
Experiences with the Barracuda UAV Auto
Flight System

J. van Tooren1, R. Hammon2

Abstract Operational surveillance and reconnaissance requirements not only put
requirements on the mission systems, but also affect requirements on the reliable
and autonomous operation of a UAV platform. To enable the safe and care free
operation of UAVs in complex mission scenarios Cassidian has invested in the
development of necessary technologies for reliable and autonomous Auto Flight
systems for UAVs. Furthermore, due to decreasing budgets the design and devel-
opment phases of such systems need to be cheaper and faster, even though func-
tional complexity is constantly increasing. This paper details the Cassidian experi-
ence with the Auto Flight system on the Barracuda technology demonstrator. The
guidance and control functional architecture and control law design are detailed
regarding the newly developed Auto Flight system which successfully flew in
multiple flight tests in 2012 on the Barracuda UAV demonstrator.

Experiences with the Barracuda UAV Auto Flight System 1

Design drivers and philosophy .. 2

Auto Flight Functional Architecture .. 3

Flight Guidance algorithms ... 4
Examples of Lateral Trajectory Planning .. 5

Autopilot and Inner Control Loops .. 7

Definition of Longitudinal and Lateral Plant .. 11

Autopilot and Inner Loop Control Law Structure 12

Example of a control element within the control cascade 14

Example of an estimator for differentiated state variables 14

Gain adaptation ... 16
Conclusions ... 16

1 J. van Tooren

Cassidian, EADS Deutschland GmbH, Rechlinerstraße, 85077 Manching, Germany
email: Joost.vanTooren@cassidian.com

2 R. Hammon

Cassidian, EADS Deutschland GmbH, Rechlinerstraße, 85077 Manching, Germany
email: Reiner.Hammon@cassidian.com

Proceedings of the EuroGNC 2013, 2nd CEAS Specialist Conference
on Guidance, Navigation & Control, Delft University of Technology,
Delft, The Netherlands, April 10-12, 2013

ThAT2.1

648

2

Design drivers and philosophy

Typical mission scenarios for UAVs include prolonged operation in a mission area
during which new information (either from the aircraft's own payload sensors or
external assets) can cause a re-tasking of the system by the operator. To ensure the
operator has good situational awareness on the operation of the UAV platform, it
is mandatory not to overload the operator with unnecessary tasks and information.

The Cassidian approach is to provide a high level of autonomy of the Auto
Flight system. The stored flight plan is flown automatically using on-board trajec-
tory generation and care free flight control with the possibility (not necessity) of
only high level interaction with the system, using so-called High Level Commands
(i.e. no remote control using a conventional pilot stick). All failure detection, iso-
lation and reconfiguration logic is designed such that the system has a graceful
degradation in case of failures.

As the aircraft must always be able to navigate back to a safe landing, even in
case of a data link failure, it is necessary to conduct certain safety critical func-
tions such as navigation, guidance and control on-board the platform. Therefore,
all necessary sensing, flight plan handling, trajectory generation and flight control
functions are integrated into a high integrity computing architecture. A clear seg-
regation of mission relevant functions and safety-critical functions is ensured,
such that any possible errors in the mission critical software do not adversely af-
fect the safety critical functions. Furthermore, since the development cycles of the
mission and safety critical software are not necessarily synchronous and done by
different teams, interdependencies are kept to a minimum to avoid development
and test planning problems.

Conventional autopilot systems usually navigate to the active waypoint using a
moding of multiple control laws, depending on the aircraft's position and orienta-
tion. The flown trajectory is therefore only implicitly determined in the design.
However, on Barracuda an explicit trajectory towards the active waypoint is gen-
erated on board of the UAV for the following reasons:

• To ensure optimal Operator situational awareness by displaying the planned
trajectory towards the active waypoint on the ground control station. It is essen-
tial that this trajectory is identical to the actual trajectory flown by the UAV.

• To enable both conventional and complex mission waypoint types which can
be assessed by both the operator and the mission system.

These design drivers have resulted in a new design of the Barracuda Auto
Flight system. The following sections detail this design and the experiences at
Cassidian during concept development, implementation and testing of the new
system.

