𝐾,𝐶𝑀𝐷

 

𝛼𝐾,𝐶𝑀𝐷
𝛽𝐾,𝐶𝑀𝐷
𝜇𝐾,𝐶𝑀𝐷

 𝑝𝐾,𝐶𝑀𝐷
𝑞𝐾,𝐶𝑀𝐷
𝑟𝐾,𝐶𝑀𝐷 𝐵

 
𝐿𝐶𝑀𝐷
𝑀𝐶𝑀𝐷

𝑁𝐶𝑀𝐷
𝐵

 

𝜉
𝜂
ζ
𝛿𝑇

 

𝐹𝑥,𝐶𝑀𝐷 𝐾
 

𝑥 

Nonlinear Trajectory Controller 

Control 
Allocation 

𝐿𝐸𝑆𝑇
𝑀𝐸𝑆𝑇

𝑁𝐸𝑆𝑇
𝐵

 

𝐹𝑥,𝐸𝑆𝑇 𝐾
 

𝜒 𝐾,𝑟𝑚, 𝛾 𝐾,𝑟𝑚 

Fig. 2 Cascaded structure of the feedback linearization approach for the generic inversion con-
troller

2.2.1 Inversion of the Path Dynamics

The outer loop is concerned with finding the proper kinematic attitude angles and
thrust of the aircraft in order to follow a desired flight path. A nonzero angle of
sideslip hereby leads to increased drag and an increase in the required thrust, re-
ducing the efficiency of the flight. In order to preserve an aerodynamically efficient
flight, the kinematic angle of sideslip βK is commanded to be zero. Basis for the
inversion of the path dynamics are the following equations of motion derived with
Newtons Second Law:

V̇K = T−D
m −gsin(γK)

χ̇K = LsinµK
mVKcos(γK)

γ̇K = LcosµK
mVK

− g
VK

cos(γK)

(4)

Here T,D and L denote the thrust, the drag and the lift respectively. In the equa-
tions above it is assumed that the thrust only acts in the direction of the velocity
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vector. The path dynamics can be inverted by applying the dynamic inversion con-
cept to equation (4). However, Holzapfel argues in [11] that especially if the input
of a dynamical system is described by an irrational function, a pure mathematical
inversion can result in a multitude of solutions, which are often physically mean-
ingless. Alternatively, a physically and geometrically motivated approach is used.
For feedback linearization the forces in a plane perpendicular to the current velocity
vector are considered. For the inversion model, assume that the lift coefficient CL
is only dependent on the zero-lift derivative CL,0 and the derivative resulting from a
change in the angle of attack CL,α . With CL =CL,0 +CL,α αK and L = 1

2 ρV 2
KSCL the

linearizing feedback for the kinematic attitude angles results in

αK,CMD = 2LCMD
ρV 2

KSCL,α
− CL,0

CL,α

βK,CMD = 0

µK,CMD = arctan
(

νχ

νγ+
g

VK
cosγK

)
,

(5)

where νOL = [νV ,νγ ,νχ ]
T denotes the pseudo control variables in the outer loop and

LCMD = mVK

√
(νγ +

g
VK

cos(γK))2 +ν2
χ . The thrust equation is inverted by

TCMD = Fx,CMD = m(νV +gsin(γK))+D. (6)

For each state of the path dynamics a separate first order reference model can be
constructed. A linear feedback with proportional and integral components is used
in order to construct the pseudo control variable νOL. Finally, PCH is used in order
to slow down the reference model dynamics of the path states by a measure of the
reaction deficit of the plant.

2.2.2 Inversion of the Attitude Dynamics

The middle loop is concerned with finding the angular rates in order to realize the
desired kinematic attitude angles αK and µK as well as keeping the angle of sideslip
βK equal to zero in order to preserve an aerodynamically efficient flight. The basis
for the inversion of the attitude dynamics is a purely kinematic relation between
the angular rates and the kinematic attitude angles. The equations of motion can be
derived from the strapdown equation ([25]): α̇K

β̇K
µ̇K

= M
[
MKB(ω

OB
K )B− (ωOK

K )K
]
, (7)

where MKB = MT
BK denotes the transformation matrix between the body-fixed and

the kinematic frame and
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M =

0 cos(µK)
cos(βK)

sin(µK)
cos(βK)

