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Position Tracking of a Multicopter using a
Geometric Backstepping Control Law

Guillermo Falconi and Florian Holzapfel

Abstract In this paper a position tracking controller for a multiroteelicopter is
presented. The controller design exploits the fact thapémition tracking, the con-
trol of the whole attitude is not needed, but only the contfdhe body-fixedz-axis.
This results in a position controller which is independerthe heading controller.
This is achieved by introducing the thrust vector as a syststate, i.e. using the
body-fixedz-axis as a reduced attitude parameter and extending thet thputT
dynamically. This parameter choice also avoids drawbatkscal attitude param-
eterizations like singularities or unwinding and thus maixes the flight envelope.
The position controller is designed using a three-stepdtapping control law, such
that no time-scale separation is needed. Furthermore, éadihg controllers are
proposed.

Nomenclature

B Body-fixed frame

I Inertial frame

D Desired body-fixed frame

Ris Rotation matrix which transforms vectors from tBdrame into al -frame

ZglZzp  z-Axis of the B/D frame given in thé-frame

(X), Position of the center of gravity given in thdérame

(\7): Velocity of the center of gravity w.r.t. theframe given in thé-frame

(é): Acceleration of the center of gravity w.r.t. thérame given in thé-frame
|
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)B Angular rate of theB-frame w.r.t. thd -frame given in theB-frame

5 Control torque vector given in thg-frame
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(f)I Thrust vector given in the-frame
T Thrust magnitude
|§B Moment of inertia of the center of gravity given in tBeframe
Mass of the multirotor
In general, the lower indeiof a vector(V);' represents the frame in which it is
expressed and the upper inderefers to the frame with respect to the derivative is

considered. The arro@ means that it is an element of the Euclidean sfate

1 Introduction

Within the projectvalles Marineris Explorer the possibility of a Mars exploration
mission using a swarm of unmanned ground vehicles (UGVsuanthnned aerial
vehicles (UAVS) is studied. The use of aerial vehicles makesssible to access
areas like canyons or underground caves, which have notymt@xplored and are
interesting when searching for possible habitats of livimganisms. The canyon
system Valles Marineris is one example.

Among UAVs, rotary wing vehicles are preferred becauseetzes capable of
vertical take-off and landing (VTOL), hover and cruise [8ome previous work
regarding the flying feasibility of rotary wing vehicles inet Mars atmosphere can
be found in [6, 14]. Multirotor helicopters are represee of this group, which
have over typical helicopters the following advantagesltidapters can use fixed-
pitch rotors simplifying the mechanical structure [10] anid possible to directly
control the motor speeds simplifying the design of the adlar [7]. Furthermore,
they are robust against motor or rotor failures if more thaur fotors are available
[12].

&'B o'B
M Rotational
Dynamics Ris
Attitude 3
_ Kinematics B X
Attitude Subsystem ;.
Position -
T Dynamics v

Multicopter Dynamics

Fig. 1 Multicopter Dynamics

We concentrate on position tracking control strategies ¢ha be applied for
multicopter systems. Such a control system should be alidedabwith parameter
uncertainties and control effectiveness degradation deroto maximize the mis-
sion duration and guarantee the safety of the system witheiagively unknown
environment. In a first step we present in this paper a naatigentroller which
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stabilizes the position tracking error under nominal ctods within a large flight
envelope.

Multicopters’ dynamics have a cascaded structure as it essebn in Figure 1.
On the one hand, the attitude subsystem is independent frerpdsition and the
velocity. On the other hand, the direction of thrust vedtdepends on the attitude
and hence the position dynamics depend on the attitudeefidrer a natural and of-
ten used approach is to separate the controller into an lmateposition controller
and an inner loop attitude controller and to treat them iedéeently making use
of time-scale separation. However, stability of the whglstem is only guaranteed
if the interconnection term between the attitude and pmsitiubsystems is small
enough.

