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Nonlinear model predictive control applied to
vision-based spacecraft landing

Dario 1zzo and Guido de Croon

Abstract Real-time optimal control has eluded practical implementation for most
systems so far. The reason being mainly related to the scarce computational re-
sources available and the high CPU requirements of commonly proposed real-time
optimal control architectures. In this paper we show how, by a careful use of the
Nonlinear Model Predictive Control approach one can obtain a real-time control
system able to drive a mass optimal spacecraft landing in the presence of highly
noisy navigation inputs such as those coming from a light weight solution including
only one IMU and a camera. The introduced approach is applicable to a broader
class of systems, as is shown by applying the method to find time-optimal maneu-
vers for a quad rotor model.

1 Introduction

In a typical control architecture an optimal guidance profile is determined and fed
as a reference signal to the navigation and control loop that will thus track such
a profile as closely as possible during operation. This scheme is widely used for
example in mass-optimal interplanetary trajectories, in spacecraft landing [6, 22] or
in time-optimal trajectories for agile quad rotors maneuvers [20, 11] to only quote
a few. The advantage of such a scheme is in the possibility to determine the optimal
guidance profile upfront thus coping with the computational effort that is typically
involved in the optimal guidance definition. While simple vehicle / world models
may be solved in closed form, more elaborate problems require solving a complex
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2 Dario 1zzo and Guido de Croon

and highly non-convex optimization problem [6]. One important factor leading to a
large computational effort is that optimal guidance profiles often have discontinuous
changes of control variables (bang-bang controls). This means that the optimization
needs to employ a high time resolution (small time steps), which slows down the
whole process even further.

The result of the optimization process is a guidance profile valid for the consid-
ered initial state. For spacecraft landing, considerable effort in terms of mass, sensor
redundancy, etc. is invested in order to meet the initial state as closely as possible
and consequently follow it closely. Too far an offset from the initial or an interme-
diary state may lead to an unacceptable cost of propellant mass. While this may
be acceptable in a single, well-planned landing, this is not the case in general as
retargeting and replanning is often important and large offsets from the nominal tra-
jectory may arise. This is especially true for vehicles other than complex and costly
spacecraft, for instance, a quad rotor is an agile platform that during its operation has
to perform many different maneuvers, having many different optimal guidance pro-
files. Storing a large set of optimal guidance profiles would be an unwieldy solution,
especially given the limited resources onboard such small platforms.

In some cases, it is possible to determine a guidance profile (optimal in some
sense) in real-time, updating it at every sampling instant. In particular, in Model
Predictive Control (MPC), a linear model is solved at every time step (often ana-
lytically). For highly nonlinear systems one can linearize around the current state,
but this imposes a short time horizon and can result in extremely sub-optimal so-
lutions. An alternative solution is to employ Nonlinear Model Predictive Control
(NMPCO) [10, 1, 21], in which the nonlinear model is used in the optimization. Al-
though there is significant progress in the field of NMPC, the computational effort
required to optimize nonlinear models still entails that NMPC is mostly used for
systems with relatively slow dynamics such as chemical plants [10] or long-lasting
low-thrust spacecraft maneuvers [1]. In addition, many important issues in the field
of NMPC are still open, including its robustness in the presence of (noisy) state
estimation.

The main contribution of this paper lies in devising a real-time optimal control
(NMPC) architecture and demonstrating its performance in systems of interest in
aerospace engineering, characterized by a rather fast dynamics and noisy sensory
inputs. Our approach makes the application of NMPC to such systems possible by
using (1) a Hermite-Simpson collocation method to transform the optimal control
problem (OCP) into a Nonlinear Programming problem (NLP) [4], (2) an interior
point optimization technique (from the open source package IPOPT [29]) with gra-
dients computed via automated differentiation, and (3) a careful selection of the
simplified model used internally to plan optimally.

The approach is studied first in the case of perfect state measurements and then,
more interestingly, in the case of state estimation based on noisy measurements. In
particular, we consider an inertially aided vision-based spacecraft landing scenario.
The spacecraft includes only a downward pointing camera and three accelerometers.
We show how our approach is able to cope with such an arguably limited sensing
capability by continuous and fast replanning of the optimal actions.
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Nonlinear model predictive control applied to vision-based spacecraft landing 3

The remainder of the article is organized as follows. First, in Section 2, the rela-
tion between model complexity, computational effort, and optimality is investigated.
In particular, three (increasingly complex) spacecraft models and a quad rotor model
are studied for different time resolutions. Second, the robustness of the approach to
navigation errors is investigated. To this end, the novel scheme is applied to the
aforementioned vision-based spacecraft landing scenario. The experimental setup
of the simulations is discussed in Section 3, while the results are investigated in
Section 4. Finally, conclusions are drawn in Section 5.