Reference [1] has been used for the definition of all flight mechanic nomencla-
ture and conventions throughout this paper.

ThAT2.1

649

3

Auto Flight Functional Architecture

To enable the fast integration of an increasing number of functional requirements
on the system and to keep development time and cost low, a modular functional
architecture is used. The architecture is similar to manned aviation Auto Flight
systems, with the exception that almost all functionalities are safety critical (i.e.
the functionalities must work at all times) and are therefore integrated into the
high integrity flight control computers.

The Auto Flight System consists of a Flight Management, Flight Guidance and
Autopilot / Control Law system as depicted in Fig. 1. The Flight Management
System (FMS) is responsible for the moding of primary Phases of Flight and all
flight plan and waypoint handling.

Flight
Management

System
Flight Guidance

Autopilot & Inner
Control Loops

WPprev

WPactive

WPnext

PoFprim

WP reached

TsTs χχ &,
TsTs YX ∆∆ ,

TsTsTs Vh ,,γ∆

PoFsec

Fig. 1. Auto Flight Functional Architecture

The FMS Phase of Flight moding constitutes of the main phases of flight such

as Taxi, Take-off, Climb, En-route and Landing. These 'primary' Phases of Flight
are provided by the FMS to the Flight Guidance which respectively determines the
internal secondary Phase of Flight detailing the Flight Guidance modes (e.g. flare,
de-crab, de-rotation, …).

Furthermore, the FMS interfaces with the Flight Guidance by providing three
waypoints: Previous, Active and Next waypoint. The Flight Guidance can then
generate an explicit trajectory towards the Active waypoint, taking into account
the location and altitude of the Next waypoint. As the Active waypoint is reached,
the Flight Guidance reports this to the FMS, which in its turn provides the new
triplet of waypoints.

The Flight Guidance interfaces with the Autopilot by stating the aircraft's de-
viation from the commanded trajectory as shown in Fig. 2. The Autopilot contains
all control laws necessary for the ground and flight phases. The lateral and vertical
trajectory and speed profile is commanded to the Autopilot with a certain time ad-
vance such that the Autopilot can follow this trajectory as closely as possible.

ThAT2.1

650

4

Active Wp

North

Current AC position [North,East]

Commanded AC position
[x Ts ,yTs]

χ cmd

x T

y T

∆ y g

∆ x g
On flight path projected
Ac position

∆∆∆∆yT

∆∆∆∆xT

East

Previous Wp

Active Wp

North

North,East]

[x Ts ,yTs

χ cmd

x T

y T

∆ y g

∆ x g
On flight path projected
Ac position

∆∆∆∆yT

∆∆∆∆xT

East

Previous Wp

Fig. 2. Definition of trajectory commands from the Flight Guidance to the Autopilot

Flight Guidance algorithms

The explicit trajectory generation uses line and arc trajectory segments to con-
struct the lateral trajectory. The segments (and therefore the trajectory) are defined
in the earth fixed reference frame. The vertical trajectory and speed profile is then
determined along the lateral trajectory. The trajectory generation (i.e. set of line
and circle segments) is determined for a certain set of Previous, Active and Next
waypoints. Once the trajectory is fixed, the current deviation towards this trajec-
tory is used to generate the commands for the Autopilot.

The Flight Guidance trajectory and command generation is divided into the fol-
lowing four sub-functions:

• Setup: Sets up all information as required for the trajectory planning algorithms
based on the Previous, Active and Next waypoints and current aircraft position
and orientation.

• Planner: Generates the lateral, vertical and speed trajectory to the active way-
point depending on the waypoint types. The result is a list of trajectory seg-
ments (curves and straight lines).

• Scheduler: Determines the current lateral, vertical and speed segment depend-
ing on the current state of the aircraft.

• Commander: Calculates the lateral, vertical and speed commands for the auto-
pilot using the deviation towards the projected position along the current seg-
ment as defined by the Scheduler.

ThAT2.1

651

5

Fig. 3 shows the trajectory planning as part of the overall Flight Guidance func-
tionality. The following chapter shows some examples of the lateral trajectory
planner.