_ e ) T
X1,V71| | | Position | U1 | Attitude [ T _
Tracking Tracking | Y2y M | Multirotor |
Angular Dynamics
Velocity Tyy| Feedback
oo Tracking Linear.
X,V
1%
Ris & Heading
Controller
t1
|
Backstepping Controller Controller

Fig. 2 Backstepping Controller

In this paper, we exploit the fact that the system can be ftated as a strict-
feedback system and follow a backstepping approach apai#dte whole multi-
copter system. In contrast to most of the backstepping cblaivs for multicopters
which use four steps [2, 11], the proposed controller is cosed of three steps as
seen in Figure 2: Position and velocity tracking, attitudeking and angular ve-
locity tracking. As only three steps are used, we algebligicampute the needed
derivatives of the virtual controi$; andtisyy.

This control design exploits the decoupling of the posititymamics from the
angular velocityw.® which is inherent in multirotor systems. This is achieved by
introducing the thrust vectdras a reduced attitude parameter which has the ad-
ditional advantage of leading to a well-defined trackingeso that the utilizable
flight envelope is maximized avoiding the drawbacks of latttude parameteri-
zations like quaternions or Euler angles (compare e.g. [&itts, 11]). The Euler
angles have well known singularities @t= +7) and can even lead to discontinu-
ities for continuous attitude motions [13]. This complesithe application of most
of the nonlinear control theory which assumes a locally tliyiz right hand side of
the system’s differential equation. Some authors use fegdbnearization of the
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Euler dynamics to avoid this problem [8], but also then thedirizing feedback is
not always well-defined. Furthermore, defining a meaningstation error might
be cumbersome as the composition rules for describing ssiveerotations using
Euler angles lead to complex calculations [13]. On the ottard, although the
quaternion’s parametrization have a simple compositide, they fail to represent
the attitude uniquely and hence unwinding can undesiratdyio[1, 4].

A direct consequence of the decoupling is that the headinggater can be inde-
pendently designed using the additional input. In this pap® heading controllers
are proposed. The first one is designed again via backstgpging the classical
the classical definition of the heading angle. The second®aa alternative that
aims to reduce the input effort used for heading control &&es where heading is
irrelevant or a heading trajectory is not available.

The remainder of the paper is organized as follows. The ongter dynamics
are derived in Section 2. In Section 3, the derivation of thekistepping controllers
is addressed. In Section 4, the performance of the contislhown in simulations
and finally the results are summarized in Section 5.

2 Multicopter Dynamics

Fig. 3 Hexacopter

For describing the dynamics of the multicopter we use artiaddramel and a

body-fixed frameB as in Figure 3, such that origin is at the center of gravity. We
consider multicopters withy, rotors which lie all in the same plane and whose thrust

always points in the opposite direction of the body-fizeakisZg. The inputs of the

system are the angular velocitiesof then, rotors. We assume that the forces and

torques of the rotors are equivalent to a torque veletar R3** and a thrust vector
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T € R3*! defined as
t:=-TZg (2)

whereT > 0 is the thrust magnitude. Hence a function

('\_?_I):f(afaﬁp) @)

is assumed to exist. Furthermore, the control allocatiablem is assumed to have
a solution, i.e. the angular velocities can be calculated fromdl andT. Therefore,
we consideM andT as the inputs of the system. An example of a multicopter with
six rotors can be seen in Figure 3.

The translational dynamics can be written in the inertiahfel using Newton'’s
second law and by neglecting drag forces and disturbances

m(@@),' = (), +mg (), , 3)

whereg is the gravitational acceleratiom,is the mass of the multicopter a(#l ), =

(0,0,1)" is thez-axis of the inertial frame given ih The rotational dynamics are
given in the body-fixed framB by the Euler’s equation

ISB(@'B)§=—(®'B)B><ISB(@'B)B+('\7|)B (4)

where(é'B)g is the derivative of @'®) ; with respect to th&-frame. It is assumed

that the only torque acting on the multicopter is the cortivodjueM . We use the
rotation matrixR g € SO3 as an attitude parameter instead of local parameterization
in order to maximize the utilizable flight envelope as exmdai in the introduction.
The attitude kinematics are given by the Strapdown equation

Rig =Rig(£2'®). (5)

whereR!g is the derivative oR|g w.r.t. thel-frame and(£2'B) . is defined

0 —wB B
2'B)y B (6)2 _wle
( )BB'_ leB 1B (6&

as a skew-symmetric matrix usi@'®) ; = [«}®, «®, @) }T.