2 Nonlinear model predictive control implementation

Let us consider the problem of real-time optimal control of complex systems. We
define this as the problem of finding a “computationally viable” form of the optimal
state feedback u = u*(x). Taking the generic form of a finite horizon optimal con-
trol problem, see for example [28], seeking to minimize the Mayer cost functional
and considering a rich enough functional space (Sobolev spaces W™ are typically
needed), optimal control theory guarantees us the existence and uniqueness of such
a state feedback. One is then left with the problem of finding a “computationally vi-
able” algorithm to compute u = u*(x) (analytical solutions are very rare and avail-
able only for simple problems). In this paper we use ideas from nonlinear model
predictive control [10]: we build a procedure to solve the optimal control problem
for a simpler dynamical representation of the system from a generic initial state xq
thus finding uy (#). We then set at each time instant u*(x) = u(0). In our scheme
we then need to reconstruct the control to be fed into the real plant as the model plant
mismatches, here intentionally introduced, makes it impossible to use the computed
u*(x) directly. In this paper, though, we do not discuss this last step which is the
subject of a future work, and we focus on the rest of our real-time nonlinear model
predictive control approach and its coupling with our vision based navigation. In
other words, in this paper, the model plant and the real plant will be assumed to be
coincident.

The main problem with non-linear model predictive control is the low frequency
at which one is able to compute u*(x). Solving the optimal control problem, in fact,
entails the solution of a nonlinearly constrained high dimensional nonlinear pro-
gramming (NLP) problem (assuming that a direct approach is employed). These
types of problems require quite intensive computational resources and, in any case,
a very good initial guess to ensure their convergence. We here overcome this prob-
lem by using simplified nonlinear systems tailored at computational efficiency as
internal models (as mentioned above this will introduce a plant mismatch that has to
be dealt with by another block in the overall control architecture). The idea is rather
simple and applicable more in general to robotics systems: the system thinks of it-
self and of the environment in simplified terms when planning its optimal actions,
the continuous update of such a plan ensures that the gap between the theoretical
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optimal action and the one planned is filled. The scheme also allows for frequent
changes of higher level goals which simply results in a replanned course of action.

The very feasibility of our approach relies on the computational efficiency of the
optimal control solver which needs to be able to compute the optimal action at a
high frequency as to allow replanning and accounting for the differences between
model and reality. We here study four simple cases of interest to the engineering
community as they can represent internal models of widely studied systems such as
quadrotors or spacecraft. The first three cases model a spacecraft landing at different
levels of complexity, a problem that will also be the main case study presented in
the rest of the paper. In particular, we consider a “point with variable mass model”
(model I):

X =V, Vy=usin(ug)cos(uy)/m
y="vy, Vy=usin(ug)sin(uy)/m
Z=v, Vv;=ucos(ug)/m—g
m=—u/ I5p8o

ey

a “point with variable mass and pitch angle controlled via a reaction wheel” model
(model II):
X=vy, vy=usin(0)/m
i=v,, Vv;,=ucos(0)/m—g
9 = Ug
= _M/Isng

(@)

and a “point with variable mass and pitch dynamics controlled via thrusters” (model
II0):
X=vy, Vy=(utuL+ug)sin(0)/m
i=vy, V= (utur+ug)cos(6)/m—g
6=0w, &=R(ug—ur)
m=—(u+ur+ur)/lpgo

3)

In contrast, the fourth case models the dynamics of a UAV (a quadrotor) as modelled
in [11] (model IV):
X=vy, Vy=usin(0)/m
z=v,, v,=ucos(0)/m—g €))
6 = Ug