0 sin(µK) −cos(βK)
1 −tan(βK)cos(µK) tan(βK)sin(µK)

 . (8)

The linearizing feedback for the attitude dynamics is given by

(ωOK
K,CMD)B = MBK [(ω

OK
K )K +M−1

νML], (9)

where νML denotes the pseudo control variables for the middle loop and

(ωOK
K )K =

−χ̇Ksin(γK)
γ̇K

χ̇Kcos(γK)

 . (10)

The time derivatives γ̇K and χ̇K are not measurable. Instead they can be computed
from the load factors, which in turn are dependent on the accelerations and are
therefore highly susceptible to measurement noise. As an alternative the states of
the reference model from the outer loop γ̇K,rm and χ̇K,rm can be used to construct the
linearizing feedback. The pseudo-control input νML is constructed using a propor-
tional feedback controller. If the attitude dynamics are to be analyzed separately, an
integrator can be added to the linear error controller in order to ensure steady state
accuracy.

2.2.3 Inversion of the Rotational Dynamics

The basis for the inversion of the rotational dynamics are the equations of angular
momentum. They are derived applying the law of conservation of angular momen-
tum with respect to the center of gravity:

(ω̇OB
K )B

B = I−1
BB {(M)B− (ωOB

K )B×
[
IBB(ω

OB
K )B

]
} (11)

Here (M)B denotes the moments about the aircraft and IBB denotes the mass moment
of inertia. The linearizing feedback for the inner loop is given with

MCMD)B = (ωOB
K )B×

[
IBB(ω

OB
K ))B

]
+ IBBνIL, (12)

where νIL denotes the pseudo control variable for the inner loop. For each angular
rate a separate reference model is constructed. For the pseudo-control νIL a propor-
tional feedback is used. Finally, PCH is applied to the inner loop, thus allowing the
addition of an adaptive element in the presence of actuator dynamics.
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2.3 Adaptive Controller

Feedback linearization is concerned with transforming a nonlinear system such that
it exhibits linear input-output behavior. A major drawback of this approach is that
this method is highly susceptible to parameter errors and unmodeled dynamics. In
order to decrease the impact of model uncertainties an adaptive element is added
to the feedback linearized system. Model Reference Adaptive Control for feedback
linearized systems aims to make the uncertain system behave like the underlying
inversion model. MRAC achieves this goal by utilizing a model of the uncertainty.
If the uncertainty can be parameterized linearly a weighted combination of the ba-
sis of the uncertainty can be employed as an adaptive element ([2, 15, 17]). The
assumption on structural knowledge of the uncertainty can be relaxed by requiring
it to be at least continuous and defined over a compact domain. In this case neural
networks have been repeatedly used as adaptive elements ([4, 11, 13, 14, 19, 23]).
Instead of the basis of the uncertainty, neuro-adaptive control utilizes a set of chosen
basis functions. In particular, a Gaussian Network with radial basis functions ([21])
is employed in this work. However, also other activation functions such as Sigmoids
or B-splines are imaginable ([11, 24]). The output of the adaptive element νad ∈Rm

is given by

νad =W T (t)σ(x(t)). (13)

Here W (t)∈R(n2+1)×m denotes the adaptive weights and σ(x(t))∈R(n2+1) denotes
the regressor vector containing n2 radial basis functions and a constant bias. Ac-
cording to the universal approximation property of Radial Basis Function Neural
Networks ([20]) we have, that given a fixed number of radial basis functions n2,
there exist ideal weights W ∗ ∈ R(n2+1)×m and a vector ε ∈ Rm such that given a
compact domain D⊂ Rn the following approximation holds for all x ∈ D:

∆(x,δ ) =W ∗
T

σ(x)+ ε̃(x) (14)

The functional approximation error ε̄ = supx∈D‖ε̃(x)‖ can be made arbitrarily small
by increasing the number of radial basis functions ([20]). Define the tracking er-
ror as e(t) = x(t)− xrm(t), where xrm(t) ∈ Rn represents the states of a reference
model. For a positive definite matrix Q ∈ Rn×n there exists a positive definite ma-
trix P ∈ Rn×n which satisfies the Lyapunov equation AT

e P+ PAe +Q = 0, where
Ae ∈ Rn×n is Hurwitz and denotes the state of the error dynamics formed by the
respective pseudo control variables. A common update law ([1, 11, 18]) for the
adaptive weights is then given by

