
Position Tracking of a Multicopter using a
Geometric Backstepping Control Law

Guillermo Falconí and Florian Holzapfel

Abstract In this paper a position tracking controller for a multirotor helicopter is
presented. The controller design exploits the fact that forposition tracking, the con-
trol of the whole attitude is not needed, but only the controlof the body-fixedz-axis.
This results in a position controller which is independent of the heading controller.
This is achieved by introducing the thrust vector as a system’s state, i.e. using the
body-fixedz-axis as a reduced attitude parameter and extending the thrust inputT
dynamically. This parameter choice also avoids drawbacks of local attitude param-
eterizations like singularities or unwinding and thus maximizes the flight envelope.
The position controller is designed using a three-step backstepping control law, such
that no time-scale separation is needed. Furthermore, two heading controllers are
proposed.

Nomenclature

B Body-fixed frame
I Inertial frame
D Desired body-fixed frame
RIB Rotation matrix which transforms vectors from theB-frame into aI-frame
~zB/~zD z-Axis of theB/D frame given in theI-frame
(~x)I Position of the center of gravity given in theI-frame
(~v)I

I Velocity of the center of gravity w.r.t. theI-frame given in theI-frame
(~a)II

I Acceleration of the center of gravity w.r.t. theI-frame given in theI-frame(
~ωIB

)
B Angular rate of theB-frame w.r.t. theI-frame given in theB-frame(

~M
)

B
Control torque vector given in theB-frame
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(
~t
)

I Thrust vector given in theI-frame
T Thrust magnitude
IG

BB Moment of inertia of the center of gravity given in theB-frame
m Mass of the multirotor

In general, the lower indexl of a vector(~v)u
l represents the frame in which it is

expressed and the upper indexu refers to the frame with respect to the derivative is

considered. The arrow
−→
(·) means that it is an element of the Euclidean spaceR

3.

1 Introduction

Within the projectValles Marineris Explorer the possibility of a Mars exploration
mission using a swarm of unmanned ground vehicles (UGVs) andunmanned aerial
vehicles (UAVs) is studied. The use of aerial vehicles makesit possible to access
areas like canyons or underground caves, which have not beenyet explored and are
interesting when searching for possible habitats of livingorganisms. The canyon
system Valles Marineris is one example.

Among UAVs, rotary wing vehicles are preferred because these are capable of
vertical take-off and landing (VTOL), hover and cruise [8].Some previous work
regarding the flying feasibility of rotary wing vehicles in the Mars atmosphere can
be found in [6, 14]. Multirotor helicopters are representatives of this group, which
have over typical helicopters the following advantages. Multicopters can use fixed-
pitch rotors simplifying the mechanical structure [10] andit is possible to directly
control the motor speeds simplifying the design of the controller [7]. Furthermore,
they are robust against motor or rotor failures if more than four rotors are available
[12].

Attitude Subsystem

~M

~ωIB~ωIB

RIB

~x

T ~v

~zB

Rotational
Dynamics

Attitude
Kinematics

Position
Dynamics

Multicopter Dynamics

Fig. 1 Multicopter Dynamics

We concentrate on position tracking control strategies that can be applied for
multicopter systems. Such a control system should be able todeal with parameter
uncertainties and control effectiveness degradation in order to maximize the mis-
sion duration and guarantee the safety of the system within arelatively unknown
environment. In a first step we present in this paper a nonlinear controller which
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Position Tracking of a Multicopter using a Geometric Backstepping Control Law 3

stabilizes the position tracking error under nominal conditions within a large flight
envelope.

Multicopters’ dynamics have a cascaded structure as it can be seen in Figure 1.
On the one hand, the attitude subsystem is independent from the position and the
velocity. On the other hand, the direction of thrust vector~t depends on the attitude
and hence the position dynamics depend on the attitude. Therefore, a natural and of-
ten used approach is to separate the controller into an outerloop position controller
and an inner loop attitude controller and to treat them independently making use
of time-scale separation. However, stability of the whole system is only guaranteed
if the interconnection term between the attitude and position subsystems is small
enough.