In all the above cases the controls (indicated always with the letter u) are con-
sidered as bounded and the optimal control structure is thus bang-bang. Final mass
maximization is seeked for the first three models, while we consider, in the fourth
case, a minimum time problem. The optimal control problem is transcribed into
a nonlinear programmig (NLP) problem using the well-known Hermite-Simpson
transcription [4]. To solve the NLPs arising in the various cases we make use of
an interior point optimization method (IPOPT [29]) providing to it all the gradients
computed with the aid of automated differentiation. For the first three models we
test an Apollo-like scenario [7]. The scenario involves the following high-gate con-
ditions at the Moon (when applicable): I, = 311 [s], mg = 9472.06 [kg], vy, = 150
[m/s], v,y = —44 [m/s], zo = 2300 [m], 8y = —60 [deg] and g = 1.623 [m/s?]. At
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low-gate we set: Yy, = 0 [m/s], v, € [—2.5,0] [m/s], zy <= 10 [m] and Oy = free
[deg,]. For model I, we set u < 45760 [N], for model II we set u < 45760,> 0
[N] and ug < 0.0698,> —0.0698. For model III we set u < 44000,> 0 [N] and
ur,ug < 80 [N] and R = 3 [m]. For model IV, we use the agile quadrotor used in
[11] and simulate an horizontal displacement maneuver with xq,z0, vy, vz, 60 =0
and xy =15 [m], 6y = 27. The quadrotor has m = 1 [kg] and we set u <20,> 1 [N]
and ug < 10,> —10 [rad/s]. The tests! are done recording the final achieved objec-
tive function and the employed CPU time with varying number of nodes employed
by the Hermite-Simpson transcription.
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Fig. 1 CPU performance and precision in the case of model I: point with variable mass
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Fig. 2 CPU performance and precision in the case of model II: point with variable mass and pitch
angle controlled via a reaction wheel

The results are reported in Figures 1-4. From the results it is shown how all our
models can be solved with a good accuracy already using only n = 5 nodes. Increas-
ing the number of nodes does improve the accuracy of the computed solution, but
only marginally. Using our scheme, in all tested cases one can compute the optimal
control solution with a frequency of 10 Hz and an accuracy which is within one

! Our experiments were done on a single Intel(R) Xeon(R) CPU - X5355 @ 2.66GHz.
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Fig. 3 CPU performance and precision in the case of model I1I: point with variable mass and pitch
angle controlled via thrusters
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Fig. 4 CPU performance and precision in the case of model IV: a quadrotor

percent of the real optimal solution. Surprisingly, in the case of spacecraft landing,
model III seems to be the most computationally efficient.

We also note how the convergence pattern with respect to the number of nodes is
non monotonous in all cases. This is due to the discontinuous nature of the optimal
control (bang-bang) and its interaction with an equally spaced time grid (when the
control switching point overlaps to a point on the time grid a benefit on the objective
function is derived). Also the CPU time has a rather scattered behaviour with model
I being the most irregular and the quadrotor being the smoother. This behaviour de-
pends on the complex interaction between the IPOPT stopping criterias, its search
strategy and the different NLP problems created using the Hermite-Simpson tran-
scription with different nodes number.

In the rest of the paper we will be using model I and show how the nonlinear
model predictive control approach is able to integrate with our vision based navi-
gation system cancelling the arguably high state etimation errors and still landing
using an amount of propellant very close to the optimal value.
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Nonlinear model predictive control applied to vision-based spacecraft landing 7

3 Case study: inertially aided vision-based spacecraft landing

In the previous section simplified models with a coarse time resolution were shown
to lead to solutions that are close to optimal. This implies that approximate optimal
solutions can be calculated in real-time on board a vehicle such as a spacecraft or
quad rotor. However, it remains unclear whether the more typical guidance-tracking
control of such a vehicle can be successfully supplanted by the commands directly
coming out of the optimization process. For example, it is unclear whether naviga-
tion errors lead to a graceful decay or to complete failure.

In order to study the impact of navigation errors, in this section, our real-time op-
timal control scheme is tested on a simulated spacecraft landing scenario. The focus
is on a minimal landing system that can be used as an emergency landing system
of a normal spacecraft or as the main landing system of a nano-lander. The state
estimates are based on a combination of an Inertial Measurement Unit (IMU) with
vision, typically referred to as vision-aided inertial navigation. Previous studies in
this area [14, 24, 18, 25] assume an accurate initial estimate, typically relying on
additional sensors such as laser altimeters. Instead, in the current approach also the
initial state is obtained purely on the basis of vision and proprioception.