Lateral PlannerLateral Planner

Vertical Planner

Speed Planner

Layer Planner

Curve Start Point

Previous Waypoint

Active Waypoint

Next Waypoint

Lateral Curve

Vertical Curve

Speed Curve

S
et

up

P
la

nn
er

S
ch

ed
ul

er

C
om

m
an

de
r

FlightGuidance

Lateral PlannerLateral Planner

Vertical Planner

Speed Planner

Layer Planner

Curve Start Point

Previous Waypoint

Active Waypoint

Next Waypoint

Lateral Curve

Vertical Curve

Speed Curve

Lateral PlannerLateral Planner

Vertical Planner

Speed Planner

Layer Planner

Curve Start Point

Previous Waypoint

Active Waypoint

Next Waypoint

Lateral Curve

Vertical Curve

Speed Curve

S
et

up

P
la

nn
er

S
ch

ed
ul

er

C
om

m
an

de
r

S
et

up

P
la

nn
er

S
ch

ed
ul

er

C
om

m
an

de
r

FlightGuidance

Fig. 3. Flight Guidance trajectory planning

Examples of Lateral Trajectory Planning

The starting point of the lateral trajectory (i.e. Curve Start Point) is normally the
last commanded position of the Flight Guidance to the Autopilot to ensure a
smooth transition between waypoints, unless the current aircraft position is too far
away from this last commanded position (e.g. due to initialisation, wind, etc.).

Depending on the turn type of the active waypoint, the lateral Planner decides
which mode of the lateral Planner is to be used to generate the lateral curve. The
turn radius depends on the preferred value and type of the active waypoint, al-
though it is limited to the flight performance of the UAV.

Since the Curve Start Point generally does not lie on the leg as defined by the
Previous and Active waypoint, it is necessary to construct a so-called 'Transition-
to-Leg' segment sequence. This is constructed by defining arc-line-arc segments
where the line segment has a certain maximum intercept angle (for instance 45°),
depending on the cross track distance and orientation towards the leg.

ThAT2.1

652

6

For a conventional 'Fly By' waypoint the Transition-to-Leg is then followed by
a line and an arc segment, such that the trajectory rolls into the Fly-By turn to-
wards the Next waypoint as illustrated in Fig. 4.

Fig. 4. Example of a 'Fly-By' lateral trajectory

If the Active waypoint is of the type 'Circle Center', the lateral trajectory is

constructed using a so-called 'Transition-to-Circle' segment sequence, similar to
the 'Transition-to-Leg' sequence, followed by an arc around the Active waypoint
with a certain radius and waypoint segment angle as specified in the waypoint at-
tributes. Fig. 5 shows an example of how the lateral trajectory is constructed from
the Curve Start Point towards and around the specified Active waypoint.

Trajectories for all waypoint types are constructed in the Planner using similar
algorithms and always result in a certain segment sequence list. This list is then
transferred to the Scheduler and Commander, which then generate the correspond-
ing commands for the Autopilot control loops.

Fig. 5. Example of 'Circle-Center' mission waypoint

ThAT2.1

653

7

Autopilot and Inner Control Loops

The Autopilot has to function throughout the flight envelope for all required fail-
ure and environmental conditions. A conventional approach with elaborate gain
tuning would have taken too long and therefore a new approach was used for the
Barracuda 2012 flight campaign which had been researched in the previous years
and partly published in [2] and more elaborately in [3]. Since the flight campaign
several improvement potentials have been identified, but the basic principles will
remain unchanged and have proven their strengths. In the following sections, the
basic principles of this new approach are presented. A detailed elaboration of the
control concept however is out of scope of this paper.

The design comprises of inner loops (Primary Control Laws) as well as the de-
sign of outer loops (Autopilot) for lateral and longitudinal control of the aircraft.
The design method uses a straightforward approach which required no additional
tuning of the gains by hand. The flight tests related to this first version of the con-
trol laws were conducted in the summer of 2012 and showed a very successful
performance of the control laws.