~xT ,~vT ~u1
u2xy

T

~M

~ω
RIB

~x,~v

Position
Tracking

Attitude
Tracking Angular

Velocity
Tracking

Multirotor
Dynamics

Backstepping Controller

Heading
Controller

τz

τxy Feedback
Linear.

Controller

Ṫ ∫

Fig. 2 Backstepping Controller

In this paper, we exploit the fact that the system can be formulated as a strict-
feedback system and follow a backstepping approach appliedto the whole multi-
copter system. In contrast to most of the backstepping control laws for multicopters
which use four steps [2, 11], the proposed controller is composed of three steps as
seen in Figure 2: Position and velocity tracking, attitude tracking and angular ve-
locity tracking. As only three steps are used, we algebraically compute the needed
derivatives of the virtual controls~u1 and~u2xy.

This control design exploits the decoupling of the positiondynamics from the
angular velocityω IB

z which is inherent in multirotor systems. This is achieved by
introducing the thrust vector~t as a reduced attitude parameter which has the ad-
ditional advantage of leading to a well-defined tracking error so that the utilizable
flight envelope is maximized avoiding the drawbacks of localattitude parameteri-
zations like quaternions or Euler angles (compare e.g. with[2, 5, 11]). The Euler
angles have well known singularities (atθ =±π

2 ) and can even lead to discontinu-
ities for continuous attitude motions [13]. This complicates the application of most
of the nonlinear control theory which assumes a locally Lipschitz right hand side of
the system’s differential equation. Some authors use feedback linearization of the
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4 Guillermo Falconí and Florian Holzapfel

Euler dynamics to avoid this problem [8], but also then the linearizing feedback is
not always well-defined. Furthermore, defining a meaningfulrotation error might
be cumbersome as the composition rules for describing successive rotations using
Euler angles lead to complex calculations [13]. On the otherhand, although the
quaternion’s parametrization have a simple composition rule, they fail to represent
the attitude uniquely and hence unwinding can undesirably occur [1, 4].

A direct consequence of the decoupling is that the heading controller can be inde-
pendently designed using the additional input. In this paper, two heading controllers
are proposed. The first one is designed again via backstepping using the classical
the classical definition of the heading angle. The second oneis an alternative that
aims to reduce the input effort used for heading control for cases where heading is
irrelevant or a heading trajectory is not available.

The remainder of the paper is organized as follows. The multicopter dynamics
are derived in Section 2. In Section 3, the derivation of the backstepping controllers
is addressed. In Section 4, the performance of the controller is shown in simulations
and finally the results are summarized in Section 5.

2 Multicopter Dynamics

ω1ω2

ω3

ω4 ω5

ω6

~xB

~yB

~zB

~Mx

~My

~Mz

~t

Fig. 3 Hexacopter

For describing the dynamics of the multicopter we use an inertial frameI and a
body-fixed frameB as in Figure 3, such that origin is at the center of gravity. We
consider multicopters withnp rotors which lie all in the same plane and whose thrust
always points in the opposite direction of the body-fixedz-axis~zB. The inputs of the
system are the angular velocitiesωi of thenp rotors. We assume that the forces and
torques of the rotors are equivalent to a torque vector~M ∈R3×1 and a thrust vector
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Position Tracking of a Multicopter using a Geometric Backstepping Control Law 5

~t ∈R3×1 defined as
~t :=−T~zB (1)

whereT ≥ 0 is the thrust magnitude. Hence a function

(
~M
T

)
= f
(

ω2
1 , . . . ,ω2

np

)
(2)

is assumed to exist. Furthermore, the control allocation problem is assumed to have
a solution, i.e. the angular velocitiesωi can be calculated from~M andT . Therefore,
we consider~M andT as the inputs of the system. An example of a multicopter with
six rotors can be seen in Figure 3.

