Integrated Modelling of an Unmanned High-Altitude Solar-Powered Aircraft for Control Law Design Analysis

Solar-powered high-altitude unmanned platforms are highly optimized and integrated aircraft. In order to account for the complex, multi-physical interactions between their systems, we propose using integrated simulation models throughout the aircraft's life cycle. Especially small teams with limited ressources should benefit from this approach. In this paper, we describe our approach to an integrated model of the Electric High-Altitude Solar-Powered Aircraft ELHASPA. It includes aspects of the environment, flight mechanics, energy system, and aeroelasticity. Model variants can be derived easily. The relevant parts of the model are described and the model's application is demonstrated.