The principal characteristics of the presented Barracuda control law design
concept together with the corresponding methods used are depicted in Fig. 6 and
are subsequently elaborated in the following sections. This is then followed by an
explanation of the usage of the concept for the longitudinal and lateral control of
the aircraft. Finally, an example of the implementation of the pitch rate control
loop is presented.

requirements

in
time domain

requirements
in

frequency domain

a new concept:
cascade control

and
model based compensation

cascade control model based
compensation

using
dynamic shells

using estimators
for differentiated
state variables

using
gain assignment

using
auto-selector

controls

using
no integrator

functions

additional properties and features

Fig. 6. Principal characteristics for the Barracuda Control Law design concept

Using cascade control:
Cascade control is a well-proven classical method which is the preferred control
method for Autopilot and Auto Throttle (ATHR) design (control laws for aircraft).

ThAT2.1

654

8

The applications for cascade control are mainly restricted to systems with one in-
put and multiple outputs. Furthermore, cascade control seems only to be applica-
ble for plants with relatively long time constants or with integrator-like behaviour
such as translatory aircraft modes (e.g. autopilot or ATHR control law design).
The presented concept however demonstrates that cascade control can also be
used for multi-input, multi-output systems as well as for plants with short time
constants. The combination of two methods - 'cascade control' and 'model based
compensation' - allows the usage of cascade control in the field of Primary Control
Laws as well. Cascade control corresponds in many aspects to the mindset of the
control engineer and gives a good understanding of how the control technique
works. Mathematical considerations are standing in the background of this paper
and are given only when necessary to understand the real application of control.

The basic structure of cascade control is defined in Fig. 7 for the special case
that the plant consists of a chain of n integrators. The transfer function for every
control step can be described approximately for low frequencies by following
transfer function.

 ni
Ks

K

sx

sx
sH

i

i

ic

i
i ,...,2,1,

)(

)(
)(=

+
≈=

Time response and stability margin for control loop i depend essentially on the

following ratio.

 ni
K

K
c

i

i
i ,...,2,1,1 == −

An increase of ci is correlated to an increase of the stability margin between

loop i and loop i-1 and to an increase of the damping of control loop i as well to a
deceleration of control. A decrease of ci is correlated to a decrease of the stability
margin between loop i and loop i-1 and to an increase of the damping of control
loop i as well to an acceleration of control. The question is what will be a good
compromise related to an adjustment for ci. Subsequently, by a recursive dimen-
sioning of all overall gains it can be shown that the step responses of the loops 1 to
n are converging to a certain type of step response which becomes slower from
one loop to the next loop by the factor 'c'. In many cases the control engineer
wants a small overshoot or one that tends to zero in the step response. It can be
shown in simulation that the limit case for overshoots for ∞→n converges to
about e = 2.72. A mathematical proof that this converges to e has not been estab-
lished, but would be an interesting issue of research. The Barracuda cascade was
defined exactly by the factor e.

The consideration related to the rules of cascade as they are described in this
paper are excluding zeros in the transfer functions. Zeros can only be accepted re-
lated to considerations which are using certain approximations. The general case
for a plant with one input and several outputs and no zeros related to the transfer
functions Hi(s) defines additional feedback loops from one integrator output in the

ThAT2.1

655

9

chain to the input of one integrator which is placed in one inner loop. The princi-
pal idea of model based compensation is to compensate the influence of these ad-
ditional feedback loops in a good approximation in order to reach comparable re-
sults in the time domain. The influence of the compensation effect in frequency
domain is reduced essentially if one uses models of state variables with reduced
frequency content instead of real state variables. For that purpose model based
compensation has to be defined.

recommended dimensioning of the gains: K1 = K0/e
(time responses with no overshoots for n�∞) K2 = K1/e e = 2.72

Kn = Kn-1/e

…

xnc
Kn

+

-

1
Cn

Kn-1

+

-

1
Cn-1

x(n-1)c
x(n-2)c …

1
s

Cn

x1c
K1

+

-

1
C1

xn 1
s

Cn-1
… 1

s
C1

xn-1 x1

K0

s+K0

Tn =
1
Kn

Tn-1 =
1

Kn-1
T1 =

1
K1

stability check n stability check n-1 stability check 1

integrator n integrator n-1 integrator 1

actuator

Plant

Controller

Fig. 7. The ideal case for cascade control

Using model based compensation:
In order to reach comparable control results for a plant with and without additional
internal feedbacks, it is necessary to compensate all undesirable additional internal
feedback loops of the plant.

