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Abstract Three types of guidance systems are studied. The first type is a sepa-
rated two-loop autopilot guidance law that assumes spectral separation between the
guidance and the flight control. However, separation may not hold close to inter-
ception, requiring possibly an integrated design of guidance and control. Using the
integrated approach, two different guidance law types can be used to improve the
end-game performance. The first one is the integrated single-loop guidance law,
where the coupling between flight control and guidance loops is taken into account
in the derivation process. The second type is the integrated two-loop autopilot guid-
ance law. In this case, the autopilot loop is designed separately from the guidance
one, but all the states are fed-back into the guidance loop. The performance of the
three guidance laws is evaluated and compared via a single-input single-output test
case. It is shown that the integrated two-loop autopilot-guidance law can manip-
ulate the inner autopilot dynamics, resulting in the same performance as the inte-
grated single-loop guidance law. In addition, it is shown that the performance of the
separated guidance law is inferior to that of the integrated laws.
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1 INTRODUCTION

The traditional approach to designing the guidance and flight control (G&C) system
of interceptor missiles is using a decoupled architecture by assuming that spectral
separation holds [1] . In this manner, the inner autopilot loop is stated as a solution
of the infinite horizon tracking problem, where the reference signal is usually taken
as an acceleration step command. And the outer guidance loop is designed based on
a simplified low-order model of the autopilot dynamics. However, separation does
not hold close to interception due to the rapid changes in the endgame geometry.
This may cause instability and result in a miss distance increase. Integrated design
of the G&C loops instead of separated design can improve the missile’s performance
due to the optimal integration of the G&C subsystems.

One of the most frequently used guidance laws, designed using a separated G&C
approach, is proportional navigation (PN). This guidance law was proven to be the
optimal guidance law in the case of an ideal dynamics missile and a nonmaneuver-
ing target [2]. When the target is assumed to be performing a constant maneuver, the
augmented proportional navigation (APN) is usually used instead. The APN guid-
ance law is proportional navigation with an extra term accounting for the maneuver-
ing target. When the ideal missile dynamics assumption is replaced by a first-order
dynamics, the optimal guidance law (OGL)[3] is derived. This guidance law has a
time-varying gain that requires a time-to-go estimator outside the guidance block.

A two-loop G&C system that is designed in one state space including both the
missile dynamics and the engagement kinematics is denoted as an integrated two-
loop autopilot-guidance law. In [4] a two-loop integrated G&C was designed using
high order sliding mode control (SMC) and backstepping techniques. In the outer
loop, the missile’s pitch rate was used as the virtual control to keep the sliding quan-
tity of the manifold close to zero. The inner loop was designed to enforce tracking
of the pitch rate command in the presence of uncertainties.

A guidance loop that has to ensure the inner stability of the airframe as well
as the target’s interception is denoted as an integrated single-loop guidance law. An
integrated single-loop G&C (IGC) problem was formulated in [5] as a finite-horizon
dynamic game using partial-state information. The design objective was to obtain
the controller that minimizes a given performance index under the worst-case target
maneuvers and measurements disturbances. In [6] a class of PN guidance laws has
been obtained in closed form by decoupling of the radial and tangential coordinates.
Then, a typical transverse acceleration component of the PN guidance laws family
was combined with the airframe dynamics to derive an autopilot control law. A
time-delay control (TDC) method was used to design a single-loop IGC system in
[7]. Using the TDC technique, the performance of the guidance law is dependent
upon the controller’s sampling time.

The following two integrated single-loop guidance laws have used the SMC tech-
nique for derivation. In [1] the SMC technique was applied to derive a controller for
a canard controlled missile. The sliding surface was defined by a zero effort miss
(ZEM) term obtained from the differential game formulation of the interception
problem. The same methodology was used in [8] to obtain a controller for a dual

WeCT2.1

448



Linear Quadratic Integrated vs. Separated Autopilot-Guidance Design 3

controlled missile. Motivated by the additional degree of freedom, offered by the
two controllers, two sliding surfaces were defined to ensure good homing perfor-
mance as well as a damped airframe response.

