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Abstract
We study a model differential zero-sum game, which can be regarded as

an idealized variant of the final stage of a space pursuit, in which two pur-
suing objects and one evader are involved. Results of numeric constructions
of level sets of the value function for qualitatively different cases of the game
parameters and results of simulation of optimal motions are presented.

1 Introduction and Problem Formulation

1) In the paper, a model differential zero-sum game with two pursuers and
one evader is studied. Three inertial objects moves in the straight line. The
dynamics descriptions for pursuers P1 and P2 are
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2 Sergey S. Kumkov, Stéphane Le Ménec, and Valerii S. Patsko

z̈P1
= aP1

, z̈P2
= aP2

,

ȧP1 = (u1 − aP1)/lP1 , ȧP2 = (u2 − aP2)/lP2 ,

|u1| ≤ µ1, |u2| ≤ µ2,

aP1
(t0) = 0, aP2

(t0) = 0.

(1)

Here, zP1
and zP2

are the geometric coordinates of the pursuers; aP1
and

aP2
are their accelerations generated by the controls u1 and u2. The time

constants lP1
and lP2

define how fast the controls affect the systems.
The dynamics of the evader E is similar:

z̈E = aE , ȧE = (v − aE)/lE , |v| ≤ ν, aE(t0) = 0. (2)

Let us fix some instants T1 and T2. At the instant T1, the miss of the first
pursuer with respect to the evader is computed, and at the instant T2, the
miss of the second one is calculated:

rP1,E(T1) = |zE(T1)− zP1
(T1)|, rP2,E(T2) = |zE(T2)− zP2

(T2)|. (3)

Assume that the pursuers act in coordination. This means that we can join
them into one player P (which will be called the first player). This player
governs the vector control u = (u1, u2). The evader is regarded as the second
player. The resultant miss is computed by the following formula:

ϕ = min{rP1,E(T1), rP2,E(T2)}. (4)

At any instant t, both players know exact values of all state coordinates
zP1

, żP1
, aP1

, zP2
, żP2

, aP2
, zE , żE , aE . The vector composed of these compo-

nents is denoted by z. The first player choosing its feedback control minimizes
the miss ϕ, the second one maximizes it.

Relations (1)–(4) define a standard antagonistic differential game. One
needs to construct the value function (t, z) 7→ V(t, z) of this game and optimal
(or quasioptimal) strategies of the players.

2) Up to now, there are a lot of publications dealing with differential games
where one group of objects pursues another group; concerning games with
linear dynamics see, for example, works [1, 4, 6, 11,12]. The problem under
consideration has two pursuers and one evader. So, from the point of view
of number of objects, it is the simplest one. On the other hand, strict math-
ematical studies of problems “group-on-group” usually include quite strong
assumptions onto the dynamics of objects, dimension of the state vector, and
conditions of termination. Unlike, this paper considers the problem without
any assumptions of these types.

3) Let us describe a practical problem, whose reasonable simplification gives
the model game (1)–(4). Suppose that two pursuing objects attack the evad-
ing one with high velocities. They can be rockets or aircrafts in the horizontal
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Model Formulation of Pursuit Problem with Two Pursuers and One Evader 3

Fig. 1 Scheme of the nominal motions in the pursuit problem with weak-
maneuvering objects

plane (Fig. 1). A nominal motion of the first pursuer is chosen such that at
the instant T1 the exact capture occurs. In the same way, a nominal motion
of the second pursuer is chosen (the capture is at the instant T2). But indeed,
the real positions of the objects differ from the nominal ones. Moreover, the
evader using its control can change its trajectory but not essentially, without
sharp turns. Coordinated efforts of the pursuers are computed during the
process by the feedback method to minimize the resultant miss, which is the
minimum of the distances at the instants T1 and T2 from the first and second
pursuers, respectively, to the evader.

Assume that we can choose a line (in Fig. 1, it is a horizontal line) such that
the major components of velocities of all three objects are directed along it.
Then, the misses at the instants T1 and T2, can be computed along a direction
orthogonal to such a line ignoring difference of positions along this line.

The passage from the original non-linear dynamics to a dynamics, which
is linearized with respect to the nominal motions, gives [13, 14] the problem
under consideration.