The translational dynamics can be written in the inertial frameI using Newton’s
second law and by neglecting drag forces and disturbances

m(~a)II
I =

(
~t
)

I +mg(~zI)I , (3)

whereg is the gravitational acceleration,m is the mass of the multicopter and(~zI)I =

(0,0,1)T is thez-axis of the inertial frame given inI. The rotational dynamics are
given in the body-fixed frameB by the Euler’s equation

IG
BB

(
~̇ωIB)B

B =−
(
~ωIB)

B × IG
BB

(
~ωIB)

B +
(
~M
)

B
(4)

where
(
~̇ωIB

)B
B is the derivative of

(
~ωIB

)
B with respect to theB-frame. It is assumed

that the only torque acting on the multicopter is the controltorque~M. We use the
rotation matrixRIB ∈ SO3 as an attitude parameter instead of local parameterizations
in order to maximize the utilizable flight envelope as explained in the introduction.
The attitude kinematics are given by the Strapdown equation

ṘI
IB = RIB

(
Ω

IB)
BB , (5)

whereṘI
IB is the derivative ofRIB w.r.t. theI-frame and

(
Ω

IB
)

BB is defined

(
Ω

IB)
BB :=




0 −ω IB
z ω IB

y
ω IB

z 0 −ω IB
x

−ω IB
y ω IB

x 0




as a skew-symmetric matrix using
(
~ωIB

)
B =

[
ω IB

x ,ω IB
y ,ω IB

z

]T
.

In order to decouple the rotation about~zB from the position tracking controller,
it is possible to use a reduced attitude parametrization (anexample using a quater-
nion parametrization can be found in [3]). From the translational dynamics (3) it is
clear that for position tracking we do not need to control thewhole attitude of the
multicopter but only the vector~zB ∈ S

2 (or alternatively~t), which can be interpreted
as a reduced attitude parameter [4]. This can be seen from thefact that the rotation
matrixRIB is built of the unity vectors giving the direction of the axesin theB-frame
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6 Guillermo Falconí and Florian Holzapfel

expressed in theI-frame

RIB =
[
(~xB)I (~yB)I (~zB)I

]
. (6)

This allows us to formulate a position tracking control law which is independent of
the heading controller. To this end, the dynamics of the thrust vector~t (1) will be
needed

(
~̇t
)I

I
=−T

(
~̇zB

)I

I
− Ṫ (~zB)I ,

=−T
(
~ωIB)

I × (~zB)I − Ṫ (~zB)I .

(7)

Especially useful is the representation of~̇t in the body-fixed frame

(
~̇t
)I

B
=−T

(
~ωIB)

B × (~zB)B − Ṫ (~zB)B ,

=




0 −T 0
T 0 0
0 0 −1




︸ ︷︷ ︸
:=T̃(~t)




ω IB
x

ω IB
y

Ṫ




B

. (8)

In (8) it can be seen that the dynamics of the thrust vector~t (and of~zB) can be
controlled using only the first two elements of

(
~ωIB

)
B. Thus, the position dynamics

are independent ofω IB
z and it can be used for heading tracking. For this purpose, we

recall the rotation matrixRBI formed by the Euler angles

RBI =




cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ


 . (9)

Here,s(·) andc(·) are sin(·) and cos(·) respectively. Hence, the heading angleψ
can be computed from

ψ = atan2(RBI(1,2),RBI(1,1)) , (10)

whereatan2(·) is the four quadrant arctangent function andRBI(i, j) are the respec-
tive elements of the matrixRBI . The derivative ofψ is

ψ̇ =
sinφ
cosθ

ω IB
y +

cosφ
cosθ

ω IB
z ,

=
RBI(2,3)ω IB

y +RBI(3,3)ω IB
z

RBI(2,3)2+RBI(3,3)2 ,

(11)

and it is clear thaṫψ can be controlled byω IB
z . In the next sections the position and

heading tracking controllers are presented.
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Position Tracking of a Multicopter using a Geometric Backstepping Control Law 7

3 Backstepping Controller Design

In order to track the position~xT ∈ R3×1 and velocity~vT ∈ R3×1 trajectories, the
zero equilibrium of the dynamics of the error

ep :=

(
~ex

~ev

)
=

(
~xT −~x
~vT −~v

)

must be stabilized. This can be achieved by using block backstepping [9], where at
each step a virtual control is formulated. The virtual control can then be seen as a
desired trajectory of the following state variable. We use three steps as depicted in
Figure 2 usingep,~t and~ω as state variables. Hence, the system is strict-feedback.
Choosing~t as a state is equivalent to choosing~zB as an attitude parameter and ex-
tending the inputT dynamically. Hence, only the derivativėT appears as an input as
it can be seen in (8). Furthermore, we use the following feedback linearizing control
law (see Figure 2)