The feedback linearization technique was used in [9] for designing a single-loop
integrated guidance and autopilot system. This technique is used for designing a
nonlinear control system by transforming it into a linear, time invariant system with
respect to its pseudo controller. Hence, the pseudo controller can be obtained by
any linear design method. In this case, the infinite time horizon linear quadratic
regulator (LQR) technique was combined with the feedback linearization method.
A similar approach was employed in [10], only this time the transformed system was
stated as a finite-interval problem. The latter was formulated in two ways. In the first
approach, the problem was formulated as a finite-time problem. In the second one,
the range was taken as the independent variable.

In this paper, three types of guidance laws are analyzed and compared: a sepa-
rated two-loop autopilot guidance law, an integrated single-loop guidance law, and
an integrated two-loop autopilot-guidance law. The guidance laws performance is
studied using a thrust vector control (TVC) missile (taken from [11]) while impos-
ing only zero miss distance. This is a single-input single-output (SISO) test case,
where the scalar input is the missile’s acceleration command and a single terminal
cost is miss distance.

The remainder of this paper is organized as follows: In the next section, the
problem formulation is presented. Then, in sections 3-4 the different guidance laws
schemes and the test case description are presented. The simulations results are pre-
sented in Sec.5 followed by concluding remarks. In the Appendix, the solution of
the finite-time regulator problem and the order reduction method are provided.

2 PROBLEM FORMULATION

The design assumptions will be next presented, followed by the set of linear equa-
tions of motion, and the interception scenario description.

2.1 Design Assumptions

The derivation of the guidance laws will be performed based on the following as-
sumptions:

1. A skid-to-turn roll-stabilized missile is considered. The motion of such a missile
can be separated into two perpendicular channels, thus allowing to treat only a
planar motion.

2. Linear dynamics for both the evading target and the pursuing missile.
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4 Maital Levy, Tal Shima, and Shaul Gutman

3. The missile’s and target’s deviations from the collision triangle are small during
the end-game. In this manner, the relative end-game trajectory can be linearized
about the nominal line of sight (LOS).

4. Constant speeds for both the missile and target.

2.2 Linear Equations of Motion

The general set of equations can be classified into three categories:

1. Kinematics (guidance) equations, xG ∈ RnG×1

2. Dynamics equations, xD ∈ RnD×1

3. Servo model equations 2 , xS ∈ RnS×1

The dynamics equations are coupled to the servo equation but not vice versaẋD

ẋS

=

 AD

[0] AS

xD

xS

+
[0]

BS

 ũ (1)

where ũ ∈Rm×1 is the input to the servo and [0] is a matrix of zeroes with appropri-
ate dimension. Note that u ∈RmG×1 will denote the guidance controller. The matrix
AD may be rewritten as follows

AD =
[

ADD ADS

]
(2)

where ADD ∈ RnD×nD and ADS ∈ RnD×nS . The set of kinematic equations is given
by

ẋG =
[

AGG AG,DS

]
xG

xD
xS

 (3)

Finally, the general set of equations are given by

ẋ = Fx+Gũ, x =
[
xG xD xS

]T (4)

where

F =


AGG

[0]
[0]

AG,DS

ADD ADS
[0] AS

 , G =

[
[0]
BS

]
(5)

2 The equations of motion take into account the servo dynamics.
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Linear Quadratic Integrated vs. Separated Autopilot-Guidance Design 5

In its general form Eq. 4 is time varying. For simplicity of presentation the time
dependency is not explicitly written.

2.3 End-Game Scenario Description

Figure 1 presents a schematic view of the planar endgame geometry where XIF −
OIF −ZIF is a Cartesian inertial reference frame. X axis is aligned with the initial
LOS, LOS0, and Z axis is perpendicular to it. The subscripts P and E denote the
pursuing missile and the evading target, respectively. V , a, and γ denote the speed,
normal acceleration, and path angle. aPN , and aEN are respectively the pursuer and
evader accelerations normal to LOS0. r is the range between the adversaries and λ
is the angle between the LOS and XIF axis. y is the relative displacement between
the target and the missile normal to X axis.