In particular, the state estimation relies on the biologically relevant visual cues of
ventral optic flow [19, 26, 2, 3] and time-to-contact [15, 16]. These bio-inspired vi-
sual observables can be measured with extremely light-weight and energy efficient
neuromorphic sensors [9] or with an uncalibrated linear camera. These cues have
previously been proposed and studied in the context of spacecraft landing scenarios
and mass optimality [27, 13, 12]. Tracking an exponentially decreasing time-to-
contact was shown to result in a rather low mass consumption, while being com-
putationally efficient and requiring only estimates of the ventral optic flow and of
the time-to-contact (obtained from on-board cameras) [12, 8]. While these studies
led to interesting algorithms from the point of view of computational efficiency, the
propellant mass penalty associated (estimated to be around 15% in [12]) can be of
concern for applications where it is not affordable to mis-use such a precious re-
source. Below it is shown that the novel real-time optimal control scheme is both
robust and significantly more mass-efficient (with a propellant mass consumption
only 3.4% away from the optimal value for the same case studied in [12]).

In this section, it is first explained what visual measurements are used for state
estimation and how they are combined with the accelerations. Subsequently, the
computer vision algorithm that performs the visual measurements is discussed. Fi-
nally, the data fusion involved in the state estimates is explained.

3.1 Combining visual measurables and accelerations

Formally, the ventral flow is defined as (@, @) = (=, v%) It provides informa-
tion on the lateral velocities relative to the height. The time-to-contact is defined as

T = —=, and captures the vertical velocity relative to the height. In this section we
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demonstrate how combining the ventral flow and time-to-contact with accelerom-
eter readings allows to retrieve the actual height and velocities of the spacecraft.
The necessary equations are derived as follows. It starts with the equation for the
time-to-contact:

V,T=—2 o)
Taking the time derivative, we get:
a;T+v,t=—v, (6)
(1+1)v, =—a,t @)
a,T
P 8
G ®

A similar approach can be applied to the ventral flow. Below, we derive the equa-
tion for w,:

wa = Vx (9)
Taking the time derivative gives:
W+ WV, = ay (10)
ay — 2
= - 11
vz o, (11)

Substituting z with the equivalent —v, 7 gives:

poo GV a4 (12)
Wy W — T
Given the three accelerations (ay,ay,a;) and the visual observables (7, @, @),
there are three different estimates of v,. The v, measurements can be very different
from each other, depending on the context. In particular, Eqq. 8 and 12 both become
ill-conditioned when the accelerations approach zero (7 then approaches —1 and
o, T approaches @,). This can easily be seen, by looking at the time derivates:

t= 50 (13)
VZ
_ e VaVr dx, Ok (14)

oz 2zt
Another factor of influence on the accuracy of the v, estimates is the accuracy of
the 7-estimate (figuring in both equations), which is worse at higher 7. The way
in which the three v, estimates are fused into one estimate is discussed further in
Subsection 3.3.
Given a single estimate of v, the other relevant state variables can be determined
as follows:
Z2=—v.T (15)
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Vp = 02 (16)
— (17)

3.2 Vision algorithm

The vision algorithm to estimate T and o is introduced and explained in detail in
[8]. The algorithm’s main components are only briefly discussed in this subsection.
It assumes (1) a downward looking camera, (2) that the part of the landing sur-
face in sight is predominantly planar, and (3) that camera rotations are either not
present (as with a gimballed camera) or are accounted for by means of propriocep-
tion (viz. derotation with the help of gyrometers). The vision processing is illus-
trated in Figure 5. The processing consists of two interconnected parts, illustrated
with the dashed boxes (‘A’ and ‘B’). The first part tracks visual features .% over
time, estimating the corresponding optic flow vectors. New features are detected in
the image with the well-known algorithm of Shi and Tomasi [23]. The features are
tracked to the next image with the Lucas-Kanade algorithm [17, 5]. The second part
processes the optic flow vectors in order to estimate the parameters of a planar optic
flow field py, pv. The time-to-contact 7 is inversely related to the divergence of the
optic flow field, while the ventral flow @, is the optic flow in the center of the optic
flow field. Figure 6 illustrates this process. The left image contains a set of observed
optic flow vectors at different locations (T = 2s). The spacecraft is moving to the
top left, while descending toward the surface. The center image in Figure 6 shows
the planar approximation of the horizontal optic flow field, while the right image
shows the approximation for the vertical optic flow field. The estimates £ and @ are
filtered over time (leading to %y and @) and fed back to improve the efficiency and
performance of the first part.