The differential equation for nx& is defined in general by the following equation,

where
)1()1(−− ⋅ nnn xa represents the desired dependency on the next inner loop.

........)1()1(11 +⋅+⋅++⋅= −− nnnnnnnn xaxaxax&

Zeros are defined in general by the coefficients an1, an2,…, an(n-2). Therefore it is

assumed that these coefficients are zero or very small.
As the dynamics of the aircraft are well understood and high fidelity models of

the 'plant' (e.g. aerodynamics, engine, intake, mass, inertias, etc.) are available, it
is possible to compensate widely for all undesirable coupling terms. Once all un-
desirable coupling terms are removed, the estimation of nx& reduces to a simple in-

tegrator equation which is only dependent on the state variable of the next inner
loop.

)1()1(−− ⋅≈ nnnn xax&

ThAT2.1

656

10

It is therefore the task of 'model based compensation' to compensate for low

frequency exactly and for high frequency approximately the undesirable influence
of all coupling terms in such a way that the estimation of nx& is a simple integrator

of the next inner loop.
Instead of using the (measured) state variables directly for the compensation

task, the state variables are derived using models from their corresponding com-
mand values or alternatively only low pass filtered state variables are used for cas-
cade control. The advantage is that the estimated state variables have reduced fre-
quency content in comparison to their real (measured) values.

Using estimators for differentiated state variables
The compensation task requires differentiated state variables. If using differenti-
ated state variables, it is advisable to use estimates of them with reduced fre-
quency content and not simply differentiated state variables. The construction of
suitable estimators for all state variables of control is the central problem and is
the heart of the new concept. The dynamics (defined by gains) of these estimators
are correlated directly to the overall gains of corresponding control loops.

Using no integrator functions:
The target to be reached for every control step within cascade control is a steady
state control error which tends to zero. As far as one prefers designing for an inte-
grator (PI algorithm) at every control step, one has to stabilise one integrator for
every control step. This is not desirable as every additional integrator costs addi-
tional energy for stabilising which slows down the control dynamics. This disad-
vantage for PI algorithms disappears if one replaces the PI algorithm by a special
PD algorithm. This however causes another problem of the need for differentiated
state variables as described in the previous section.

Using gain assignment:
The special case of a plant which can be described as a chain of several integrators
(as shown in Fig. 7) gives a good indication of how the overall gains of the cas-
cade control loops can be chosen in general. Nevertheless it is possible to imple-
ment other rules for the selection of the overall gains. A recursive definition of the
overall gains in one control loop is a method which will work in many cases but
not in all. It is assumed that many 'normal' cases can be defined by using this rule.
Barracuda is one of these 'normal 'cases (stable aircraft). Pathologic cases, such as
unstable aircraft, may require another rule. Nevertheless it can be stated that a re-
cursive definition of all overall gains allows very fast definitions of good solutions
for stable aircraft. Only plants with relatively fast time constants or unstable be-
haviour can be a problem for the selection philosophy.

Using dynamic shells:
The definition of dynamic shells is describing the dynamic behaviour of different
control loops. In general one integrator of the plant is located in one single shell as
far as only one axis of the aircraft has to be described. In case that more than one

ThAT2.1

657

11

axis of the aircraft shall be considered it is possible to define comparable shells for
all axes. In such a case one defines a harmonisation of the dynamics of all axes
which is an essential design aspect for many reasons (e.g. in order to coordinate a
turn manoeuvre). Examples of how multiple axes of the plant are modelled using
equivalent dynamic shells are given in Fig. 8 and Fig. 9, where the principle de-
pendencies of the state variables are represented.

Using auto-selector control:
There are many physical values of the aircraft which have to be kept within a cer-
tain safe range and which are not embedded in actual control. As far as one of
these values is near its limit the control of a comparable control loop variable has
to be interrupted in order to hold the critical value within its limit by controlling
this value as a replacement of the normal control variable. Such a feature can be
realised by a so-called auto-selector control. Auto-selector control works only for
variables within one dynamic shell.