ZIF

OIF

XIF

P

γP

VP

aP

VE

γE

y

LOS0

r

λ λ0

aPN

aEN

λ0

Z

X

E

aE

Fig. 1 Planar Engagement Geometry

The corresponding kinematic equation is

ÿ = aEN −aPN (6)

The pursuer’s acceleration can be expressed as

aPN = Cx (7)
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3 AUTOPILOT-GUIDANCE DESIGN

3.1 Separated Two-Loop Autopilot-Guidance Law

Assuming spectral separation of the flight control and guidance loops allows to de-
sign them separately and use a decoupled G&C architecture as shown in figure 2.
Thus, the outer guidance law loop can be treated as a solution of the finite horizon
control problem and designed based on a simplified low-order model of the closed
loop autopilot dynamics. The inner autopilot loop is stated as a solution to the in-
finite horizon control problem and is designed to follow the guidance acceleration
commands.

u x

y

ẏ

1

s

1

s

+

−

Guidance

Law

y

ẏ

aEN

aPN

1

s

1

s

+

−

aEN

Autopilot

aPN

Servo

Model

Airframe

Dynamics

C

Fig. 2 Block Diagram of a Separated Two-Loop Autopilot-Guidance Law

Derivation of guidance laws based on a low-order approximation of the autopilot
will be presented in sub-section 4.5.

3.2 Integrated Single-Loop Guidance Law

In the integrated design approach, the guidance law is being related directly to the
dynamics of the airframe as presented in figure 3 3. In this way, the guidance law
can use the information on the missile’s internal states more effectively. Here, the
solutions for the optimal controllers are the commands to the servo models, δc. The

y

ẏ

aEN

aPN
Servo

Model

u = ũ δ x

1

s

1

s

+

−

Guidance

Law

Airframe

DynamicsaEN

x

C

Fig. 3 Block Diagram of an Integrated Single-Loop Guidance Law

3 It should be noted that the controller’s deflection, δ , is part of the state vector, x.
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Linear Quadratic Integrated vs. Separated Autopilot-Guidance Design 7

guidance law is stated as a solution to the finite time control problem. In an effort to
meet the control requirements, different forms of cost functions can be chosen. In
this case, a quadratic cost function is minimized

J = xT (t f )Qfx(t f )+
∫ t f

t0
uT Ru dt (8)

The detailed solution to the finite time horizon problem is presented in the appendix.
Substituting the optimal controller in the equations of motion (4) we obtain

ẋ =
[
F−GR−1GTP

]
︸ ︷︷ ︸

FI

x(t) (9)

where, P is the solution of the differential Riccati equation

−Ṗ = PF+FTP−PGR−1GTP , P
(
t f
)
= Qf (10)

Remark 1. The presented approach of integrated single-loop guidance law is valid
for linear systems. However, in practical missiles the controller deflection is bounded
which requires treating a nonlinear system during saturation. In fact, during satura-
tion the G&C loop is opened and if in addition the open loop transfer function is un-
stable or close to instability, the missile may be lost. In [12] this nonlinear effect was
taken into account explicitely in designing a separated two-loop autopilot-guidance
system. It was shown that in this case, the use of a decoupled diagram may achieve
better performance than the integrated scheme.

3.3 Integrated Two-Loop Autopilot Guidance Law

The integrated two-loop autopilot guidance law has benefits of both the separated
approach and the integrated approach. The inner autopilot is designed separately of
the guidance law, but all the missile’s states are fed back into the outer guidance
loop as can be seen in figure 4.

u x




ẋ
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ẋ
S
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A
D

[0] A
S









x
D

x
S
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B
S



 ũ
Ĉ

uA = −K

[

x
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x
S

]

ũ

yaEN 1

s

1

s
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−

Guidance
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ẏ
aPN

1

s

1

s
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−

Guidance

Law
aEN

x
+

+

Servo Model & Airframe Dynamics

C

Fig. 4 Block Diagram of an Integrated Two-Loop Autopilot-Guidance Law
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The autopilot’s feedbacks can be equally described in controller terms

uA =−K
[

xD
xS

]
,K =

[
kD kS

]
(11)

where, kD ∈ RmG×nD , kS ∈ RmG×nS and uA ∈ RmG×1.
As can be seen in figure 4 the input to the missile’s autopilot is not simply the
guidance command, u ∈ RmG×1, but an equivalent controller that is given by