In order to decouple the rotation abagtfrom the position tracking controller,
it is possible to use a reduced attitude parametrizatioreample using a quater-
nion parametrization can be found in [3]). From the transiet! dynamics (3) it is
clear that for position tracking we do not need to controlwmle attitude of the
multicopter but only the vectdis € S? (or alternativelyf), which can be interpreted
as a reduced attitude parameter [4]. This can be seen frofa¢hthat the rotation
matrix R, is built of the unity vectors giving the direction of the axesheB-frame
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expressed in theframe
Rig= [(XB)I (Y/B)| (ZB)|]~ (6)

This allows us to formulate a position tracking control laWwigh is independent of
the heading controller. To this end, the dynamics of thesthvectort (1) will be
needed

(1= () 700,
=T (@'"®), x (Za), - T (Ze);

(7)

Especially useful is the representatiorf @f the body-fixed frame

0-T 0] /wB
=|T o0 ofwf]. (8)
00 -1 \T/)

In (8) it can be seen that the dynamics of the thrust veti@nd ofZg) can be
controlled using only the first two eIements(«iﬁ'B)B. Thus, the position dynamics
are independent @b.® and it can be used for heading tracking. For this purpose, we
recall the rotation matriRg, formed by the Euler angles

cOcy cosy —sf
Re = |spsOcy —cosy  spsOsy +cocy  spcb | . )

cesOcy +sesyY  cesOsy —spcy  cpch
Here,s(-) andc(-) are sir{-) and co$-) respectively. Hence, the heading angle
can be computed from

AU :atanz(RBl(Lz)»RBl(L 1))7 (10)

whereatan2(-) is the four quadrant arctangent function &gl (i, j) are the respec-
tive elements of the matriRg,. The derivative ofp is

:sinqo B cosgow;B
cos@ cosg *’

_ Rei(2,3)6y® +Rgi(3,3)}®
a Rg (2, 3)2 +Rpg (3, 3)2 ’

w
(11)

and it is clear thaty can be controlled bw!. In the next sections the position and
heading tracking controllers are presented.
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3 Backstepping Controller Design

In order to track the positiofit € R3*! and velocityvr € R3*! trajectories, the
zero equilibrium of the dynamics of the error

(& Xt =X
(1))

must be stabilized. This can be achieved by using block bepksg [9], where at
each step a virtual control is formulated. The virtual cohtan then be seen as a
desired trajectory of the following state variable. We Use¢ steps as depicted in
Figure 2 usinggp, f and@ as state variables. Hence, the system is strict-feedback.
Choosingf as a state is equivalent to choosifigas an attitude parameter and ex-
tending the inpuT dynamically. Hence, only the derivatifeappears as an input as

it can be seenin (8). Furthermore, we use the following faeklinearizing control

law (see Figure 2)

(M), = (&'°)5 %185 (&%) +18s (e (12)
such that the dynamics of the angular velocities are deedupl
- 1B\B -
(@B =Pe=(y )" (13)

Therefore,T and# can be seen as the inputs of the dynamical system. In the next
three sections the position tracking controller is addrésand in Section 3.4 the
heading control law is derived.