A pU, pv 1 B |

o l | |

| | |

3 I ! I
. . |

¢ | Optional Pyramidal Kalman Determine I

B Feature | —> | Optic Flow | —> | Filtering | —> pU, pV. — F|I/Tt\e2\)ng l

Detection Calculation Features ! AN rox I

| | T, Oy |

[ : |

| T Features | |
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Fig. 5 Overview of the vision processing. The vision processing can be subdivided in two parts.
The first part tracks visual features over time, leading to a set of reliable optic flow vectors. The
second part processes these vectors in order to estimate parameters of a planar optic flow field pU,
pV (see the text for further details). These parameters allow the calculation of 7 and w, over time.
The parameters pU and pV are fed back to improve the efficiency and performance of the first part.
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Fig. 6 Left: Measured optic flow vectors. Center: Estimated horizontal optic flow field. The cir-
cle indicates the horizontal ventral flow ®,. Right: Estimated vertical optic flow field. The circle
indicates the vertical ventral flow .

Finally, 7 and & are computed by making a linear least-squares error fit through
FPS previous estimates of 1 and @y. The linear fit introduces additional delay, but
is necessary to obtain less noisy estimates.

3.3 Data fusion and state estimation

As mentioned before, no initial estimate of the spacecraft state is employed. Instead,
the spacecraft uses a period of 2 seconds to (i) initialize the visual measurements
(1s), and (ii) initialize the state estimate (1s). The second phase of the initialization
requires acceleration of the spacecraft. Therefore, the control during the initializa-
tion period can involve a free fall (in case of sufficient acceleration due to gravity)
or a specific thrust maneuver (under low-gravity conditions).

After initializing the filters on 7 and ®, the state is estimated on the basis of equa-
tions 8 and 12. The current implementation of the initial estimate assumes the three
different estimates V.3 to be statistically independent and distributed according a
normal distribution: p(V;|v;) ~ 4 (u,c). The parameters of the normal distribu-
tion are assumed to be 4 = v, and ¢ a function of the relevant accelerometer reading
a:

100 —22.5a% if |[a| <2
o(a)=< 16—3a if2<lal <5 (18)
1 if |a] > 5,

a formula tuned on the basis of preliminary experiments. Then the maximal log
likelihood estimate is used as v;:

1 .~ 1 .~ 1 .~

?Vzl + o2 Va2 + o2 V3

p, =2 2 3 (19)
2 T 1T

2 0-2 2

2

o 03

At the end of initialization, the median of the state estimates during the initialization
is used as initial estimate for a Kalman filter.
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The Kalman filter involves a state vector of the form: s = (x, vy, ax,y, vy, ay,2,v;,az).
The measurement vector is 0 = (z,Vy, Vy, V;,ay,ay,d;). The measurement variances
of the velocities are set to R, = 1/ (# + é + #) while the measurement variance

1 2 3

of the height is set to R, = 100R,. The variance on the accelerometer measurements
is assumed to be R, = 0.1. The process variance for the height is set to Q, = 2.5,
while the variance for the speeds is Q,, = 0.5 and for the accelerations is Q, = 0.01.
A new v;-measurement is considered an outlier if it is more than 50m/s away from
the current filtered estimate. In that case, the Kalman innovation and update steps
are not performed, but the uncertainty is propagated to the next time step.

The entire data fusion and state estimation process is illustrated in Figure 7. The
state estimate of the Kalman filter is used for the NMPC.

observed

. 3 estil state state
Camera Image Vision of vz Data fusi Z, VX, Vy, vz Kalman estimate NMPC
] processing ata fusion filtering
Accelerometers| accelerations T *
g ax, ay, az conrol inputs

Fig. 7 Overview of how the sensor measurements (left) are processed to obtain a state estimate.
This estimate is used by the nonlinear model predictive control to determine the current control
inputs.

3.4 Experimental setup

Experiments are performed in simulation with model I (Eq. 1). The motivation for
choosing this model is that model I captures 3D-motion as allowed by the simulator.
For the experiments, the lunar scenario discussed in Section 2 is employed: Iy, =
311 [s], mop = 9472.06 [kg], vy, = 150 [m/s], v,, = —44 [m/s], zo = 2300 [m], and
g =1.623 [m/s?].