ũ = Ĉ(u+uA) = Ĉ
(

u−
[
kD kS

][xD
xS

])
(12)

where, Ĉ ∈ Rm×mG and ũ ∈ Rm×1.
Thus, the running cost integral should be a function of ũ

J = xT (tf)Qfx(tf)+
∫ t f

t
ũT (τ) R̃ũ(τ) dτ (13)

Substituting (12) in (4)-(5) the general set of differential equations is obtained

ẋ = FAx+GAu, x =
[
xG xD xS

]T (14)

where

FA =


AGG

[0]
[0]

AG,DS

ADD ADS

−BSĈkD AS −BSĈkS

 ,GA =

[
[0]

BSĈ

]
(15)

4 TEST CASE

The chosen test case is a TVC missile while minimizing a quadratic cost function
with a terminal cost on the miss distance. First, the missile’s model, the engagement
kinematics, and the scenario parameters will be presented. Then, the corresponding
autopilot design and guidance laws formulations will be presented.

4.1 Dynamics Model

The basic configuration of an Exo-atmospheric4 TVC missile is given in figure 5.
XBF − cg−ZBF is a coordinate system parallel to the frame X −O−Z (X axis is

4 Outside the atmosphere, the atmospheric density is sufficiently low, therefore the aerodynamic
forces and wind can be neglected.
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Linear Quadratic Integrated vs. Separated Autopilot-Guidance Design 9

aligned with the LOS0 and Z axis is perpendicular to it), with its origin attached to
the missile’s center of gravity. XBR −cg−ZBR is a rotating reference frame attached
to the missile’s center of gravity, where the XBR axis is aligned with the missile’s
longitudinal axis. Let θ and δt denote the missile’s body orientation and its thrust
(tail controller) deflection, respectively. T is the thrust force and lt is the distance
from the center of mass to the nozzle.

θ

c.g.

lt

T
δt

ZBF

XBF

ZBR

XBR

δt

Fig. 5 Basic configuration of a TVC Missile

Projecting the thrust vector perpendicular to the missile’s axis we get,

Tt = T sinδt

Using small angles approximation, i.e. sinδt ∼= δt and cosδt ∼= 1,

Tt ∼= T δt (16)

The moment equation about the center of gravity is given by

Icgθ̈ =−Tt lt (17)

where Icg is the inertia moment about the center of gravity. Define

Mδt =
T lt
Icg

(18)

and using equation (16), one has

θ̈ =−Mδt δt (19)

Taking only the thrust component perpendicular to the initial LOS

T sinϕ = maPN , ϕ = θ +δt (20)

And finally, by using small angle approximation, sinϕ ∼= ϕ ,

aPN =
T
m

ϕ (21)
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The state space formulation of the combined servo and dynamic model is given as
follows ẋD

ẋS

=

 AD

[0] AS

xD

xS

+
[0]

BS

 ũ (22)

where the states are

xD =
[
θ θ̇
]T

, xS = δt , ũ = δ c
t (23)

and the model matrices are given by

AD =

[
0 1 0
0 0 −Mδt

]
, AS =− 1

τt
, BS =

1
τt

(24)

Remark 2. In a TVC missile, the velocity, mass and inertia are time varying. How-
ever, since the guidance law is designed for the end-game phase they can be assumed
to be nearly constant.

4.2 Kinematics Equations

Assuming perfect information of the future target’s maneuver strategy and that it is
to perform a constant maneuver, we have

ȧE = 0 (25)

Using (25) and (6), the kinematics state space formulation is given by

xG =
[
y ẏ aEN

]T
AGG =

0 1 0
0 0 1
0 0 0

 ,AG,DS =

 [0]
−C
[0]

 (26)

4.3 Scenario Parameters

Table 1 presents the scenario parameters.
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Table 1 Scenario Parameters Values

Parameter Value Units

τt 0.1 sec
T/m 120 m/sec2

aEN 10 m/sec2

y0 10 m
Mδt 200 1/sec2

4.4 Autopilot Design

Figure 6 presents the TVC missile autopilot scheme that ensures zero steady-state
error to constant acceleration command inputs.

a
c
P + ap+

−
−

+
+φc δct δt θ̈ θ̇ θ φ∆φm

T
1

τt·s+1
−Mδt

1

s

1

s

T

m

K
θ̇t

ĉt

Fig. 6 TVC Missile - Autopilot Block Diagram

Table 2 provides the design gains of the tail controller. From now on, the phrase
autopilot version X will relate to gain set number X.