(
~M
)

B
=
(
~ωIB)

B × IG
BB

(
~ωIB)

B + IG
BB (~τ )B (12)

such that the dynamics of the angular velocities are decoupled

(
~̇ωIB)B

B = (~τ )B =
(
τx τy τz

)T
. (13)

Therefore,Ṫ and~τ can be seen as the inputs of the dynamical system. In the next
three sections the position tracking controller is addressed and in Section 3.4 the
heading control law is derived.

3.1 Position Tracking

The dynamics of~ev can be written using (3)

m
(
~̇ev

)I

I
= m

(
~̇vD

)I

I
−mg(~zI)I −

(
~t
)

I

Thus, the dynamics of the position and velocity error stateep are

E(ėp)
I
I = A(ep)I +B

(
m
(
~̇vD

)I

I
−mg(~zI)I −

(
~t
)

I

)
, (14)

where the matricesE, A andB are defined as

E :=

[
I3 03

03 mI3

]
, A :=

[
03 I3

03 03

]
, B :=

[
03

I3

]
.
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8 Guillermo Falconí and Florian Holzapfel

Here,I3 ∈R
3×3 is the identity matrix and03 ∈R

3×3 is the zero matrix. In this first
step we consider the thrust vector

(
~t
)

I as an input of the position error system (14).
By selecting the desired thrust vector as

(u1)I := m
(
~̇vD

)I

I
−mg(~zI)I +Kx (~ex)I +Kv (~ev)I (15)

with two positive definite matricesKx,Kv ∈R
3×3 and assuming~t = u1 it follows

E(ėp)
I
I =

[
03 I3

−Kx −Kv

]
(ep)I . (16)

As it is a stable linear system there exist two positive definite matricesP,Q ∈R6×6

such that

V1 = (ep)
T
I P(ep)I > 0,

V̇1
∣∣
~t=u1

=−(ep)
T
I Q(ep)I < 0

for ep 6= 0 [9]. This guarantees position and velocity tracking for~t = u1.

3.2 Thrust Vector Tracking

In the second step we consider the error~et = u1−~t and therefore the position error
dynamics (16) becomes

(ėp)
I
I = E−1

[
03 I3

−Kx −Kv

]

︸ ︷︷ ︸
Ap

(ep)I +E−1B︸ ︷︷ ︸
Bp

(~et)I .
(17)

Then, we extend the Lyapunov functionV1 as follows

V2 =V1+
1
2
~eT

t ~et ,

V̇2 =−(ep)
T
I Q(ep)I +2(~et)

T
I BT

p P(ep)I +~e
T
t ~̇et ,

=−(ep)
T
I Q(ep)I +(~et)

T
I


2BT

p P(ep)I +(u̇1)
I
I −RIBT̃




ω IB
x

ω IB
y
Ṫ




B


 .

By using a positive definite matrixKt ∈R
3×3 and

(
ω IB

x ω IB
y Ṫ

)T
as the input of the

system (see Figure 2), we formulate the control law

(u2)B = T̃−1RBI

(
2BT

p Pep +(u̇1)
I
I +Kt (~et)I

)
(18)
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Position Tracking of a Multicopter using a Geometric Backstepping Control Law 9

in order to achieve a negative definite derivative of the Lyapunov functionV2

V̇2
∣∣(

ω IB
x ω IB

y Ṫ
)T

B
=(u2)B

=−(ep)
T
I Q(ep)I − (~et)

T
I Kt (~et)I .