3.1 Position Tracking

The dynamics o, can be written using (3)

O

Thus, the dynamics of the position and velocity error stgtare

E (&p)! A(ep)|+B(m(\*/D): mg(z.),(f),), (14)

where the matriceg, A andB are defined as

. |13 03 . |0s1l3 . 103
E._{Osmls}, A._{OSOJ, B._M_
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Here,l3 € R®*3 is the identity matrix an@s; € R®*3 is the zero matrix. In this first
step we consider the thrust vecl((—lipI as an input of the position error system (14).
By selecting the desired thrust vector as

N
(u), ==m(Vo) —mg(2); +Kx (80, +Ku (@) (15)
with two positive definite matricel y, Ky € R3*3 and assumin@: u, it follows

E(ep) = {_O,ix _Iév] (ep), - (16)

As it is a stable linear system there exist two positive deffimiatriced?, Q € R%*6
such that

Vi — (ep)] Plep), >0,
\./l|f:ul = —(ep)] Q(ep), <0

for e, # 0[9]. This guarantees position and velocity trackingtfer us.

3.2 Thrust Vector Tracking

In the second step we consider the elor u; —t and therefore the position error
dynamics (16) becomes

_ a0 .
(&) =E* [_éx —}iv] (ep)y +EB,:_B,<§)I' (17)
Ap

Then, we extend the Lyapunov functivp as follows

Vo=Vi+ g,
Va = — (ep)] Q(ep), +2(&)] BIP(ep), +& &,

=~ (o)) Qep), + (&) (ZB;P(%N +(U1); —RiT (g}'ﬁ) ) .
B

By using a positive definite matrik; € R¥ and («}® w}? T)T as the input of the

system (see Figure 2), we formulate the control law

(U2)g = T *Rer (2B]Pep+ ()] + K¢ (&), ) (18)
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in order to achieve a negative definite derivative of the luyagy functionv,

Vy| = —(ep)] Qep), — (R) Kt (&), -

(02 G ) -0

Note that forf = 0 the matrixT (f) 1

is singular and therefore the calculation of the control igm(18) is not possible.
This is not a problem of this specific controller but a systaherent singularity: no
desired attitude can be computed from the position subsystthe thrust magni-
tudeT = 0 because in that case the position and attitude dynamiaieamipled.
Therefore, the desired position trajectory should avois $ingularity point. Note
that we didn’t needo!? for tracking the thrust vectdr Therefore, it can be used for
heading tracking as done in Section 3.4 without influencirgggerformance of the
position controller.

3.3 Angular Velocity Tracking

In the last backstepping step, we consider the angularitgETor ey := (uzX uzy)T —
(cl® @B)T and thus using (8) and (18) the thrust vector error dynamis a

N [ U2x—€uwx
(é)l = (U1); —RisT(T) | Uy —euy |
UZZ B (19)

_ [ Cwx
= —ZBEP(GDN — Kt (&), +RigT(t) | ewy | -
0
B

Note that we have insertéld = uy, as this is one of the inputs of our system (see
Figure 2). Then, we extend the Lyapunov functibrso that it is positive definite

1

€uwx

Va=— ()] Q(ep), — (&) K (&), + (&) RisT (D) (ewy) + ey (21)
0 /g

Noting that
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€ux 10
RigT(f) (ewy) =RisT () [O 1] (ewxy)g
0 B 00
0-T (22)
= [(Xe); (V&)1 (@) h 8] (€uny)g

—T (9~ (%8),] (o
the derivative oW/ is
Vs =~ (ep)] Qep), — (&) Ke ()
e} (T 9201 ] @)1+ (02003 () )

Using a positive definite matriK , € R?*2 and by choosing

(=T 201 2] @), + ()3 + K (e 23)

it follows a negative definite derivative %
Vs = —(ep)] Qep), — (&)] Kt (&), — (o) Koo (Buoy)g- (24)

Thus, using the control laws (15), (18) and (23) asymptadibitity of (e, & €l,,) =
0is proven with the Lyapunov functiovs (20) and its derivative (24). The only ob-
stacle that prevent us from achieving globally asymptd$icsiable is the system’s
inherent singularity at = 0.