Table 2 Tail Controller Design Gains

Gain Set Kθ̇t
ĉt

0. -0.0413 -0.1644
1. -0.0347 -0.1219
2. -0.0347 -0.1026

4.5 Separated Two-Loop Autopilot Guidance Law Formulation

The design of a separated two-loop autopilot guidance law is based on a low-order
approximation of the autopilot dynamics. Thus, the closed form solution of the guid-
ance law will be obtained assuming ideal autopilot dynamics and a constant maneu-
vering target. The state-space form of the equation set is given in equation 26, where
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F = AGG , G =

 0
−1
0

 , x = xG (27)

The chosen weight matrices are

R = 1, Qf = Qf = MTM =

a2 0 0
0 0 0
0 0 0

⇒ M =
[
a 0 0

]
(28)

The problem’s order was reduced (see the appendix) in order to obtain the closed-
form solution

P =

(
1+a2 t3

go

3

)−1

z(tgo) =Cz ·P−1, Cz =
z0

1+a2 t3
f
3

ac
P =Czatgo

(29)

where z0 is the initial zero effort miss given by

z0 = a

(
x1(0)+ t f x2(0)+

t2
f

2
x3(0)

)

4.6 Integrated Single-Loop Guidance Law Formulation

In sub-section 3.2, the integrated single-loop guidance law’s optimization problem
is formulated. This formulation will be applied to the TVC missile case. It should be
noted that the integrated single-loop guidance law command is the thrust deflection.

Using the TVC model equations (22-24) and the kinematics equations (3,26), the
state-space form of the equation set is given by

x =
[
y ẏ aEN θ θ̇ δt

]T
, ũ = u = δ c

t (30)

F =

[
F11 F12
[0] F22

]
, F11 =

0 1 0
0 0 1
0 0 0

 , F12 =

 0 0 0
− T

m 0 − T
m

0 0 0


F22 =

0 1 0
0 0 −Mδt

0 0 − 1
τt

 , G =
[
[0] 1

τt

]T

(31)

The chosen weight matrices are
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R = 1, Qf =

[
a2 [0]
[0] [0]

]
(32)

4.7 Integrated Two-Loop Autopilot Guidance Law Formulation

In sub-section 3.3, the integrated two-loop autopilot guidance law’s optimization
problem was formulated. This formulation will be applied to the current test case.
In this case, the input to the missile’s autopilot is an equivalent controller that is
given by

ũ = Ĉ(u+uA) = Ĉ
(

u−
[
kD kS

][xD
xS

])
= Ceqx+Dequ

The cost function is

J = xT (tf)Qfx(tf)+
∫ t f

t
ũT (τ) R̃ũ(τ) dτ

where the running cost term can be equally expressed by

ũTR̃ũ = uTRu+2xTSu+xTQx

x =
[
xG xD xS

]T
Hence, the appropriate running cost weight matrices are given by

Q =

[
[0] [0]
[0] CT

eqR̃Ceq

]
, S =

[
[0]

CT
eqR̃Deq

]
, R = DT

eqR̃Deq (33)

In this case, the guidance commands are the acceleration commands and not the
controller deflection commands. Therefore, in order to get the appropriate deflection
command, ϕ c, the guidance command has to be multiplied by m

T (ϕ c = m
T ac

P).
The equivalent controller is obtained from the autopilot block diagram presented

in figure 6

ũ = ĉt
m
T

u−
[
ĉt Kθ̇t

ĉt
]θ

θ̇
δt

 (34)

where u is the guidance acceleration command.
Using the TVC model equations (22-24) and the kinematics equations (3,26), the
state-space form is

x =
[
y ẏ aEN θ θ̇ δt

]T
, u = ac

P (35)
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FA =

[
FA11 FA12
[0] FA22

]
, FA11 =

0 1 0
0 0 1
0 0 0

 , FA12 =

 0 0 0
− T

m 0 − T
m

0 0 0


FA22 =

 0 1 0
0 0 −Mδt

− ĉt
τt
−

Kθ̇t
τt

− (1+ĉt )
τt

 , GA =
[
[0] m

T
ĉt
τt

]T

(36)