Note that for~t = 0 the matrixT̃(~t)−1

T̃−1 :=




0 1
||~t||

0

− 1
||~t||

0 0

0 0 −1




is singular and therefore the calculation of the control lawu2 (18) is not possible.
This is not a problem of this specific controller but a system inherent singularity: no
desired attitude can be computed from the position subsystem if the thrust magni-
tudeT = 0 because in that case the position and attitude dynamics aredecoupled.
Therefore, the desired position trajectory should avoid this singularity point. Note
that we didn’t needω IB

z for tracking the thrust vector~t. Therefore, it can be used for
heading tracking as done in Section 3.4 without influencing the performance of the
position controller.

3.3 Angular Velocity Tracking

In the last backstepping step, we consider the angular velocity erroreωxy :=
(
u2x u2y

)T
−(

ω IB
x ω IB

y

)T
and thus using (8) and (18) the thrust vector error dynamics are

(
~̇et

)I

I
= (u̇1)

I
I −RIBT̃(~t)




u2x − eωx

u2y − eωy

u2z




B

,

=−2BT
p P(ep)I −Kt (~et)I +RIBT̃(~t)




eωx

eωy

0




B

.

(19)

Note that we have inserteḋT = u2z as this is one of the inputs of our system (see
Figure 2). Then, we extend the Lyapunov functionV2 so that it is positive definite

V3 =V2+
1
2

eT
ωxyeωxy, (20)

V̇3 =−(ep)
T
I Q(ep)I − (~et)

T
I Kt (~et)I +(~et)

T
I RIBT̃(~t)




eωx

eωy

0




B

+ eT
ωxyėωxy. (21)

Noting that
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10 Guillermo Falconí and Florian Holzapfel

RIBT̃(~t)




eωx

eωy

0




B

= RIBT̃(~t)




1 0
0 1
0 0


(eωxy)B

=
[
(~xB)I (~yB)I (~z)I

]



0 −T
T 0
0 0


(eωxy)B

= T
[
(~yB)I −(~xB)I

]
(eωxy)B

(22)

the derivative ofV̇3 is

V̇3 =−(ep)
T
I Q(ep)I − (~et)

T
I Kt (~et)I ,

+(eωxy)
T
B

(
T

[
(~yB)

T
I

−(~xB)
T
I

]
(~et)I +(u̇2xy)

B
B − (τxy)B

)
.

Using a positive definite matrixKω ∈R2×2 and by choosing

(τxy)B = T

[
(~yB)

T
I

−(~xB)
T
I

]
(~et)I +(u̇2xy)

B
B +Kω (eωxy)B (23)

it follows a negative definite derivative ofV3

V̇3 =−(ep)
T
I Q(ep)I − (~et)

T
I Kt (~et)I − (eωxy)

T
B Kω (eωxy)B . (24)

Thus, using the control laws (15), (18) and (23) asymptotic stability of
(
eT

p ~e
T
t eT

ωxy

)
=

0 is proven with the Lyapunov functionV3 (20) and its derivative (24). The only ob-
stacle that prevent us from achieving globally asymptotically stable is the system’s
inherent singularity atT = 0.

3.4 Heading Control Law

As explained in Section 3.2,ω IB
z and thusτz were not needed for position tracking.

Hence,τz can be used for heading tracking. For a given heading trajectory ψT ∈R
we define its corresponding unity vectornT ∈ S

1

nT =

(
cosψT

sinψT

)

and similarly withn(ψ) in order to define a geometric attitude error. The Lyapunov
function corresponding to the heading error is defined as

V4 = 1−nT nT , (25)

such thatV4 ∈ [0,2] is well defined for every pair(ψ,ψT ). Its derivative is
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Position Tracking of a Multicopter using a Geometric Backstepping Control Law 11

V̇4 =−ṅT nT −nT ṅT ,

=−(−sinψ cosψT +cosψ sinψT ) ψ̇ − (−sinψT cosψ +cosψT sinψ) ψ̇T ,

= (sinψT cosψ −cosψT sinψ)(ψ̇T − ψ̇) ,

= sin(ψT −ψ)︸ ︷︷ ︸
:=eψ

(ψ̇T − ψ̇) .