2 Passage to Two-Dimensional Differential Game

At first, let us pass to the relative geometric coordinates

y1 = zE − zP1 , y2 = zE − zP2 (5)

in dynamics (1), (2), and payoff function (4). After this, we have the following
notations:
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4 Sergey S. Kumkov, Stéphane Le Ménec, and Valerii S. Patsko

ÿ1 = aE − aP1
, ÿ2 = aE − aP2

,

ȧP1 = (u1 − aP1)/lP1 , ȧP2 = (u2 − aP2)/lP2 ,

ȧE = (v − aE)/lP1
, |u2| ≤ µ2,

|u1| ≤ µ1, |v| ≤ ν, ϕ = min{|y1(T1)|, |y2(T2)|}.

(6)

State variables of system (6) are y1, ẏ1, aP1
, y2, ẏ2, aP2

, aE ; u1 and u2 are
controls of the first player; v is the control of the second one. The payoff func-
tion ϕ depends on the coordinate y1 at the instant T1 and on the coordinate
y2 at the instant T2.

A standard approach to study linear differential games with fixed termi-
nal instant and payoff function depending on some target coordinates of the
state vector at the terminal instant is to pass to new state coordinates (see,
for example, [7, 8]) that can be treated as values of the target coordinates
forecasted to the terminal instant under zero controls. Often, these coordi-
nates are called the zero effort miss coordinates [13,14]. In our case, we have
two instants T1 and T2, but coordinates computed at these instants are inde-
pendent; namely, at the instant T1, we should take into account y1(T1) only,
and at the instant T2, we use the value y2(T2). This fact allows us to use
the mentioned approach when solving the differential game (6). With that,
we pass to new state coordinates x1 and x2, where x1(t) is the value of y1
forecasted to the instant T1 and x2(t) is the value of y2 forecasted to the
instant T2.

The forecasted values are computed by formula

xi = yi + ẏiτi − aPi
l2Pi
h(τi/lPi

) + aEl
2
Eh(τi/lE), i = 1, 2. (7)

Here, xi, yi, ẏi, aPi
, and aE depend on t; τi = Ti− t. Function h is described

by the relation h(α) = e−α + α − 1. Emphasize that the values τ1 and τ2
are connected to each other by the relation τ1 − τ2 = const = T1 − T2. It is
very important that xi(Ti) = yi(Ti). Let X(t, z) be a two-dimensional vector
composed of the variables x1, x2 defined by formulae (5), (7).

The dynamics in the new coordinates x1, x2 is the following [9]:

ẋ1 = −lP1
h(τ1/lP1

)u1 + lEh(τ1/lE)v, |u1| ≤ µ1, |u2| ≤ µ2,

ẋ2 = −lP2h(τ2/lP2)u2 + lEh(τ2/lE)v, |v| ≤ ν.
(8)

The payoff function is ϕ
(
x1(T1), x2(T2)

)
= min{|x1(T1)|, |x2(T2)|}.

The first player governs the controls u1, u2 and minimizes the payoff ϕ;
the second one has the control v and maximizes ϕ.

Note that the control u1 (u2) affects only the horizontal (vertical) compo-
nent ẋ1 (ẋ2) of the velocity vector ẋ = (ẋ1, ẋ2)T. When T1 = T2, the second
summand in dynamics (8) is the same for ẋ1 and ẋ2. Thus, the component
of the velocity vector ẋ depending on the second player control is directed at
any instant t along the bisectrix of the first and third quadrants of the plane
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Model Formulation of Pursuit Problem with Two Pursuers and One Evader 5

x1, x2. When v = +ν, the angle between the axis x1 and the velocity vector
of the second player is 45◦; when v = −ν, the angle is 225◦. This property
simplifies the dynamics in comparison with the case T1 6= T2.

Let x = (x1, x2)T and V (t, x) be the value of the value function of game (8)
at the position (t, x). From general results of the differential game theory,
it follows that V(t, z) = V

(
t,X(t, z)

)
. This relation allows one to compute

the value function of the original game (1)–(4) using the value function for
game (8).