Ẇ (t) =−Γ σ(x)eT PB−m(x,W ). (15)

Here m(x,W ) ∈ Rm×(n2+1) denotes a modification term, which is required in order
to guarantee boundedness of the adaptive weights and therefor stability of the closed
loop system. These include among others σ - Modification ([12]), e - Modification
([17]) or Q-Modification ([28]).
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The linear control design based on the chosen inversion model is only valid if
the effect of the uncertainty on the feedback linearized system is minimized. This in
turn requires the convergence of the adaptive parameters to a set of weights which
approximates the uncertainty best and therefore minimizes the functional approx-
imation error. In classical adaptive control parameter convergence is subject to a
condition of PE on the regressor vector. To ensure PE regressor vectors in neuro-
adaptive control is in most cases neither possible nor operationally desirable.

In this work, instead of one of the previously mentioned modification terms,
concurrent learning adaptive control ([5, 7]) is used. Concurrent learning uses online
recorded information concurrently with current data in order to update the adaptive
parameters. The key idea is storing information at a time when the regressor vector
was exciting, and using this data for future updates. This allows the parameters to
converge to a set of weights which minimize the functional approximation error.

Concurrent learning achieves parameter convergence by comparing the current
estimation of the uncertainty νad with the stored one and updating the adaptive pa-
rameters based on this deviation. Therefore, the regressor vector σ j(x) at certain
time instants t j is stored in a matrix σH = [σ1,σ2, ...,σp], where σH ∈ R(n2+1)×p is
called history stack in the following and p ≥ (n2 + 1). Only regressor vectors are
stored which are linearly independent to the already stored data points. Once the
history stack is full, methods such as the minimum singular value maximization ap-
proach ([8]) exist to include additional points by exchanging them with older data.
Apart from the regressor vectors, also the model uncertainty ∆ j has to be deter-
mined. With regard to equation (3) the model uncertainty ∆ j at a time instant t j is
calculated by

∆ j = ẋ j−ν j. (16)

In order to solve equation (16), knowledge about the first state derivative ẋ j is re-
quired. In most cases, state derivatives cannot be measured directly and have to be
estimated. For concurrent learning, the estimates of ẋ j do not have to be available
instantaneously. Rather estimation methods can be applied which require an amount
of time in order to arrive at a good estimate. One such technique is optimal fixed
point smoothing ([10]). Optimal fixed point smoothing arrives at a state estimate
at time t by using all available data in a time frame 0 ≤ t ≤ T . In particular, the
smoother combines a Forward Kalman Filter up to time t with a backwards iterated
Kalman Filter which uses all data from t up to T (see e.g. [16] for smoother equa-
tions). After estimation is finished, the model uncertainty ∆ j is stored along with
the respective regressor vector σ j. For each point the training signal based on stored
data can be calculated as follows:

ε j =W T (t)σ j−∆ j (17)

The modified update law of equation (15) becomes

Ẇ (t) =−Γ σ(x)eT PB−Γ

p

∑
j=1

σ jε
T
j . (18)
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If the history stack contains at least n2 +1 linearly independent data points, the up-
date law in (18) ensures robustness of the closed loop system and convergence of
the adaptive parameters to a set of weights, which minimize the functional approxi-
mation error. For reasons of brevity a proof is omitted here. For further information
refer to [5] and [7].

2.4 Control Allocation

The following section gives an overview of the component of the controller which
remains vehicle specific, the control allocation (CA). Every vehicle type is uniquely
designed in respect to position, size and number of the control surfaces. The calcula-
tion of the actual surface deflections based on the forces and moment requirements
is thus treated vehicle dependent. Control allocation has been extensively studied in
literature with respect to nominal flight behavior and as active methods to increase
fault tolerance ([27]).