Note at this point that the use any continuous stabilizing feedback forψ will allow
us to achieve at most almost global asymptotic stability. This is not a disadvantage
of this specific controller but a consequence of the use of a continuous feedback for
attitude stabilization. The result is the new unstable equilibrium at ψT −ψ = ±π.
Refer to [4] for more details. Using (11) andω IB

z as the inputu3, a negative definite
derivative can be achieved

V̇4
∣∣
ω IB

z =u3
=−kψ e2

ψ

with

u3 =
1

RBI(3,3)

(
−RBI(2,3)ω IB

y +
(
RBI(2,3)

2+RBI(3,3)
2)(ψ̇T + kψ eψ

))
. (26)

In the next step, we consider the erroreωz = u3−ω IB
z and hence

ψ̇ = ψ̇T + kψ e2
ψ −

RBI(3,3)eωz

RBI(2,3)2+RBI(3,3)2 .

Then, extendingV4

V5 = 1−nT nT +
1
2

e2
ωz (27)

leads to

V̇5 = eψ (ψ̇T − ψ̇)+ eωz
(
u̇3− ω̇ IB

z

)
,

=−kψ e2
ψ + eψ

RBI(3,3)eωz

RBI(2,3)2+RBI(3,3)2 + eωz (u̇3− τz) .

Finally, the control law

τz = u̇3+
RBI(3,3)eψ

RBI(2,3)2+RBI(3,3)2 + kωzeωz (28)

ensures a negative definite derivative

V̇5 =−kψ e2
ψ +−kωze

2
ωz. (29)

Now using the Lyapunov functionV5 (27) and its derivative (29) it is possible to see
that the equilibriumψ = ψT andeωz = 0 is almost globally asymptotically stable.
Note that because we used the classical definition of the heading angle, the singu-
larity problematic arises for this controller and forRBI(2,3)2+RBI(3,3)2 = 0 the
control law (28) tends to infinity. This can be avoided if instead of commanding
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12 Guillermo Falconí and Florian Holzapfel

the heading angleψT , an angle of a rotation about~zB would be commanded. The
problem then is the interpretation of this new angle for a tilted~zB axis.

As stated before, theω IB
z does not influence the position tracking controller.

Hence, if no heading trajectory is available or if heading tracking is not of inter-
est, the following simple control law can be used instead of (28)

τz =−kωzω IB
z . (30)

This controller stabilizes the equilibriumω IB
z = 0 globally asymptotically as it can

be seen from

V6 =
1
2

ω IB
z ω IB

z , V̇6 = ω IB
z ω̇ IB

z =−kωzω IB
z ω IB

z . (31)

As we will show later, this controller can lead to a desirablereduction of the needed
torques because it does not tries to track any heading trajectory. The derivatives for
the virtual controlsu1, u2 andu3 can be found in the Appendix.

4 Simulation Results

~xx[m]~xy[m]

~ x
z[

m
]

−1.5
−1

−0.5
0

0.5
1

1.5

−2
−1

0
1

2
−0.5

−1

−1.5

−2

−2.5

Fig. 4 Simulation Results - Trajectory

In this section, the performance of the controller presented in Section 3 is showed
in simulations. The tested trajectory(~xT )I and its projection on thexy-plane can be
seen in Figure 4. It was chosen because it is a three dimensional trajectory which
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Position Tracking of a Multicopter using a Geometric Backstepping Control Law 13

t[s]

~ x
x[

m
]

Des.
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Error
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Fig. 5 Simulation Results - Position

allows us to test the controller on a wide flight envelope. Theevolution of the states
over time can be seen in Figures 5 - 9. In the plots also the desired trajectories and
the errors can be seen. For the position, the velocity and heading, the desired trajec-
tories correspond to~xT ,~vT andψT . For the thrust vector the desired trajectory is the
input u1 (15). For the angular velocities, the desired trajectoriesareuxy (18) andu3

(26). Initially, the multicopter is at the position(~x(0))I =
(
−0.5, 0.5, −1.3

)T
[m].