3.4 Heading Control Law

As explained in Section 3.29!B and thust, were not needed for position tracking.
Hence,1; can be used for heading tracking. For a given heading tajegtr € R
we define its corresponding unity vectof € St

_ [cosyr

~ \sinygr
and similarly withn () in order to define a geometric attitude error. The Lyapunov
function corresponding to the heading error is defined as

Vs=1-n"nr, (25)

such thaw € [0, 2] is well defined for every paify, gr). Its derivative is
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V4 = —thT — I'\TI;]T7

= — (—siny cosyr + cosy sinyrr ) P — (— sinyr cosy + cosyr siny) Y,

= (sinr cosy — cosyr siny) (Yr — ),

= sin(yr — ) (Pr — ).

~———
=€y

Note at this point that the use any continuous stabilizirgifack fory will allow
us to achieve at most almost global asymptotic stabilitys T$not a disadvantage
of this specific controller but a consequence of the use oftiraoous feedback for
attitude stabilization. The result is the new unstable ldgjium at Yy — P = +71.

Refer to [4] for more details. Using (11) ang® as the inputiz, a negative definite
derivative can be achieved

V4’a)}B:U3 = _kwelzp
with

Us (—Rei(2,3)® + (Rei (2,3)? +Rei (3,3)) (P +kyey)) . (26)

B 1
Rei(3,3)
In the next step, we consider the eregy, = Uz — w!? and hence

Rei (3, 3)ew;
B1(2,3)2+Rg (3,3)2°

Y= dr+kyef— 5
Then, extendiny,
Vs = 1fnTnT+%e§Jz (27)
leads to
Vs = ey (I — ) + gz (U3 — @) ,

R (3, 3)ewz
(2, 3)2 +Rp (3, 3)

= —klpe(zu-i—ew RBI > +ewz(u3_-[z)

Finally, the control law

Rg (3, 3)64,
Rei(2,3)2+Rg (3,3)?

T,=U3+ + Keyr€oz (28)

ensures a negative definite derivative
Vs = —ky €5, + —Kar€y (29)

Now using the Lyapunov functiov (27) and its derivative (29) it is possible to see
that the equilibriump = g ande,; = 0 is almost globally asymptotically stable.
Note that because we used the classical definition of theifgadgle, the singu-
larity problematic arises for this controller and &g (2,3)? + Rg; (3,3)? = 0 the
control law (28) tends to infinity. This can be avoided if el of commanding
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the heading anglgyr, an angle of a rotation abodg would be commanded. The
problem then is the interpretation of this new angle fortadi¥g axis.

As stated before, the)® does not influence the position tracking controller.
Hence, if no heading trajectory is available or if headiragking is not of inter-
est, the following simple control law can be used instea®8j (

;= _szw;B' (30)

This controller stabilizes the equilibrium® = 0 globally asymptotically as it can
be seen from

1 . )
Vo= 5effl® Vo=l — eneifol® @)
As we will show later, this controller can lead to a desirakelduction of the needed

torques because it does not tries to track any heading toayed he derivatives for
the virtual controlsiy, u; andus can be found in the Appendix.

4 Simulation Results

%y[m] -2 15 %m]

Fig. 4 Simulation Results - Trajectory

In this section, the performance of the controller presemé&ection 3 is showed
in simulations. The tested trajectof¥r ), and its projection on they-plane can be
seen in Figure 4. It was chosen because it is a three dimedrajectory which
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Fig. 5 Simulation Results - Position

allows us to test the controller on a wide flight envelope. &nglution of the states
over time can be seen in Figures 5 - 9. In the plots also theetkesajectories and
the errors can be seen. For the position, the velocity andithgahe desired trajec-
tories correspond tor, V1 andsr. For the thrust vector the desired trajectory is the
inputuy (15). For the angular velocities, the desired trajectaaiesiy, (18) andus
(26). Initially, the multicopter is at the positiafk(0)), = (—0.5, 0.5, —1.3)T [m].