In general CA is treated differently depending on the number of actuators in re-
lation to degrees of freedom. For over- and under actuated systems, CA becomes
an optimization problem, while for an equal number of independent actuators to
degrees of freedom CA falls back to an algebraic relation. In this work an incre-
mental CA was chosen, which is often also referred to as direct CA. Incremental
refers to the fact that a global relation between moment or forces to deflection is
not available. Rather, a change in moment implies a change of the deflection using
linear relation based on the effectiveness matrix Be f f ([9]). In this work, force to
thrust calculation and moment to deflections of control surfaces is done separately.
A changes of the Moments ∆M is hence given by

∆M = Be f f ∆δrot , (19)

where ∆δrot is the change in rotational control surfaces. The control input δrot is
calculated using an estimate of the current control input δest,rot ,

δrot = δest,rot +B−1
e f f ∆M. (20)

An equivalent, scalar relation yields the thrust. For the two fixed-wing UA of this
paper (see below for further information) two different control allocation approaches
have to be considered.

Prometheus is equipped with pairs of elevators, aileron and rudder surfaces. Both
elevators and rudder are deflected symmetrically while ailerons are deflected anti-
symmetrically thus resulting in a set of three independent control variables. The
resulting effectiveness matrix is quadratic in nature. In contrast, Extreme Star offers
a total of 16 control devices which can be actuated independently. However, for
the purpose of this paper only eleven control inputs are considered. These include
both canards, both ailerons, both flaps, both elevators, the rudder and the throttle for
each main wing motor. As a result the control effectiveness matrix is non-quadratic.
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Optimization methods such as constraint minimization can optionally be applied to
find an adequate solution.

3 Numerical Simulation

This section outlines numerical simulations in order to assess the performance of
the presented control architecture for different UA. Furthermore, the robustness of
the nonlinear controller against disturbances is evaluated.

3.1 Test-Beds and Simulation Environment

Fig. 3 Extreme Star (left) and Prometheus (right)

The fixed-wing unmanned aircraft Prometheus is a development by the German
Aerospace Center, Braunschweig, Germany, see Figure 3. The high-wing in pusher
configuration has a MTOW of 25kg and is equipped with a PC104 based avionics
system containing flight control computer, vision computer and the common set of
sensors required for automated flight. Flight control and guidance algorithm use a
QNX operating system while vision application run on a Linux based system. Aims
of the project are the evaluation of methods and algorithms of unmanned aircraft.
These include path-planning, mission management, flight control, sensor fusion and
environmental awareness. An additional goal is the operation of multiple UA of
different type within a unique software framework. Especially for the Prometheus
project, also fixed-wing specific research from operation perspective, such as aerial
refueling, are of interest.

The FSD ExtremeStar bases on the off-the-shelf polystyrene model airplane Mul-
tiplex TwinStar II and was modified by the AkaModell Munich on behalf of the In-
stitute of Flight System Dynamics of the Technische Universität München. In par-
ticular these modifications include the addition of canards with variable incidence,
the extension of the fuselage, the conversion of the trailing edge of the inner wing
part into flaps and the replacement of the existing motors with higher performance
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motors with pitch axis thrust vectoring. Furthermore, an additional tiltable third pro-
peller was attached to the tail of the aircraft. An independent control of left and right
side control devices is possible, therefore offering a total of 16 actuators. The main
purpose of the airplane is to analyze new and existing control methods for an UA
with a large number of control devices. For the purpose of this work only eleven
control inputs are considered.

Algorithms normally run through two specific simulation stages before going
into flight test as depicted in Figure 4. First stage is the software-in-the-loop (SIL)
simulation, which is used for development of the algorithms themselves. They are
tested in a single computer setup, simulating all aspects of the unmanned aircraft
system (UAS). The SIL typically consists of the mission manager, which handles
the mission components and provides an interface to the ground control station.
The flight controller receives commands of the mission management and the flight
dynamics are used to simulate the UA flight mechanics. Optionally, a realistic sensor
fusion can be used, which contains sensor emulation as well as an algorithm like a
Kalman filter for state estimation (x̂). The advantages of the SIL simulation are a fast
development cycle, reduced recourse requirements and modular level of abstraction
and thus simulation complexity.