The generation of camera images is handled by creating views of a large base-
image representing a flat ground surface. In order to employ visually realistic tex-
ture, the publicly accessible large image stitch from the Lunar Reconnaissance Or-
biter Camera (LROC) is used for the base-image?. From the image stitch the center
area of 15000 x 15000 pixels is selected, since it has limited perspective effects.
The image of the center area has been resized to 5000 x 5000 pixels for use in the
experiments. The settings for the virtual camera are rather conservative, with a low
number of frames per second (FPS = 10), relatively small image size (256 x 256
pixels), and a field of view (FOV = 50°) that leads to a relatively small ratio of
pixels / degree.

2 http://Iroc.sese.asu.edu/

101



12 Dario Izzo and Guido de Croon
° 7
4
25000 , 10 o
M o
. -2 P
£/
2000f [ N i 5
AN -30; o7
\\ A S
NS _ 40| 22
~ 1500+ AR ) Ml L5
E \;_\\;(\ E sd e
N Ny N AN i
wWr o N B
1000 \, ” T H“m
[ ~ AR
AN -70 “/”L
S v
500 e -8
.
- -
. 99
0 . . . . e S 10 . . . . .
0 10 20 30 40 50 6 0 10 20 30 40 50 6
Time (s) Time (s)

Fig. 8 Left: 2 (red solid line) and z (black dashed line) over time. Right: v, (red solid line) and v,
(black dashed line) over time.

Although the images are generated artificially and rotations are assumed to be
absent or taken care of by means of gyro derotation, the vision problem is rather
challenging. For example, the initial conditions in the Apollo scenario imply a
T =~ 52s, so the vision algorithm has to estimate the time-to-contact in the order
of TFPS = 520 frames. The divergence for this 7 is 0.0038, which means that two
horizontal optic flow vectors that are 128 pixels apart have an optic flow differ-
ence of only 0.245 pixels. Such accurate readings can be difficult to extract from
the images, as they are sometimes only sparsely textured. In addition, the control is
further complicated by the necessary filtering of vision signals, which introduces a
delay that can approximate one second [8].

The settings for the optimal control algorithm are as follows. Model I is used,
with 10 nodes, and the algorithm is executed at 10 Hz. The quantity optimized is
the final mass of the spacecraft, under the constraint that at z = 10 [m], v, = 0 [m/s]
and v, € [-2.5,0] [m/s].

4 Results

The spacecraft successfully lands in the lunar scenario. Here the results for a landing
are shown with a final mass of 8856.92 kg. The mass expenditure is 615.14 kg,
which is only 20.04 kg (3.4%) more than the optimal mass expenditure, 595.10
kg. In Section 2, it was shown that utilizing only 10 nodes for control optimization
leads to a relatively small mass loss of 0.4 kg. Therefore the difference between
the optimal mass expenditure and the one obtained in the experiments, mostly lies
in the noise on the inertially aided, vision-based state estimates. In addition, the
end condition on v, is not exactly met: at z = 9.90m the spacecraft velocities are
vy = —0.64 m/s and v, = —1.39 m/s. These velocities can easily be cancelled in the
remaining meters.
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Fig. 9 Left: Ground-truth time-to-contact (bold black dashed line), instantaneous 7 (grey dotted
line) and filtered £ over time. Right: Ventral flow estimates @, (green line) and a (orange line)
over time, with their corresponding ground-truths (black dashed lines).

Figure 8 shows the height (left) and vertical velocity (right) over time. Estimates
are shown with solid red lines, the ground-truth values with dashed black lines. The
initial estimates using equation 19 are rather noisy, but they provide a sufficiently
accurate state estimate for initialization of the Kalman filter. Initial estimates are
typically different from the ground-truth in the order of 10-20%. The main observa-
tion from Figure 8 is that the state estimates (red lines) after initialization are in the
order of 10% off from the ground truth values (black dashed lines). The spacecraft
initially underestimates both the height and vertical velocity (although their relation
is rather accurate). On the basis of these estimates the optimal control decides not
to thrust. As soon as the spacecraft starts thrusting, at ~ 15s, the estimates start to
further improve, differing ~ 5% from the ground-truths.
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Fig. 10 Left: Ground-truth time derivative of the time-to-contact (bold black dashed line), and
7 over time. Right: Estimated time derivatives of the ventral flow @, (green line) and @, (dark
yellow line) over time, with their corresponding ground-truths (black dashed lines).
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Figure 9 shows the visual measurements (solid lines) and the respective ground-
truths (dashed lines) over time. The left plot shows the instantaneous T-measurements
(dotted line), the filtered estimates (solid line), and the ground-truth 7 values (dashed
line) over time. The right plot shows the estimated ventral flow @, (green line) and
E)} (dark yellow line). All visual observables are close to their ground-truth values,
although the estimates get noisier towards the end of the landing. A partial explana-
tion for this is that close to the surface the images contain much less visual texture
due to the digital image zoom.
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Fig. 11 Left: The three different v,-estimates over time: based on the vertical dynamics (v, ‘x’),