Definition of Longitudinal and Lateral Plant

Before any further control laws are designed, the two parts of the plant (longitudi-
nal part, lateral part) have to be defined from a point of view which allows design
of the corresponding control laws for cascade control. The models as shown in
Fig. 8 and Fig. 9 are structured in so-called corresponding dynamic shells. The
'feed forward like' influence of the control surface deflections and angle of attack
across the dynamic shells is ignored for cascade control design purposes and are
therefore displayed using dotted lines. It subsequently needs to be shown that
these effects are negligible during linear stability checks of the controller.

Stability checks are defined at the input of every integrator which represents a
certain state variable. The stability checks are related to the frequency response of
external disturbances to the plant integrator behaviour in each shell as shown in
Fig. 7. The cuts are defined at central places (bottlenecks) where signals are flow-
ing from inner dynamic shells to one outer shell. It is also possible to define the
cuts within the control laws after every cascade element (one control loop) as this
mirrors the plant integrator behaviour at each shell.

The cuts defined at the inputs of the integrators representing the state variables
for

aarqp βα ,,,, define the necessary checks for Primary Control Laws. The cuts

defined at the inputs of the integrators representing the state variables for
yhV aaaa ,,,,, χγµ define the necessary checks for the Autopilot function and auto

throttle.

ThAT2.1

658

12

dynamic shell 0 dynamic shell 1 dynamic shell 2 dynamic shell 3 dynamic shell 4

1
s

actuator
+

+

q

1
s +

+

αa

1
s +

+

γa

1
s

Va/Vkγk

engine

+ +

1
s

Fx

add. time
delays

Longitudinal Control Laws

PLAc
h

sensors

ηc η

Fig. 8. Model of the dependencies of the state variables in the longitudinal part of the

plant

dynamic shell 0 dynamic shell 1 dynamic shell 2 dynamic shell 3 dynamic shell 4

actuator

add. time
delays

Lateral Control Laws

1
s+

+

+ +

+

+

+ +
actuator 1

s

p

r

+
+

1
s

1
s

µa

βa

ξc ξ

ζc ζ

+
+

1
s

+ +

χa

χk

1
s y

add. time
delays

Fig. 9. Model of the dependencies of the state variables in the lateral part of the plant

Autopilot and Inner Loop Control Law Structure

Unlike conventional Autopilots only a single Autopilot mode is necessary in Bar-
racuda for all waypoint types as the Flight Guidance generates an explicit trajec-
tory and commands the deviation to the Autopilot. This reduces the complexity of
the required moding logic in the Autopilot and furthermore only one Autopilot
control law design is necessary for all flight phases.

The outer loops are shown in Fig. 10 for the Autopilot and ATHR which con-
trol the states as commanded by the Flight Guidance. The couplings between lon-
gitudinal and lateral dynamics described by the function block 'transformation of

ThAT2.1

659

13

load factor increments
zan∆ and yan∆ to commands of

aα and
aµ ' disappear for the

symmetric case 0== aa µφ . Only during turn manoeuvres (0≠aµ) the modelled

couplings are non-zero. The commands of the Flight Guidance for the Autopilot
control laws need to be calculated T3 seconds (time constant of the 3rd dynamic
shell) in advance as shown in Fig. 10 in order to compensate for the time delays of
the inner loop steering designed for

kkPLA χγ ,, .

As the designed time advancing only needs to be active for the inner loops de-
fined by kkPLA χγ ,, , (dynamic shell 3) some additional low pass filters (time con-

stant T3) have to be embedded in the outer loops in order to compensate the gen-
eral time advancing of the corresponding steering commands (Index s) coming
from the Flight Guidance. The time constant of the engine (TE) is in general less
than T3. The additional lead/lag filter slows down the dynamics of the engine to a
time constant T3 in order to justify a placement of the engine in dynamic shell 3.

dynamic shell 4
K4 =

VCAS-ControlVCASs (t+T3)

dynamic shell 3
K3 =

PLAc

γkc

1 + TE · s

1 + T3 · s

transformation of
load factor
increments
∆nza and ∆nya to
commands of
αa and µa

∆nza

1
T4

1
T3

*

γk-control

engine

TE

PLAc

χkc ∆nya
χk-control

αac

µac

K3

s + K3

VCASs (t+T3)

h-Controlhs (t+T3) K3

s + K3

γks (t+T3)

y-Control
xs (t+T3)

K3

s + K3

χks (t+T3)

ys (t+T3)

F
lig

ht
G

ui
da

nc
e

.