Modem PWM 

Ser 

Prometheus 

Modem 

Ground Control 

Station 

PWM LAN 

Ser 

Real Time 

Simulator 

Visualisation 

LAN 

Sensordata 

Actuatordata 

Mission 

Management 

Flight 

Control 

Flight 

Dynamics 

Sensor 

Fusion 

Visualisation 
Ground Control 

Station 

Commands + 𝒙  

𝒙 𝒙  

𝒖 
𝑽𝒌,𝑪𝑴𝑫 

Commands + 𝒙  𝒙 

Fig. 4 Software-in-the-loop (left) and hardware-in-the-loop (right) simulations

After integration of the algorithm into the flight software, it is tested within the
hardware-in-the-loop (HIL) simulation. For this work a HIL framework was only
available for Prometheus. For the simulation setup the complete vehicle is integrated
into the simulation including the processing units of the avionics. A real time sim-
ulator based on dSpace simulates the flight dynamics as well as sensor emulation.
The emulated sensor data is supplied via serial (Ser) connection to the avionics. The
UA is controlled via the GCS in the same manner as it is in flight test. In both simu-
lation cases, SIL and HIL, the same visualization is used to give a user feedback of
the real state of the UA.
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3.2 Test Scenario and Results from Numerical Simulation

At first, the control architecture is tested in the SIL framework. For robustness con-
siderations parameter uncertainties are artificially introduced to the system. In par-
ticular, the mass moment of inertia IBB is increased by 15%, the aerodynamic deriva-
tive of the lift due to an angle of attack CL,α is decreased by 10% and the mass of
the aircraft m is increased by 10%. Additionally, a constant wind from northeast
disturbs the aircraft with VW = [−5,−2.5,0]T m

s .
During the numerical simulation, the aircraft shall track a series of path com-

mands represented by step inputs. The simulation runs a total of 120s with a time
step of 0.01s. The initial conditions for the path states are given with VK,0 = 40 m

s ,
γK,0 =−10◦ and χK,0 = 0◦ for FSD ExtremeStar and VK,0 = 40 m

s , γK,0 =−10◦ and
χK,0 = 0◦ for Prometheus. In order to compare the results each aircraft receives the
same commands. The reference signals are comprised of several step inputs. After
25s the climb angle is commanded to be γK = 7.5◦ for 10s and γK =−7.5◦ for 10s
after that. After 55s the aircraft are commanded to perform a 90◦ right turn followed
by a 90◦ left turn after 90s. During the simulation the velocity is held constant at
VK = 20 m

s for FSD ExtremeStar and VK = 35 m
s for Prometheus, respectively.

Figures 5(a) and 5(b) show the tracking performance of Prometheus and Ex-
tremeStar respectively if no adaptive controller is used in any loop. For Prometheus
in Figure 5(a) it can be seen that the plant follows the reference trajectory without
major deviations even in the presence of parameter errors and the external distur-
bance. However, Pseudo Control Hedging in the respective loops alters the refer-
ence trajectory of the longitudinal axis in the outer loop such that it deviates from
the commanded signal significantly. This is due to the presence of modeling uncer-
tainties in the inner loop and outer loop. In order to achieve steady state accuracy
in the longitudinal axis, the effect of modeling uncertainties needs to be reduced,
which can be achieved by applying adaptive elements to the system.

Similar to Prometheus, ExtremeStar in Figure 5(b) is able to track the reference
model accurately, but PCH prevents the reference model from tracking the com-
manded signal. In particular, while the performance of the lateral motion increases
compared to Prometheus, the longitudinal performance worsens, thus prohibiting a
successful operation of the aircraft.

It can be observed that the two aircraft exhibit different performance properties.
This deviation is attributed to the fact that both aircraft significantly differ in archi-
tecture and parameters, in particular size, mass and number of control surfaces.

In the following the same simulations are performed while adaptive elements are
added to the system. Since the relations in the attitude loop are purely kinematic,
no model uncertainty are expected here. Hence, adaptive elements are only added
to the inner and outer loop. In particular a radial basis function neural network with
concurrent learning update laws augments the inner loop, consisting of 125 neurons,
which are evenly distributed in the state space. The RBF receives only the rotational
rates as inputs. The learning rate is set to Γ = 1.5. For concurrent learning a total
of 130 points are stored in a static history stack. Additionally for testing purposes
a neural network with sigmoid activation functions is added to the outer loop, con-
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Fig. 5 Simulation of ExtremeStar (5(a)) and Prometheus (5(b)) in the SIL framework with wind
and uncertainties but without adaptive controller.

sisting of a total of nine neurons. Note, that in this case also the input weights are
updated, thus the neurons do not have to be distributed in the state space a priori.
Hence, the number of neurons needed for adaptation is significantly lower than in
the case of radial basis functions neural network. The input vector to the outer loop
network consists of the path, attitude and rotational states. The learning rates are set
to ΓV = 2 for the input weights and ΓW = 0.1 for the output weights. The latter are
chosen to be small in order to prevent the propagation of errors resulting from fast
adaptation to the middle loop. For the concurrent learning update law a total of 30
points are stored.