For any c ≥ 0, a level set (a Lebesgue set) Wc =
{

(t, x) : V (t, x) ≤ c
}

of
the value function in game (8) can be treated as the solvability set for the
considered game with the result not greater than c, that is, for a differential
game with dynamics (8) and the terminal set

Mc =
{

(t, x) : t = T1, |x1| ≤ c
}⋃{

(t, x) : t = T2, |x2| ≤ c
}
.

When c = 0, one has the situation of the exact capture. The exact capture
means equality to zero, at least, one of x1(T1) and x2(T2). Let Wc(t) = {x :
(t, x) ∈ Wc} be the time section (t-section) of the set Wc at the instant t.
Similarly, let Mc(t) for t = T1 and t = T2 be the t-section of the set Mc at
the instant t.

Comparing dynamics capabilities of each of pursuers P1 and P2 and the
evader E, one can introduce the parameters [9, 14] ηi = µi/ν, εi = lE/lPi

,
i = 1, 2. They define the shape of the solvability sets in the individual games
P1–E and P2–E. Namely, depending on values of ηi and ηiεi (which are
not equal to 1 simultaneously), there are 4 cases [14] of the solvability set
evolution (see Fig. 2):
• expansion in the backward time (a strong pursuer);
• contraction in the backward time (a weak pursuer);
• expansion until some backward time instant and further contraction;
• contraction until some backward time instant and further expansion (if

the solvability set still has not broken).
Respectively, given combinations of pursuers’ capabilities in individual games
and durations T1, T2 (equal/different), there are significant number of vari-
ants for the problem with two pursuers and one evader.

The ideology of solving the game used by us is the following. Choose the
parameters ηi, εi, and, also, the instants Ti, i = 1, 2; then, using some fine
grid for values of c, we compute the level sets Wc of the value function. After
that, we can build optimal or quasioptimal strategies of the first and second
players.

Nowadays, different workgroups suggested many algorithms for numeric
solution of differential games of quite general type (see, for example, [2, 3, 5,
10, 15]). Problem (8) has the second order on the state variable and can be
rewritten as

ẋ = D1(t)u1 +D2(t)u2 + E(t)v, |u1| ≤ µ1, |u2| ≤ µ2, |v| ≤ ν. (9)
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6 Sergey S. Kumkov, Stéphane Le Ménec, and Valerii S. Patsko

Fig. 2 Variants of the solvability set evolution in an individual game

Here, x = (x1, x2)T; vectors D1(t), D2(t), and E(t) look like

D1(t) =
(
−lP1h((T1 − t)/lP1)T, 0

)
, D2(t) =

(
0, −lP2h((T2 − t)/lP2)

)T
,

E(t) =
(
lEh((T1 − t)/lE), lEh((T2 − t)/lE)

)T
.

The control of the first player has two independent components u1 and u2.
The vector D1(t) (D2(t)) is directed along the horizontal (vertical) axis. The
second player’s control v is scalar. When T1 = T2, the angle between the axis
x1 and the vector E(t) equals 45◦; when T1 6= T2, the angle changes in time.

Due to peculiarity of our problem, we use special methods for constructing
level sets of the value function.

3 Maximal Stable Bridge: Control with Discrimination

A level set Wc of the value function V is a maximal stable bridge (MSB)
breaking on the terminal set Mc [7, 8].

Let T1 = T2. Denote Tf = T1. Using the concept of MSB from [7, 8], we
can say that Wc is the set maximal by inclusion in the space t ≤ Tf , x such
that Wc(Tf ) = Mc(Tf ) and the stability property holds: for any position
(t∗, x∗) ∈ Wc(t∗), t∗ < Tf , any instant t∗ > t∗, t

∗ ≤ Tf , any constant
control v of the second player, which obeys the constraint |v| ≤ ν, there
is a measurable control t →

(
u1(t), u2(t)

)
of the first player, t ∈ [t∗, t

∗),
|u1(t)| ≤ µ1, |u2(t)| ≤ µ2, guiding system (8) from the state x∗ to the set
Wc(t

∗) at the instant t∗.
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Model Formulation of Pursuit Problem with Two Pursuers and One Evader 7

The stability property assumes a discrimination of the second player by
the first one: the choice of the first player’s control in the interval [t∗, t

∗) is
made after the second player announces his control in this interval.