Fig. 10. Principal structure of outer control law loops (Flight Path Steering Mode)

The principle structure of the control laws for the inner loop are depicted in

Fig. 11.

dynamic shell 2
K2 =

µa-control
µac

dynamic shell 1
K1 =

dynamic shell 0
K0 =

ny-control

αa-control
αac

transformation of
the increments
∆µa and βa to
commands of
p and r

∆µa

∆βa

pc

rc

qc

p-control

r-control

q-control

transformation of
the increments
∆p and ∆r to
commands of
ξ and η

∆p

∆r

ξc

ηc

ζc

1
T2

1
T1

1
T0

actuator

actuator

actuator

add time delay

add time delay

add time delay

.

.
. .

.

.
^

. .

Fig. 11. Principal structure of the inner control law loops (dynamic shells 1 and 2)

ThAT2.1

660

14

Example of a control element within the control cascade

To illustrate the presented concept, an example of a control law element within the
control cascade is shown in Fig. 12 for two concrete and one general case. This
structure is very simple, but the complexity of control is hidden within the estima-
tors as these have to mirror the dynamics of the state variable in the plant.

+

-
K2

αac +

-
1

+

+

estimator
for αa

.

αac αacαac qc

.
* *

q
αa

αa

.̂

+

-
K1

qc +

-

1
a10

+

+

estimator
for q

.

qc qcqc ηc

.
* *

η
q

q
.̂

+

-
Kn

xnc +

-

1
an(n-1)

+

+

estimator
for xn

.

xnc xncxnc x(n-1)c

.
* *

xn-1

xn

xn

.̂

.

.

.

αac

qc
*

*xnc

*

…

q

…

η

…

xn-1

Fig. 12. General structure of one control law element and two examples for q and αa

control

Example of an estimator for differentiated state variables

As already mentioned, the definition of the estimators for differentiated state vari-
ables is an essential part of the control concept. The differential equation for a
state variable is defined in general by the following equation

......)1()1()1()1()2()2(+⋅+⋅+⋅+⋅+= ++−−−− nnnnnnnnnnnnn xaxaxaxax&

The dependency related to xn is derived from its command xnc

* using a corre-
sponding model (model based compensation) which is represented by a simple,
first order, low pass filter. The dependency related to x(n+1) is represented for low
frequencies by the real state variable x(n+1) and for high frequencies by the state
variable xn. Further dependencies of state variables in upper shells (n+2,…) do not

ThAT2.1

661

15

need to be respected since these dependencies are already covered sufficiently by

the auxiliary loop for nx& . Dependencies of state variables related to shell n-2 and

lower have to be represented by corresponding low pass filtered real state vari-
ables. The dependency related to state variable xn-1 is a dependency without any
additional filtering since this state variable is finally cancelled out at the output of
the control law element (see Fig. 12). Fig. 13 demonstrates that all dependencies
which have to be compensated are using signals which are low pass filtered by a
first order filter function.

Kn
s + Kn

+

xn

s

s a(n+1)n
Kn

an(n+1)
Kn

s + Kn

Kn/K(n-1)
s + Kn

ann

s an(n-1)

s

1
s

K(n+1)

+

+

+

+ +

+

-

+

+

.̂
x(n+1)

xnc
*

xn

s an(n-2)

x(n-1)

x(n-2)

+

+

+
+…

estimator for
xn = … + an(n-2) · x(n-2) + an(n-1) · x(n-1) + ann · xn + an(n+1) · x(n+1)

used for model based compensation

.

comparison between
computed and real xn

.

cancelled out
in controller

model

integrator bypass

Fig. 13. Common definition for an estimator computing the differentiated value of one

state variable to be placed within shell n.

The modelled dependency related to xn does not use any direct information of
xn. It is derived completely from its command xnc*. All signals which are used for
compensating the described dependencies have to be 'phase advanced' in order to
compensate for the time delay of the next inner control loop. The necessary 'phase
advance' is realised by a filter function which bypasses the integrator.