The chosen weight matrices are

R̃ = 1, Qf =

[
a2 [0]
[0] [0]

]
(37)

5 SIMULATION RESULTS

In this section both the separated two-loop autopilot-guidance law and the inte-
grated two-loop autopilot-guidance law will be compared to the integrated single-
loop guidance law. The integrated single-loop guidance law uses a combined state
space of the kinematics and airframe dynamics. In this way, the guidance law is able
to take into account the missile’s dynamics most efficiently. Thus, the integrated
single-loop guidance law is expected to achieve the optimal performance subject to
a given missile’s model and may be used as a proper benchmark system to evaluate
the other guidance laws’ performance. The results of the two-loop type guidance
laws will be computed for all three autopilot versions presented in table 2.

5.1 Separated Two-Loop Autopilot Guidance Law vs. Integrated
Single-Loop Guidance Law

The simulations results will be summarized via a Pareto Front curve. Each point
on the curve is a simulation result with a different miss distance weight in terms
of the squared miss distance, y2(t f ), and the tail control effort,

∫
δt

c(t)2dt. And so,
when a → ∞ the miss distance is decreased and the control effort is increased. The
obtained curve presents the optimal performance that may be achieved subject to
a given airframe model. Being below the Pareto Front is not possible, since the
optimal results cannot be improved and being above it means the obtained results
are not optimal.

Figure 7 presents the Pareto Front curves of both the integrated single-loop guid-
ance law and of the separated two-loop autopilot-guidance law. As expected, the
separated guidance law curves appear above the integrated guidance law curve. The
integrated guidance law was designed based on the full missile’s model, whereas the
separated guidance law was derived assuming ideal missile’s dynamics. Therefore,
it was not able to predict accurately the airframe response and issue the appropriate
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guidance command. Moreover, the separated guidance law uses only information
on the kinematical states, whereas the integrated one uses all the states (kinematic
and dynamics).

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

∫
δt

c(t)2dt

y(
t f)2

 

 
Autopilot Version #0
Autopilot Version #1
Autopilot Version #2
Integrated Guidance Law

Fig. 7 Pareto Front - Separated Guidance Law & Integrated Single-Loop Guidance Law

5.2 Integrated Two-Loop Autopilot Guidance Law vs. Integrated
Single-Loop Guidance Law

In this case the simulations results will be presented via Pareto Front and sample
runs.

Pareto Front

Figure 8 presents a Pareto Front of an integrated single-loop guidance law and of
an integrated two-loop autopilot guidance law. The results of the integrated single-
loop guidance law and of the integrated two-loop guidance law coincide for all three
autopilot versions. The integrated two-loop autopilot guidance law was able to take
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16 Maital Levy, Tal Shima, and Shaul Gutman

into account the autopilot inner-dynamics due to the full-state feedback incorporated
in the block diagram (figure 4).

0 0.005 0.01 0.015
0
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500
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800

∫
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c(t)2dt

y(
t f)2

 

 a→0
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a=25e−5
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Integrated Guidance Law
Autopilot Version #0
Autopilot Version #1
Autopilot Version #2

Fig. 8 Pareto Front - Integrated Guidance Laws

Sample Runs

Figure 9 presents the deflection commands of both guidance laws. In the integrated
single-loop guidance law, the guidance command is directly the deflection com-
mand. Whereas in the integrated two-loop guidance law, the guidance command is
an acceleration command that has to be followed by the autopilot. In this manner,
only the equivalent controller (equation 12) is the input to the servo model. There-
fore, to obtain the same cost, only the equivalent acceleration command of the inte-
grated two-loop autopilot-guidance law must have the same values as the guidance
deflection command of the integrated single-loop guidance law. Figure 10 presents
the kinematic states. It can be seen that the miss distance is nulled at the end of the
interception for the given weight, a = 3 ·10−4.
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Fig. 9 Deflection Commands - Integrated Guidance Laws (a = 3 ·10−4)