It is known (see [7, 8]) that any MSB is close. The set W ′c(t) = cl
(
R2 \

Wc(t)
)

(the symbol cl denotes the operation of closure) is the time section
of MSB W ′c for the second player at the instant t. The bridge terminates at
the instant Tf on the set M ′c(Tf ) = cl

(
R2 \Mc(Tf )

)
. If the initial position

of system (8) is in W ′c and if the first player is discriminated by the second
one, then the second player is able to guide the motion to the set M ′c(Tf )
at the instant Tf . Thus, ∂Wc = ∂W ′c. It is proved that for any initial po-
sition (t0, x0) ∈ ∂Wc, the value c is the best guaranteed result for the first
(second) player in the class of feedback controls.

Due to symmetry of dynamics (8) and the set Wc(Tf ) with respect to the
origin, one gets that for any t ≤ Tf the time section Wc(t) is symmetric also.

If T1 6= T2, then there is no any appreciable complication in constructing
MSBs for the problem considered in this paper in comparison with the case
T1 = T2. Indeed, let T1 > T2. Then in the interval (T2, T1] in (8), we take into
account only the dynamics of the variable x1 when building the bridge Wc

backwardly from the instant T1. With that, the terminal set at the instant T1
is taken as Mc(T1) = {(x1, x2) : |x1| ≤ c}. When the constructions are made
up to the instant T2, we add the set Mc(T2), that is, we take

Wc(T2) = Wc(T2 + 0)
⋃{

(x1, x2) : |x2| ≤ c
}
,

and further constructions are made on the basis of this set.
So, our tool for finding a level set of the value function in game (8) corre-

sponding to a number c is the backward procedure for constructing a MSB
with the terminal set Mc. Presence of an idealized element (the discrimi-
nation of the opponent) allowed us to create effective numeric methods for
backward construction of MSBs.

The solvability set with the index equal to c in the individual game P1–E
(P2–E) is MSB built in the coordinates t, x1 (t, x2) and terminating at the
instant T1 (T2) on the set |x1| ≤ c (|x2| ≤ c). Its t-section, if it is non-empty,
is a segment in the axis x1 (x2) symmetric with respect to the origin. In the
plane x1, x2, this segment corresponds to a vertical (horizontal) strip of the
same width near the axis x2 (x1). It is evident that when t ≤ T1 (t ≤ T2),
such a strip is contained in the section Wc(t) of MSB Wc of game (8) with
the terminal set Mc.
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8 Sergey S. Kumkov, Stéphane Le Ménec, and Valerii S. Patsko

4 Results of Numeric Constructions of Maximal Stable
Bridges

Case of strong pursuers. In the case of two strong pursuers, the t-sections
of MSBs in individual games P1–E and P2–E grow with increasing of the
backward time. This gives that for any c ≥ 0 and any t ≤ t̄ = min{T1, T2}
the set Wc(t) includes a cross near the axes x1, x2, which expands with
decreasing t.

Let us give results of constructing t-sections Wc(t) for the following values
of the game parameters: µ1 = 2, µ2 = 3, ν = 1, lP1

= 1/2, lP2
= 1/0.857,

lE = 1.

Equal terminal instants. Let T1 = T2 = 6. Fig. 3 shows results of constructing
the set W0 (that is, with c = 0). In the figure, one can see several time
sections W0(t) of this set. The bridge has a quite simple structure. At the
initial instant τ = 0 of the backward time (when t = 6), its section coincides
with the target set, which is the union of two coordinate axes. Further, at the
instants t = 4, 2, 0, the cross thickens, and two triangles are added to it. The
widths of the vertical and horizontal parts of the cross correspond to sizes
of MSBs in the individual games with the first and second pursuers. These
triangles are located in the II and IV quadrants (where the signs of x1 and
x2 are different, in other words, when the evader is between the pursuers).
They give the zone where the exact capture is possible only under collective
actions of both pursuers.

Time sections Wc(t) of other bridges Wc, c > 0, have a shape similar
to W0(t).