Figures 6(a) and 6(b) show the tracking performance of Prometheus and Extreme
Star with adaptive elements. It can be seen that especially the performance in the
longitudinal motion drastically increases in both cases. This improvement leads to
the conclusion that the neural networks approximate the uncertainty such that its
effects on the plant dynamics are significantly reduced. Furthermore, the control
architecture is seen to be robust not only against the parameter uncertainties but
also against the disturbance by wind.

In addition to the SIL simulation, a HIL framework based on dSpace is available
for Prometheus. The simulation runs for a total of 175s with a time step of 0.01s.
The initial values for the desired path are given with VK,0 = 30 m

s , γK,0 = 0◦ and
χK,0 = 0◦. The reference signals are comprised of several step inputs. Prometheus
shall slow to VK = 20 m

s after 80s and accelerate to VK = 40 m
s after 138s. During

the different velocity phases climb anlge and course angle are varied. After 70s the
climb angle is commanded to be γK = 7.5◦ for 5s and γK =−7.5◦ for 5s after that.
The same maneuver is initiated after 125s and 165s. In the second maneuver, the
duration of the steps is extended to 8s. Finally, after 41s, 95s and 150s the UA is
commanded to perform three consecutive 90◦ right turns.

Figure 7 shows the tracking performance of the nonlinear adaptive path controller
for the HIL simulation. It can be seen that the controller is able to follow the desired
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Fig. 6 Simulation of ExtremeStar (6(a)) and Prometheus (6(b)) in the SIL framework with wind
and uncertainties; inner loop augmented by radial basis function neural network, outer loop aug-
mented by single hidden layer neural network with sigmoid activation functions.

path if the real Flight Control System Hardware is used. The deviation between the
reference model output and the measured states is minor. The jump in the refer-
ence model of the course angle after 130s is attributed to the fact that χK is limited
to (−π...π]. However, it can also be seen that for higher velocities the trajectory
generated by the reference model deviates from the commanded signal. This is at-
tributed to the fact that the uncertainties in the inner loop and outer loop, especially
the generated lift and the gradients in the control allocation, are dependent on the
velocity. Concurrent learning is formulated for constant optimal weights. Hence, the
change in velocity and consequently a change of the optimal weights lead to a drop
in performance. However, the control architecture is still seen to be robust.

4 Conclusion

In this paper we showed how an adaptive trajectory control architecture can be set
up in order to be simply applicable to multiple fixed-wing UA. Key part of the
controller is a generic inversion part, which feedback linearizes a chosen inversion
model. Adaptive elements, in the form of concurrent learning neural networks, sig-
nificantly decrease the effect of model uncertainties between the plant dynamics and
the inversion model, therefore increasing the applicability of the control architecture
to a broad spectrum of fixed-wing aircraft. While the former can be simply applied
to any fixed-wing UA which shares the same signal interface, the gains of the linear
controller have to be selected and a control allocation has to be constructed for each
aircraft individually. Still, by generalizing the feedback linearization, the amount of
time required to set up a reliable flight control system decreases significantly. Re-
sults from numerical simulation showed that the exclusive use of feedback lineariza-
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Fig. 7 Hardware-in-the-Loop simulation of Prometheus

tion doesn’t result in acceptable performance. Hence, adaptive elements have to be
used in order to decrease the effects of the uncertainty. By using concurrent learning
adaptive control the adaptive parameters are driven to a set of weights which min-
imize the approximation error, thus increasing the performance significantly com-
pared to instantaneous learning laws. Further improvement of the proposed control
architecture can be achieved by e.g. finding methods to generalize the construction
of the control allocation. Furthermore, the performance and limitations of the pro-
posed architecture need to be evaluated in flight tests.
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