and based on the ventral flow @, (v, ‘0’) and @, (v, ‘+’). Right: The standard deviations of the

different v.-estimates over time: & (a.) (dotted blue line), (a,) (dashed red line), and o (ay) (solid
purple line).
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Fig. 12 Left: the total thrust (bold solid line), u, (dashed line), and u, (dotted-dashed line) over
time. Right: (x,z)-trajectory of the spacecraft. The arrows indicate the thrust directions during the
trajectory (only for thrusts > 1000 [N]).

Figure 10 shows the estimated time derivatives of the visual observables. The
left plot shows the estimated 7 over time (grey dotted line) and its ground-truth
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(bold black dashed line). The right plot shows the estimated time derivatives of
the ventral flow E); (green line) and a); (dark yellow line) over time, with their
corresponding ground-truths (black dashed lines). At the start and at the end of
the landing the estimated time derivatives are somewhat noisy. Depending on the
context, this noise can lead to large estimation errors. Nonetheless, the estimates
generally approximate the ground-truths reasonably well, allowing for sufficiently
accurate speed estimates.

The left part of Figure 11 shows the individual estimates of v, over time. The
estimates based on the vertical axis are indicated with ‘x’, the ones based on the
ventral flow with ‘0’ (@) and ‘+’ (®,). The right part of the figure shows the cor-
responding standard deviations: ¢(a;) (dotted blue line), 6(a,) (dashed red line),
and o(ay) (solid purple line). The figures show that the initial thrust maneuver (in
the opposite direction of the ventral flow) significantly helps the state estimation:
around ¢ = 2 — 3s, the estimates based on @, (V,;) are rather accurate. In the free fall
that follows, only the v, are sometimes close to the ground truth v,. The Kalman
filter copes with the lack of reliable vision-based information during the free-fall by
assigning a high standard deviation to v, and vy, and a reasonably high standard
deviation to v,. When the spacecraft starts thrusting, the estimates immediately im-
prove and the standard deviations of the measurements are set much lower for use
in the Kalman filter.

Finally, Figure 12 shows the thrust magnitudes over time (left) and the (x,z)-
trajectory with thrust directions (right). The main observation is the obvious (but
noisy) bang-bang strategy to obtain an optimal mass solution: the optimal control
starts the landing with a free fall, and then thrusts fully.

The advantages of having onboard real-time optimal control include the appli-
cation of the approach to any (feasible) initial condition and the adaptation of the
guidance profile to possible large disturbances. To illustrate such advantages, the
simulated spacecraft has been applied to a lunar landing with entirely different initial
conditions: zo = 800m, v, = —30m/s, vy = 80m/s. The results of this experiment
can be seen in Figure 13 and 14.
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Fig. 13 Left: % (red solid line) and z (black dashed line) over time. Right: v, (red solid line) and
v, (black dashed line) over time.
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Fig. 14 Left: the total thrust (bold solid line), u, (dashed line), and u, (dotted-dashed line) over
time. Right: (x,z)-trajectory of the spacecraft. The arrows indicate the thrust directions during the
trajectory (only for thrusts > 1000 [N]).

5 Conclusions

We have introduced an approach to Nonlinear Model Predictive Control (NMPC) in
order to obtain real-time optimal control of complex systems. We succesfully tested
our approach in the case of a vision-based spacecraft moon landing in presence of
noisy navigation inputs. Our approach makes use of Hermite-Simpson method and
interior point optimization with gradients computed via automated differentiation
to achieve the requested computational efficiency. We show that the approach is
able to achieve real-time performances. In our simulated landings, a vision based
navigation, suitable for an emergency procedure or for a nano-lander, is used and
provides noisy estimates of the state. The nonlinear model predictive control copes
with the noisy state estimation and guides the whole landing using a few percents
more than the optimal propellant mass.
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