Fig. 3 Two strong pursuers, equal ter-
minal instants: time sections of the max-
imal stable bridge W0

Fig. 4 Two strong pursuers, different
terminal instants: time sections of the
maximal stable bridge W0
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Model Formulation of Pursuit Problem with Two Pursuers and One Evader 9

Fig. 5 Strong pursuers, different terminal instants: 3D-view of the set W0

Different terminal instants. Let T1 = 7, T2 = 5. Results of constructing the
set W0 are given in Fig. 4. When t < 5, time sections W0(t) grow both
horizontally and vertically; two additional triangles appear, but in this case
they are curvilinear. In Fig. 5, the set W0 is shown in the three-dimensional
space t, x1, x2.

The given results are typical for the case of strong pursuers. When T1 = T2,
the sets Wc(t) can be described analytically. This was done in paper [9]. Also,
there the case T1 6= T2 was studied. But for it, only an upper approximation
of the sets Wc(t) was obtained.

Case of weak pursuers. Since in the case of weak pursuers the t-sections
of MSBs in individual games P1–E and P2–E contract with growth of the
backward time and become empty at some instant, the set Wc(t) for any c ≥ 0
with decreasing of t loses infinite sizes along axes x1 and x2.

The most surprising fact discovered during the numeric study was that
the connected set Wc(t) with decreasing of t loses connectedness and disjoins
into two separate parts.

Take the parameters µ1 = 0.9, µ2 = 0.8, ν = 1, lP1 = lP2 = 1/0.7,
lE = 1. Let us show results for the case of different terminal instants only:
T1 = 9, T2 = 7. Since in this variant the evader is more maneuverable than
the pursuers, the first player cannot guarantee the exact capture.

The set Wc in the space t, x1, x2 for c = 2.0 is shown in Fig. 6. During
evolution of the sections W2.0(t) in t, they change their structure at some
instants. These places are marked by drops in the constructed surface of the
set.

One strong and one weak pursuers. Let us take the following para-
meters: µ1 = 2, µ2 = 1, ν = 1, lP1

= 1/2, lP2
= 1/0.3, lE = 1. Now the
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10 Sergey S. Kumkov, Stéphane Le Ménec, and Valerii S. Patsko

Fig. 6 Two weak pursuers, different terminal instants: 3D-view of the set W2.0

Fig. 7 One strong and one weak pursuers, different termination instants: 3D-view
of the set W5.0

evader is more maneuverable than the second pursuer, and an exact capture
by this pursuer is unavailable. Assume T1 = 5, T2 = 7.

In Fig. 7, a three-dimensional view of MSB W5.0 is shown. The part along
the axis x1 of its time section W5.0(t) contracts with decreasing of τ , and
breaks further. The part along the axis x2 grows. After breaking the indi-
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Model Formulation of Pursuit Problem with Two Pursuers and One Evader 11

Fig. 8 Varying advantage of the pursuers, equal termination instants: 3D-view of
the maximal stable bridge W1.315

vidual MSB P2–E (and respective collapse of the part of the cross along the
axis x1), there is a strip along the axis x2 only with two additional parts
determined by the joint actions of both pursuers.

Varying advantage of pursuers. Consider a variant when both pursu-
ers P1 and P2 are equal, with that at the beginning of the backward time,
the bridges in the individual games contract and further expand. Choose the
game parameters in such a way that for some c the section Wc(t) of MSB Wc

with decreasing of t disjoins into two parts, which join back with further
decreasing of t.

Parameters of the game are µ1 = µ2 = 1.5, ν = 1, lP1
= lP2

= 1/0.25,
lE = 1. Termination instants are equal: T1 = T2 = 15.

A three-dimensional view of MSB W1.315 is shown in Fig. 8.

5 Control on the Basis of Switching Lines

A control based on the switching lines assumes separation of the state space
x1, x2 to some cells at instants from some grid in time. In each cell, every
scalar control keeps some extreme value. The time grid should contain intants,
when a player chooses its control in a discrete scheme. Under a discrete control
scheme [7,8] with the step ∆, a control chosen at the instant ts is kept until
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12 Sergey S. Kumkov, Stéphane Le Ménec, and Valerii S. Patsko

the instant ts+1 = ts+∆. At the position
(
ts+1, x(ts+1)

)
, a new control value

is chosen, etc.