6 CONCLUSIONS

In this paper, three types of guidance laws were studied: separated two-loop autopilot-
guidance law, integrated two-loop autopilot-guidance law, and integrated single-
loop guidance law. The integrated single-loop guidance law was used as a bench-
mark system to evaluate the other guidance laws performance, since it is expected
to achieve the optimal performance subject to a given missile’s model. The perfor-
mance of the different guidance laws was analyzed through simulations by using
the concept of Pareto Front and sample runs. The simulations were held for SISO
test case that is a TVC missile model where only zero miss distance is imposed. It
was shown that the performance of the integrated guidance law is superior to the
separated one. In the separated approach, the guidance law is designed based on
a low order missile’s model and therefore cannot issue the appropriate guidance
command. The integrated two-loop autopilot-guidance law was shown to achieve
the same performance as the integrated single-loop guidance law. This may be ex-
plained by the full-state feedback to the integrated two-loop autopilot-guidance law
that enables taking into account the autopilot inner-dynamics.

WeCT2.1

463



18 Maital Levy, Tal Shima, and Shaul Gutman

0 0.5 1 1.5 2 2.5 3
0

10

20

y 
[m

]

0 0.5 1 1.5 2 2.5 3
−40

−20

0

20

ẏ
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Fig. 10 Kinematic States - Integrated Guidance Laws (a = 3 ·10−4)

7 APPENDIX: SOLUTION of the FINITE-TIME REGULATOR
PROBLEM[13]

Consider the linear time variant system

ẋ(t) = F(t)x(t)+G(t)u(t) x(t0) given (38)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control vector, F(t) ∈ Rn×n,
G(t) ∈ Rn×m are weight matrices.

The minimization problem is the task of finding the optimal controller
u∗(t), t ∈

[
t0, t f

]
, which minimizes

J = xT(tf)Qfx(tf)+
∫ t f

t0

(
uTRu+xTQx

)
dt (39)

where Q ∈Rn×n, R ∈Rm×m and Qf ∈Rn×n are constant matrices. Let the matrices
Q and R be symmetric, nonnegative and positive definite, respectively. Let Qf be a
nonnegative definite matrix.

The optimal controller is given by the linear feedback law

u(t)∗ =−R−1G(t)TP(t)x(t) (40)
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where P(t) ∈ Rn×n is a symmetric matrix, satisfying the differential Riccati equa-
tion

−Ṗ(t) = P(t)F(t)+F(t)TP(t)−P(t)G(t)R−1G(t)TP(t)+Q , P
(
t f
)
= Qf

(41)

8 APPENDIX: ORDER REDUCTION

The guidance problem’s order can be reduced by using the concept of zero effort
miss (ZEM). The optimization problem is formulated as follows

ẋ = Fx+Gu

J = xT (t f )Qfx(t f )+
∫ t f

t0
uT Ru dt

Let z(t) denote a ZEM variable

z(t) = MΦ(tf, t)x(t) (42)

where Φ(tf, t) is the transition matrix of F, satisfying

Φ̇(tf, t) =−Φ(tf, t)F, Φ(tf, t) = I (43)

M is a constant vector, satisfying

MTM = Qf (44)

Computing the time derivation of z(t)

ż(t) = MΦ̇(tf, t)x(t)+MΦ(tf, t)ẋ(t) = MΦ(tf, t)Gx(t) (45)

Denote
X(tgo) = X(tf, t) = MΦ(tf, t)Gx(t) (46)

Then, the reduced order optimization problem can be reformulated as follows

ż(t) = X(tf, t)u(t)

J = ∥z(tf)∥2 +
∫ t f

t0
uT Ru dt

(47)

The optimal controller takes the form

u∗ =−R−1XT(tgo)Pz (48)

where P(tgo) denotes the solution to the Riccati differential equation
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d
dtgo

P(tgo) =−P(tgo)XR−1XTP(tgo), P(0) = I (49)

In [14] the closed form solution of a linear MIMO guidance law in the sense of L 2

was presented.

P(tgo) =

[
I+

∫ tgo

0
X(τ)R−1XT(τ) dτ

]−1
(50)
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