In order to test the robustness of the controller againgtidé errors, the multiro-
tor starts tilted with the following initial attitudégp, 6, ¢) = (0, %, ) [rad]. The
initial velocities and angular velocities are both zero.

Figures 5 - 8 correspond to the states involved in the positecking. The first
ten seconds of the simulation are plotted in order to shovirthvesient response. It
can be seen that after five seconds, the tracking errors laestvanished. During
the simulation time the two heading controllers were tesié@ heading tracking
controller (28) was activated between 11€0The heading angl¢y and !B can
be seen in Figure 9. The heading trajectory was set togere 0. After the twenty
seconds the controller (30) was activated. It can be seeraftest a short transient
the angular velocityu!® is stabilized to zero, whereas it is indifferent to the hagdi

In Figure 10 the control inputs are plotted, i.e. the thiusthe torqueM and its
norm. In Figure 11 the torques can be seen during the activaid deactivation
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_5 ‘ ‘ ! ! ! ! ! | — Des.
0 1 2 3 4 5 6 7 8 |- — — State
tts] Error

5 \

Fig. 6 Simulation Results - Velocity

of the heading tracking controller. It can be seen that duhieading tracking the
torqueM, has a clearly larger amplitude. Furthermore, through tieeofishe head-
ing indifferent controller a reduction of 10% of the normexdque was achieved.
This is heavily dependent on the position trajectory buhdves that a heading tra-
jectory may be used in order to optimize the distributionha tontrol torques. In
the next section the results of the paper are summarized.

5 Conclusion

In this paper, we have presented a position tracking cdetrahich stabilizes the

equilibrium (ef, & eZ,xy)T = 0 asymptotically for trajectories that avoid the multi-
rotor’s inherent singularity af = 0. Therefore, the controller exploits all the phys-
ical capabilities of the system. To this end a geometric stglping approach has

been used. The thrust vectowas introduced as a system state, which is equivalent

to use theZg vector as an attitude parameter and extend the ifipdynamically.
Therefore, we avoid the disadvantages of local attitudarpeterizations and maxi-
mized the utilizable flight envelope. Because the inherenbdpling of the position
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Fig. 7 Simulation Results - Thrust Vector

dynamics and the rotation about thg axis is exploited, the heading controllers
could be designed independently of the position controlleo heading controllers
were presented. A classical heading tracking controll8) éhd a heading indif-
ferent control law (30) were proposed. The latter helpedousave an insight on
the influence that heading tracking has on the distributfahe control torques. It
may be possible to actively use heading control for optingizihe control alloca-
tion. Finally, the simulations showed that the controlles i very good performance
with nominal conditions. The final structure of the contoltan be seen in Figure
2. Further work will consider the influence of parameter utasties and control
efficiency degradation in order to guarantee a robust cheysiem.
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Appendix 1

In this appendix the derivatives of the virtual contrals u, andus are presented.
First we rewrite (15) usingp

(up), :==m(@p);' —mg(z), + (Kx Ky) (&p), (32)
and then it follows
L RNl o
()i =m(&p) "+ (Kx Ku) (Ep)]. @)
(i} =m(d0) "+ (KxK) &)

The derivatives of the error states can be computed fromgdd)19). The deriva-
tive of (uz)g can be computed

~_ 1 B N '
(U2)g = ((dzt ) RB|+T1RE|) (ZBgPep+(u1)I+Kta)
(34)

+T'Rg (ZBEP(ép): () + Ko <é):>

with
~ .\ B 0-2Xo
dT 1 T2 .
( dt ) = % 0 0, R = Rej (QBI)HZ_(QIB)BBRB"
0 0O
Finally, us is
— Rl?)l (3a 3) =] 1B
= Re33)"% Ra@y | Te@I4 -Ra@3Iy
+ (2Rei(2,3)RE; (2,3) + 2Rgi (3,3)R; (3,3)) (r +kyey)
+ (Rei(2,3)*+Rai(3,3)%) (I +kyy)) -
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