1) In the game under consideration, the first player has two scalar controls u1,
u2, which are bounded by the inequalities |u1| ≤ µ1, |u2| ≤ µ2. The com-
ponent of the velocity of system (9), which is affected by the control u1,
is connected to the vector D1(t) and is horizontal in our case. The compo-
nent corresponding to the control u2 is connected to the vector D2(t) and is
directed vertically.

To separate the plane x1, x2 into parts, in which the control u1 takes one
of the extreme values u1 = +µ1 or u1 = −µ1, we study the change of the
value function at the instant t in lines parallel to the vector D1(t), that is, in
horizontal lines.

In the problem that we investigate, the following property is true (except
situations of varying advantage of the pursuers) for each horizontal line. The
restriction of the value function V (t, ·) to a horizontal line is a function having
only one interval of local minimum, which is either a point, or a segment, or
the entire line. With that, the restriction grows when the argument goes from
the interval of minimum.

Considering an arbitrary horizontal line, we can gather the points of mini-
mum of the restriction of the value function to this line. We take an arbitrary
point from such an interval of minimum as a point for the switching line of
the control u1. Taking points from all horizontal lines in such a way, we ob-
tain a switching line Π1(t) separating the plane x1, x2 into two parts. In the
part, where the vector D1(t) is directed from the switching line, we define the
control u∗1 equal to −µ1, and in the another part, it is equal to +µ1. During
numeric constructions, the switching line Π1(t) is built on the basis of some
number (quite great, but finite) of time sections Wcj (t) of the level sets of
the value function for some collection {cj} of values of the parameter c.

In the same way using corresponding objects, the switching line Π2(t) can
be built for the control u2.

The control of the first player based on the switching lines Π1(t) and Π2(t),
we call quasioptimal because we assume that in the switching lines, the con-
trol u1 (u2) is taken arbitrary from the interval [−µ1,+µ1] ([−µ2,+µ2]). For
the cases of “strong” and “weak” pursuers, it can be proved that such a choice
is optimal indeed. But for the case of varying advantage of the pursuers, it
is possible that for some small neighborhood of the switching lines we need
some additional information about the value function. The authors have not
studied this question yet.

Fig. 9 shows the typical picture of the time sections Wc(t) of the level sets
and switching lines Π1(t) and Π2(t) for the case of varying advantage of the
pursuers.

Emphasize once more that the switching lines depend on time t, and the
choice of the control is defined by the current state position of the system
with respect to the corresponding switching line. The vectors D1(t) and D2(t)
are used. Drawing a ray from the point x(t) with the directing vector Di(t),
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Model Formulation of Pursuit Problem with Two Pursuers and One Evader 13

one can decide whether it crosses the switching line Πi(t). If it does not, then
u∗i
(
t, x(t)

)
= −µi, if it crosses, then u∗i

(
t, x(t)

)
= +µi.

Thus, to organize computations of the discrete control scheme of the first
player, we should keep in memory of the computer a collection of the switch-
ing lines in some time grid.

2) The direction of the action of the second player’s scalar control v is defined
by the vector E(t). Its direction is constant in the case T1 = T2 and changes
in time if T1 6= T2. When constructing the switching lines for the second
player, we analyze points of local maxima and minima of restrictions of the
value function to lines parallel to the vector E(t). For each of these lines,
the collection of all points of minima and maxima can consists, generally
speaking, of several intervals. Nevertheless, their number is small. This allows
us to take corresponding points from them and to constitute some lines, which
separate the plane x1, x2 into parts, in which the control v keeps one of its
extreme values −ν or +ν.

To construct v∗
(
t, x(t)

)
, we use the vector E(t). Compute how many times

(even or odd) a ray with the beginning at the point x(t) and the directing
vector E(t) crosses the second player switching lines. If the number of crosses
is even (absence of crosses means that the number equals zero and is even),
then we take v∗

(
t, x(t)

)
= +ν; otherwise, v∗

(
t, x(t)

)
= −ν.