In order to test the robustness of the controller against attitude errors, the multiro-
tor starts tilted with the following initial attitude

(
φ , θ , ψ

)
=
(
0, π

4 ,
π
4

)
[rad]. The

initial velocities and angular velocities are both zero.
Figures 5 - 8 correspond to the states involved in the position tracking. The first

ten seconds of the simulation are plotted in order to show thetransient response. It
can be seen that after five seconds, the tracking errors have almost vanished. During
the simulation time the two heading controllers were tested. The heading tracking
controller (28) was activated between 11-20[s]. The heading angleψ andω IB

z can
be seen in Figure 9. The heading trajectory was set to zeroψT = 0. After the twenty
seconds the controller (30) was activated. It can be seen that after a short transient
the angular velocityω IB

z is stabilized to zero, whereas it is indifferent to the heading.
In Figure 10 the control inputs are plotted, i.e. the thrustT , the torque~M and its

norm. In Figure 11 the torques can be seen during the activation and deactivation
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Fig. 6 Simulation Results - Velocity

of the heading tracking controller. It can be seen that during heading tracking the
torque~Mz has a clearly larger amplitude. Furthermore, through the use of the head-
ing indifferent controller a reduction of 10% of the normed torque was achieved.
This is heavily dependent on the position trajectory but it shows that a heading tra-
jectory may be used in order to optimize the distribution of the control torques. In
the next section the results of the paper are summarized.

5 Conclusion

In this paper, we have presented a position tracking controller which stabilizes the
equilibrium

(
eT

p ~e
T
t eT

ωxy

)T
= 0 asymptotically for trajectories that avoid the multi-

rotor’s inherent singularity atT = 0. Therefore, the controller exploits all the phys-
ical capabilities of the system. To this end a geometric backstepping approach has
been used. The thrust vector~t was introduced as a system state, which is equivalent
to use the~zB vector as an attitude parameter and extend the inputT dynamically.
Therefore, we avoid the disadvantages of local attitude parameterizations and maxi-
mized the utilizable flight envelope. Because the inherent decoupling of the position
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Fig. 7 Simulation Results - Thrust Vector

dynamics and the rotation about the~zB axis is exploited, the heading controllers
could be designed independently of the position controller. Two heading controllers
were presented. A classical heading tracking controller (28) and a heading indif-
ferent control law (30) were proposed. The latter helped us to have an insight on
the influence that heading tracking has on the distribution of the control torques. It
may be possible to actively use heading control for optimizing the control alloca-
tion. Finally, the simulations showed that the controller has a very good performance
with nominal conditions. The final structure of the controller can be seen in Figure
2. Further work will consider the influence of parameter uncertainties and control
efficiency degradation in order to guarantee a robust control system.
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Appendix 1

In this appendix the derivatives of the virtual controlsu1, u2 andu3 are presented.
First we rewrite (15) usingep

(u1)I := m(~aD)
II
I −mg(~zI)I +

(
Kx Kv

)
(ep)I (32)

and then it follows

(u̇1)
I
I = m

(
~̇aD

)III

I
+
(
Kx Kv

)
(ėp)

I
I ,

(ü1)
II
I = m

(
~̈aD

)IIII

I
+
(
Kx Kv

)
(ëp)

II
I .

(33)

The derivatives of the error states can be computed from (17)and (19). The deriva-
tive of (u2)B can be computed

(u̇2)
B
B =



(

dT̃−1

dt

)B

RBI + T̃−1ṘB
BI



(

2BT
p Pep +(u̇1)

I
I +Kt~et

)

+ T̃−1RBI

(
2BT

p P(ėp)
I
I +(ü1)

II
I +Kt

(
~̇et

)I

I

) (34)

with

(
dT̃−1

dt

)B

=




0 − Ṫ
T 2 0

Ṫ
T 2 0 0
0 0 0


 , ṘB

BI = RBI
(
Ω

BI)
II =−

(
Ω

IB)
BB RBI .

Finally, u̇3 is

u̇3 =−
ṘI

BI(3,3)
RBI(3,3)

u3+
1

RBI(3,3)

(
−ṘI

BI(2,3)ω IB
y −RBI(2,3)τy

+
(
2RBI(2,3)ṘI

BI(2,3)+2RBI(3,3)ṘI
BI(3,3)

)(
ψ̇T + kψ eψ

)

+
(
RBI(2,3)

2+RBI(3,3)
2)(ψ̈T + kψ ėψ

))
.
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