The computed result for nx& has to be compared with the real differentiated

value of nx . Differences between both values have to be corrected by a corre-

sponding feedback loop with dynamics one order slower than the given dynamic
shell (gain K(n+1) as shown in Fig. 13). The time constant T(n+1) of this auxiliary
loop is greater than the time constant Tn of the main control (control of xn) by the
factor e.

Fig. 14 shows an example of the estimation of q& according to the above de-

scribed methodology.

ThAT2.1

662

16

estimator for
∆q = ∆a10 · ∆η + a11 · ∆q + a12 · ∆αa

used for model based compensation

K1
s + K1

+

q

s

s a21
K1

a12
K1

s + K1

K1/K0
s + K1

a11

s a10

s

1
s

K2

+

+

+

+ +

+

-

+

+

.̂
αa

qc
*

a10 =

a11 =

a12 =
q

estimator for pitch acceleration for model based compensation

δq
δη

.

δq
δq

.

δq
δαa

.

η

a21 = 1

Fig. 14. An example of the implementation of the estimator for q&

Gain adaptation

Every dynamic shell is defined by a certain time constant Ti and a certain overall
gain Ki = 1/Ti as described in the sections above. Besides these main gains the
control laws as well as the estimators use further gains which have a concrete
physical meaning, such as aerodynamic control power gains. All gains which have
been determined on an aerodynamic basis are scheduled using altitude, Mach and
Angle of Attack (AoA). Both sorts of gains are well defined using a straightfor-
ward method for the dimensioning of the gains and cannot be considered a result
of an elaborate gain tuning process.

This structured approach has proven to be an important advantage of the pre-
sented control law concept as it saves development time and maintains transpar-
ency for the control engineer during control law assessments.

Conclusions

Following the Cassidian Auto Flight strategy for UAVs, the workload of the Op-
erator is to be reduced to a supervisory role, such that the Operator can focus and
interact with the system in a more optimal way, increasing situational awareness
and enhancing safety of flight. This results in alleviation of the Operator from
those tasks which can be done automatically, while still enabling sufficient inter-
action and intervention possibilities. This approach poses new requirements on the
Auto Flight system causing the need for new functional and system architectures.

ThAT2.1

663

17

Safety of flight and operator situational awareness is satisfied using a flight
guidance which generates an explicit and flyable trajectory, which can be visual-
ized to the Operator. This enhances predictability and therefore situational aware-
ness. Furthermore, a care free auto flight system limits all relevant flight parame-
ters, such that safety of flight can be sufficiently guaranteed.

Low development costs are ensured by using a generic functional architecture
which has a high commonality between different UAV platforms. The explicit tra-
jectory generation enables the use of a single autopilot flight path steering mode,
without complicated control law moding and subsequent difficulties during valida-
tion and verification. Furthermore the presented control law structure has been de-
signed with a focus on low effort regarding gain tuning and uses model based
compensation to adapt to air vehicle specific flight dynamics.

The architecture in this paper therefore satisfies the need for safety of flight,
combined with optimal situational awareness whilst ensuring low development
costs. The presented Auto Flight system has been implemented on the Barracuda
UAV demonstrator and successfully flew in a flight test campaign in the summer
of 2012.

Acknowledgments The work presented in this paper has been the result of a highly motivated
and dedicated team, without which a state-of-the-art flight test demonstration on the Barracuda
UAV would not have been possible. The authors wish to express special thanks to Rüdiger
Amos, Gerald Klein, Markus Kurze, Maximilian Merz and Jan Waßner for their contributions to
the concept, its implementation and this paper.

References
[1] DIN 9300 – Luft- und Raumfahrt; Begriffe, Größen und Formelzeichen der Flugmechanik
[2] R. Brockhaus et al. – Flugregelung, Springer Verlag, 2011
[3] R. Hammon – Auslegung einer robusten Kaskadenregelung, DASA-S-R-1685-A,

Universitätsbibliothek Hannover, 1995

Acronyms
AoA Angle of Attack
ATHR Auto Throttle
FMS Flight Management System
PLA Power Lever Angle
UAV Uninhabited Air Vehicle

ThAT2.1

664