The typical picture of the switching lines of the second player is given
in Fig. 10 for the case of varying advantage of the pursuers. Here, one can
see 6 domains of constancy of the second player’s control v. Direction of

Fig. 9 The case of varying advantage of the pursuers. The typical picture of the
switching lines for the first player; the dark green line is for the control u1, the light
green one is for the control u2
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its action are shown by arrows. In the lines, which are composed of points
of local maxima of the value function, the control can be taken arbitrary
from the interval [−ν,+ν]. But in the lines consisting of the point of local
minima, from the theoretic point of view, only extreme values −ν and +ν
are allowed, which push the system from the switching line. Due to errors of
numeric construction of the swiching lines, this way of control can lead to a
motion in a sliding regime along the switching line (that changes in time).
Such a motion can be unoptimal from the point of view of the second player.
Assuming this situation to be almost impossible, we regard the suggested
method of the second player’s control as a quasioptimal one.

6 Optimal Motion Simulation Results

Let the pursuers P1, P2, and the evader E move in the plane. This plane is
called the original geometric space. At the initial instant t0, velocities of all
objects are parallel to the horizontal axis and sufficiently larger than the pos-
sible changes of the lateral velocity components. The components of object
velocities, which are parallel to the horizontal axis, are constant. Magnitudes
of these components are such that the rendezvous of the objects P1 and E
happens at the instant T1, and the objects P2 and E encounter at the in-
stant T2. The dynamics of lateral motion is described by relations (1), (2);
the resultant miss is given by formula (4).

The initial lateral velocities and accelerations are assumed to be zero:

Fig. 10 The case of varying advantage of the pursuers. The typical picture of the
switching lines for the second player for the same instant t = 12.5 as in Fig. 9
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ż0P1
= ż0P2

= ż0E = 0, a0P1
= a0P2

= a0E = 0.

The simulation is made for the following parametes of the game:

µ1 = µ2 = 1.1, ν = 1, lP1 = lP2 = 1/0.6, lE = 1, T1 = T2 = 20.

The parameters are such that the pursuers can achieve a higher acceleration
than the evader, but they are more inertial, that is, the achievement of the
extreme acceleration lasts longer than the evader’s one. We have

ηi = µi/ν = 1.1 > 1, ηiεi = ηi ·
lE
lPi

= 1.1 · 0.6 = 0.66 < 1, i = 1, 2.

So, we consider the case of varying advantage of the pursuers. In this situaton,
the exact capture is not guaranteed.

In Figs. 11 and 12, the horizontal axis is denoted by the symbol d. The
coordinate d shows the longitudinal position of the objects. Controls of the
objects affect the vertical (lateral) coordinate.

Fig. 11 shows the optimal trajectories of the objects for the following initial
positions at the instant t0 = 0:

z0P1
= −130, z0P2

= 100, z0E = 0.

The initial deviations are so large that the second pursuer (the upper one)
is unable reach the evader, even applying its extremal control. But the first
pursuer (the lower one) has a quite small miss, which, nevertheless, is still
non-zero.

In Fig. 12, the optimal trajectories are given for the initial positions

z0P1
= −20, z0P2

= 10, z0E = 0.

Fig. 11 Optimal trajectories in the case of varying advantage of the pursuers; large
initial deviations
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Fig. 12 Optimal trajectories in the case of varying advantage of the pursuers; small
initial deviations

Now, both pursuers have small terminal misses, but they are non-zero due
to the advantage of the evader at the final stage of the pursuit. Note that
the evader is just in the middle between the pursuers at the instant T1 = T2:
such a position provides the maximal possible payoff value for him.

7 Conclusion

For a model zero-sum differential game with two pursuing ond one evading
objects, a numeric solution is obtained: the level sets of the value function,
quasioptimal strategies on the basis of switching lines, simulation of motions
using the suggested strategies. A complete investigation of the problem can be
made because the original formulation allows an equivalent presentation with
two-dimensional state vector in the plane of coordinates of one-dimensional
forecasted misses (zero-effort miss coordinates). Similar problems are much
harder if the miss between each pursuer and the evader are computed in a
two-dimensional geometric space.
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